首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The population response of rapidly-adapting (RA) fibers is one component of the physiological substrate of the sense of touch. Herein, we describe a computational scheme based on the population-response model by K.O. Johnson (J. Neurophysiol. 37: 48–72, 1974) which we extended by permitting the capability to include the spatial distributions of receptors in the glabrous skin linked to RA fibers. The hypothetical cases simulated were rectangular, uniformly random and proximo-distally Gaussian distributions. Each spatial organization produced qualitatively distinct population-response profiles that also varied due to stimulus parameters. The effects of stimulus amplitude, average innervation density and contactor-probe location were studied by considering various response measures: number of active fibers, summated firing rate and the average firing rate of a subset of the modeled population. The outcome of the measures were statistically compared among simulated anatomical distributions. The response is the same for rectangular and uniformly random distributions, both of which have a homogeneous innervation density. However, the Gaussian distribution produced statistically different responses when the measure was not averaged over the subset population which represented the receptive field of a higher-order neuron. These results indicate that, as well as stimulus parameters, the anatomical organization is a significant determinant of the population response. Therefore, reconstructing population activity for testing psychophysical hypotheses must presently be done with care until the organization of the receptors within the skin has been clarified.  相似文献   

2.
In a previously reported study (Berger et al. 1990) we analyzed distributions of interspike intervals recorded extracellularly from cat visual cortex under four stimulus conditions. Stimuli were gratings differing in orientation and spatial frequency. The probability density function of first passage time for a random walk with drift process, which is defined by its barrier height and drift coefficient, was used to characterize the generating process of axonal discharge under resting and stimulus conditions. Drift coefficient and barrier height were derived from the sample mean and standard deviation of the measured inter-spike intervals. For cells with simple receptive fields, variations in spatial frequency produced changes only in drift coefficient. Variations in barrier height were produced only by changes in orientation of the stimulus. Currently, the method used to analyze these data was implemented in a simulation which displayed the relationship between the interval distribution of impulses, the random walk which represents the time series characteristic of the spike train model and the Gabor filter function which represents the geometry of the receptive field process.  相似文献   

3.
Responses of single neurons were recorded from the ventroposterolateral nucleus (VPL) of the thalamus while a monkey stroked its fingertips over gratings. Monkeys were trained to stroke the gratings with consistent downward applied force and velocity of hand motion. Neurons were selected with receptive fields on the glabrous digits. Average firing rate was computed for a range of grating groove widths; groove width corresponded to roughness. Force and velocity were measured. VPL responses were compared to previously reported responses in primary somatosensory cortex (SI) under identical stimulus conditions, and to reports of peripheral afferent fiber responses to passively applied gratings. VPL responses more closely resembled those of peripheral afferent fibers than those of SI in important respects: lack of independent responses to roughness, force, and velocity; high temporal and force fidelity; and response patterns that closely followed the shape of elevated metal strips used to separate pairs of gratings. The presence in cortex of response patterns not seen in the thalamus, such as response independence and negative correlations to groove width, suggests that they stem from cortical processing.  相似文献   

4.
Responses of single neurons were recorded from the ventroposterolateral nucleus (VPL) of the thalamus while a monkey stroked its fingertips over gratings. Monkeys were trained to stroke the gratings with consistent downward applied force and velocity of hand motion. Neurons were selected with receptive fields on the glabrous digits. Average firing rate was computed for a range of grating groove widths; groove width corresponded to roughness. Force and velocity were measured. VPL responses were compared to previously reported responses in primary somatosensory cortex (SI) under identical stimulus conditions, and to reports of peripheral afferent fiber responses to passively applied gratings. VPL responses more closely resembled those of peripheral afferent fibers than those of SI in important respects: lack of independent responses to roughness, force, and velocity; high temporal and force fidelity; and response patterns that closely followed the shape of elevated metal strips used to separate pairs of gratings. The presence in cortex of response patterns not seen in the thalamus, such as response independence and negative correlations to groove width, suggests that they stem from cortical processing.  相似文献   

5.
The receptive fields of retinal fibers in the visual tectum of the frog are mapped with different techniques and the spatial summation characteristics are examined, by presenting stimuli of various shapes and sizes in the center of the receptive field. When the size is increased gradually from the center of the stimulus, for constant stimulus intensity, the maximum response is obtained for stimuli of approximately the size of the most responsive part of the RF. Using a clustering technique to obtain stimuli that are part of the RF and combinations of these parts, it is evident that the spatial summation characteristics are not linear. A model is developed that describes the nonlinear form of these results, based on a power law.  相似文献   

6.
Previous histological and neurophysiological studies have shown that the innervation density of rapidly adapting (RA) mechanoreceptive fibers increases towards the fingertip. Since the psychophysical detection threshold depends on the contribution of several RA fibers, a high innervation density would imply lower thresholds. However, our previous human study showed that psychophysical detection thresholds for the Non-Pacinian I channel mediated by RA fibers do not improve towards the fingertip. By recording single-unit spike activity from rat RA fibers, here we tested the hypothesis that the responsiveness of RA fibers is asymmetric in the proximo-distal axis which may counterbalance the effects of innervation density. RA fibers (n?=?32) innervating the digital glabrous skin of rat hind paw were stimulated with 40-Hz sinusoidal mechanical bursts at five different stimulus locations relative to the receptive field (RF) center (two distal, one RF center, two proximal). Different contactor sizes (area: 0.39, 1.63, 2.96?mm2) were used. Rate-intensity functions were constructed based on average firing rates, and the absolute spike threshold and the entrainment threshold were obtained for each RA fiber. Thresholds for proximal stimulus locations were found to be significantly higher than those for distal stimulus locations, which suggests that the mechanical stimulus is transmitted better towards the proximal direction. The effect of contactor size was not significant. Mechanical impedance of the rat digital glabrous skin was further measured and a lumped-parameter model was proposed to interpret the relationship between the asymmetric response properties of RA fibers and the mechanical properties of the skin.  相似文献   

7.
Analysis of the physiological properties of single neurons in visual cortex has demonstrated that both the extent of their receptive fields and the latency of their responses depend on stimulus contrast. Here, we explore the question of whether there are also systematic relationships between these response properties across different cells in a neuronal population. Single unit recordings were obtained from the middle temporal (MT) and dorsomedial (DM) extrastriate areas of anaesthetized marmoset monkeys. For each cell, spatial integration properties (length and width summation, as well as the presence of end- and side-inhibition within 15° of the receptive field centre) were determined using gratings of optimal direction of motion and spatial and temporal frequencies, at 60% contrast. Following this, contrast sensitivity was assessed using gratings of near-optimal length and width. In both areas, we found a relationship between spatial integration and contrast sensitivity properties: cells that summated over smaller areas of the visual field, and cells that displayed response inhibition at larger stimulus sizes, tended to show higher contrast sensitivity. In a sample of MT neurons, we found that cells showing longer latency responses also tended to summate over larger expanses of visual space in comparison with neurons that had shorter latencies. In addition, longer-latency neurons also tended to show less obvious surround inhibition. Interestingly, all of these effects were stronger and more consistent with respect to the selectivity for stimulus width and strength of side-inhibition than for length selectivity and end-inhibition. The results are partially consistent with a hierarchical model whereby more extensive receptive fields require convergence of information from larger pools of “feedforward” afferent neurons to reach near-optimal responses. They also suggest that a common gain normalization mechanism within MT and DM is involved, the spatial extent of which is more evident along the cell’s preferred axis of motion.  相似文献   

8.
Lignocellulose breakdown in biorefineries is facilitated by enzymes and physical forces. Enzymes degrade and solubilize accessible lignocellulosic polymers, primarily on fiber surfaces, and make fibers physically weaker. Meanwhile physical forces acting during mechanical agitation induce tearing and cause rupture and attrition of the fibers, leading to liquefaction, that is, a less viscous hydrolysate that can be further processed in industrial settings. This study aims at understanding how mechanical agitation during enzymatic saccharification can be used to promote fiber attrition. The effects of reaction conditions, such as substrate and enzyme concentration on fiber attrition rate and hydrolysis yield were investigated. To gain insight into the fiber attrition mechanism, enzymatic hydrolysis was compared to hydrolysis by use of hydrochloric acid. Results show that fiber attrition depends on several factors concerning reactor design and operation including drum diameter, rotational speed, mixing schedule, and concentrations of fibers and enzymes. Surprisingly, different fiber attrition patterns during enzymatic and acid hydrolysis were found for similar mixing schedules. Specifically, for tumbling mixing, slow continuous mixing appears to function better than faster, intermittent mixing even for the same total number of drum revolutions. The findings indicate that reactor design and operation as well as hydrolysis conditions are key to process optimization and that detailed insights are needed to obtain fast liquefaction without sacrificing saccharification yields.  相似文献   

9.
Biphasic neural response properties, where the optimal stimulus for driving a neural response changes from one stimulus pattern to the opposite stimulus pattern over short periods of time, have been described in several visual areas, including lateral geniculate nucleus (LGN), primary visual cortex (V1), and middle temporal area (MT). We describe a hierarchical model of predictive coding and simulations that capture these temporal variations in neuronal response properties. We focus on the LGN-V1 circuit and find that after training on natural images the model exhibits the brain's LGN-V1 connectivity structure, in which the structure of V1 receptive fields is linked to the spatial alignment and properties of center-surround cells in the LGN. In addition, the spatio-temporal response profile of LGN model neurons is biphasic in structure, resembling the biphasic response structure of neurons in cat LGN. Moreover, the model displays a specific pattern of influence of feedback, where LGN receptive fields that are aligned over a simple cell receptive field zone of the same polarity decrease their responses while neurons of opposite polarity increase their responses with feedback. This phase-reversed pattern of influence was recently observed in neurophysiology. These results corroborate the idea that predictive feedback is a general coding strategy in the brain.  相似文献   

10.
We studied stress fiber orientation under a wide range of uniaxial cyclic deformations. We devised and validated a hypothesis consisting of two parts, as follows: (1) a stress fiber aligns to avoid a mechanical stimulus in the fiber direction under cyclic deformation. This means that, among all allowable directions, a stress fiber aligns in the direction which minimizes the stimulus, i. e., the summation of the changes in length of the stress fiber over one stretch cycle; and (2) there is a limit in the sensitivity of the cellular response to the mechanical stimulus. Due to this sensing limit, the orientation angle in stress fibers is distributed around the angle corresponding to the minimum stimulus. To validate this hypothesis, we approximated an anisotropic deformation of the membrane on which cells were to be cultured. We then obtained the relationships between the stretch range and the fiber angle in the undeformed state which minimize the mechanical stimuli, assuming that the membrane on which stress fibers and cells adhered was homogeneous and incompressible. Numerical simulation results showed that the proposed hypothesis described our previous experimental results well and was consistent with the experimental results in the literature. The simulation results, taking account of the second part of the hypothesis with a small value for the limit in sensitivity to the mechanical stimulus, could explain why cell orientation is distributed so widely with cyclic stretch ranges of <10%. The proposed hypothesis can be applied to various types of deformation because the mechanical stimulus is always sensed and accumulates under cyclic deformation without the necessity of a reference state to measure the stimulus.  相似文献   

11.
It was postulated on the basis of results obtained by investigating retinal receptive fields of cats that experimental data reflecting the pattern of sensitivity of the receptive field coincide with certain orthogonal polynomials. These special functions have certain properties which can be regarded as spatial characteristics of the receptive fields whose differential sensitivity they describe. Within the framework of the suggested hypothesis visual analysis in the retina from the mathematical point of view can be regarded as a process of expansion of the curve of spatial distribution of brightness within the receptive fields in an orthogonal series. Physiologically speaking the retinal receptive fields can be interpreted as filters distinguishing an elementary orthogonal harmonic from the signal. This method of analysis results in maximal economy of the coding of visual information in the retina. The concepts put forward provide a fresh explanation of a number of physiological facts and they provide precise quantitative evaluations of the response of the receptive field to an arbitrary stimulus.  相似文献   

12.
In recent years many field studies have been conducted to assess the relative importance of facilitation and competition in structuring vegetation communities in different environments. Herein, we present a simulation model which systematically explores the relative importance of intra‐specific facilitation and competition between adult shrubs and seedlings for spatial pattern formation. A grid‐based simulation model was constructed and calibrated using data collected in the field from Sarcopoterium spinosum populations in Israel to simulate population dynamics along a rainfall gradient. A series of simulation experiments was conducted in which manipulations of seedling survival probabilities were carried out to assess the relative importance of these processes in generating spatial patterns. Increased survival probabilities of first‐year shrubs in open areas were used to simulate competition effects, while increased survival probabilities in the vicinity of shrubs were used to simulate facilitation effects. Simulation results were then compared to shrub spatial patterns observed in the field. The results indicate that facilitation is not an important process in generating intra‐specific spatial patterns. Rather, in mesic environments with high precipitation, competition is the dominant process generating spatial patterns, resulting in regular spacing of shrubs, similarly to the patterns observed in the field (L(h) values<0). In arid sites, where precipitation values are lower, and stress conditions are higher, the dominant process generating spatial patterns was random mortality due to drought conditions. The resulting spatial patterns in this case are random (L(h)~0), whereas observed field populations exhibited clumped patterns (L(h)>0). We conclude that as stress conditions increase, the importance of intraspecific neighborhood interactions decrease whereas the importance of environmental factors increase in dictating intra‐specific spatial pattern formation. Consequently in mesic environments intra‐specific competition among adults determines the emerging patterns, while intraspecific facilitation is a negligible process.  相似文献   

13.
 Many previous studies were focused on the influence of anatomical, physical, and detection-system parameters on recorded surface EMG signals. Most of them were conducted by simulations. Previous EMG models have been limited by simplifications which did not allow simulation of several aspects of the EMG generation and detection systems. We recently proposed a model for fast and accurate simulation of the surface EMG. It characterizes the volume conductor as a non-homogeneous and anisotropic medium, and allows simulation of EMG signals generated by finite-length fibers without approximation of the current-density source. The influence of thickness of the subcutaneous tissue layers, fiber inclination, fiber depth, electrode size and shape, spatial filter transfer function, interelectrode distance, length of the fibers on surface, single-fiber action-potential amplitude, frequency content, and estimated conduction velocity are investigated in this paper. Implications of the results on electrode positioning procedures, spatial filter design, and EMG signal interpretation are discussed. Received: 23 August 2000 / Accepted in revised form: 18 December 2001  相似文献   

14.
The spatial organization of receptive fields of the lateral geniculate body in response to visual stimuli with different degrees of contrast was studied in cats. During variation of contrast changes in organization of the central zone were found to take place in some receptive fields. Inside the central zone of the receptive field as revealed by the use of low stimulus contrasts, an additional inhibitory ring appears in response to a stimulus of high contrast. The weighting function of the central zone of the receptive field becomes variable in sign. The role of this phenomenon in transmission of information on high spatial frequencies (increase in visus) at high contrasts is discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 789–796, November–December, 1984.  相似文献   

15.
16.
Physiological recordings were made from 136 slowly adapting (SA) fibers in the median and ulnar nerves that innervate the glabrous skin of the raccoon. It was found that wetting the skin produced large increases in fiber responsiveness and decreases in threshold. Their responses decreased rapidly with slight displacements of the stimulus away from the center of the receptive field. Responses also decreased with increases in the diameter of the tip of the stimulus probe. The length of time that an SA fiber responded to a prolonged indentation was related to the magnitude of the indentation, and was greater after wetting of the skin. The absence of any clear and consistent grouping of fibers into moderately SA (MSA) and very SA (VSA) units argues against the existence of two types of SA receptors differing in this property. However, the distinction between SA I and SA II fibers that has been made in other species was confirmed in the raccoon.  相似文献   

17.
Maps are a mainstay of visual, somatosensory, and motor coding in many species. However, auditory maps of space have not been reported in the primate brain. Instead, recent studies have suggested that sound location may be encoded via broadly responsive neurons whose firing rates vary roughly proportionately with sound azimuth. Within frontal space, maps and such rate codes involve different response patterns at the level of individual neurons. Maps consist of neurons exhibiting circumscribed receptive fields, whereas rate codes involve open-ended response patterns that peak in the periphery. This coding format discrepancy therefore poses a potential problem for brain regions responsible for representing both visual and auditory information. Here, we investigated the coding of auditory space in the primate superior colliculus(SC), a structure known to contain visual and oculomotor maps for guiding saccades. We report that, for visual stimuli, neurons showed circumscribed receptive fields consistent with a map, but for auditory stimuli, they had open-ended response patterns consistent with a rate or level-of-activity code for location. The discrepant response patterns were not segregated into different neural populations but occurred in the same neurons. We show that a read-out algorithm in which the site and level of SC activity both contribute to the computation of stimulus location is successful at evaluating the discrepant visual and auditory codes, and can account for subtle but systematic differences in the accuracy of auditory compared to visual saccades. This suggests that a given population of neurons can use different codes to support appropriate multimodal behavior.  相似文献   

18.
The somatosensory evoked response recorded from the scalp over the somatosensory cortex was used to examine the interaction between painful cold and transcutaneous electrical stimuli delivered concomitantly. When a painful cold stimulus was applied to the palmar receptive field of the median nerve while that nerve was being stimulated with electrical pulses at the wrist, there was an augmentation of an early component of the somatosensory evoked response manifested by an increase in the amplitude of a wave segment in comparison with room temperature controls. This augmentation depended on there being normal conduction of nerve impulses in both the population of small and large peripheral nerve fibers as compared to a state in which conduction was blocked selectively by a local anesthetic or a pressure cuff in those small and large fibers, respectively. The augmentation was not found to be characteristic of an arousal phenomenon, but was localized to the somatosensory cortex. This might represent the effects of a non-specific thalamortical projection system on a specific one.  相似文献   

19.
Extracellular recording techniques were used to record the responses of medial nucleus cells and posterior lateral line nerve fibers in mottled sculpin, Cottus bairdi, and goldfish, Carassius auratus, to a 50-Hz dipole source (vibrating sphere). Responses were characterized in terms of (1) receptive fields that relate responsiveness (spike rate and phase-locking) to the location of the source along the length of the fish, (2) input-output functions that relate responsiveness to vibration amplitude for a fixed source location, and (3) peri-stimulus time histograms that relate responsiveness to time during a sustained period of vibration. Relative to posterior lateral line nerve fibers, medial nucleus cells in both species were similar in showing (1) lower spontaneous and evoked rates of spike activity, (2) greater degrees of adaptation, (3) greater heterogeneity in all response characteristics, and (4) evidence for inhibitory/excitatory interactions. Whereas receptive fields of nerve fibers in both species faithfully reflect both pressure gradient amplitudes (with rate changes) and directions (with phase-angle changes) in the stimulus field, receptive fields of medial nucleus were more difficult to relate to the stimulus field. Some, but not all, receptive fields could be modeled with excitatory center/inhibitory surround and inhibitory center/excitatory surround organizations. Accepted: 26 November 1997  相似文献   

20.
Orientation sensitive properties of extrastriate area 21a neurons were investigated. Special attention was paid to the qualitative characteristics of neuron responses to the different orientations of visual stimulus motion across neuron classical receptive fields (CRF). The results of experiments have shown that a group of neurons (31%) in area 21a with specialized responses to moving visual stimuli changed their direction selective (DS) characteristics depending on the orientation of the stimulus movement. Some neurons reveal an abrupt drop of the direction sensitivity index (DI) to certain orientation (58%), and some show significant increase of DI at one of applied orientations of stimulus motion (22%). Detailed investigation of response patterns of non-directional neurons to different orientations of stimulus motion have revealed clear-cut qualitative differences, such as different regularities in the distribution of inter-peak inhibitory intervals in the response pattern in dependence of the orientation of stimulus motion. The investigation of neuron CRF stationary functional organization did not reveal correlations between RF's spatial functional organization, and that of qualitative modulations of neuron response patterns. A suggestion was put forward, that visual information central processing of orientation discrimination is a complex integrative process that includes quantitative as well as qualitative transformations of neuron activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号