首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of vasoactive intestinal peptide (VIP) and several other peptides have been examined on cyclic AMP accumulation in intact pieces and isolated horizontal cells of the teleost (carp) retina. VIP was the most effective peptide examined, inducing a dose-related response, and an approximately fivefold increase in cyclic AMP production when used at a concentration of 10 microM. Porcine histidine isoleucine-containing peptide and secretin, peptides structurally related to VIP, also stimulated cyclic AMP accumulation, but at concentrations of 10 microM induced responses which were only approximately 40% and 10%, respectively, of the response observed with 10 microM VIP. In contrast, several other peptides, including glucagon, neurotensin, somatostatin, luteinizing hormone-releasing hormone, alpha-melanocyte-stimulating hormone, cholecystokinin octapeptide26-33, gastrin-releasing peptide, thyrotropin-releasing hormone, and VIP10-28 were totally inactive. The response to 10 microM VIP was not antagonized by several dopamine antagonists, indicating the presence of a population of specific VIP receptors coupled to adenylate cyclase, distinct from the population of dopamine receptors coupled to adenylate cyclase also known to be present in this tissue. Finally, experiments involving the use of fractions of isolated horizontal cells indicate that these neurons possess a population of VIP receptors coupled to cyclic AMP production which would appear to share a common pool of adenylate cyclase with a population of similarly coupled dopamine receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Although 3,4-dihydroxyphenylethylamine (dopamine, DA) and vasoactive intestinal peptide (VIP) have been reported to stimulate adenylate cyclase activity in the rabbit retina, possible interactions between VIP-sensitive and DA-sensitive adenylate cyclase systems have not been previously investigated. To elucidate the interactions between these two putative transmitter-stimulated cyclase systems, the effects of VIP, DA, and VIP + DA on the conversion of [alpha-32P]ATP to [32P]cyclic AMP in rabbit retinal homogenates were measured. VIP stimulated adenylate cyclase activity in a biphasic manner, suggesting that two classes of VIP receptors may be involved in the induction of cyclic AMP formation. DA was less potent than VIP, and stimulated cyclase activity with a monophasic dose-response curve. When assayed together, these stimulations were partially nonadditive, implying the existence of a common adenylate cyclase pool that may be stimulated by both putative neurotransmitters. The dopaminergic antagonist (+)-butaclamol completely blocked dopaminergic stimulation, but had no significant effect on VIP-induced stimulation, indicating that VIP interacts with specific VIP receptor sites, which are distinct from the dopaminergic receptor sites. Furthermore, the specific D-2 dopaminergic receptor agonist LY141865 demonstrated no inhibitory effect on adenylate cyclase activity, suggesting that the interaction between the VIP- and DA-sensitive adenylate cyclase systems does not result from a D-2 receptor-mediated cyclase inhibition in the rabbit retina. Finally, at maximally effective concentrations, DA and VIP were less potent than fluoride or forskolin in the stimulation of cyclic AMP formation, suggesting that adenylate cyclase pools that are not sensitive to DA and VIP may also be present in this retina.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Abstract: Vasoactive intestinal peptide (VIP) exhibits pronounced effects on the growth rate of cultured mouse embryonic day (E) 9.5 embryos and acts in tissue culture as a potent glial mitogen and neuron survival factor. However, previous studies using immunohistochemistry or in situ hybridization in the rat have not revealed the presence and location of VIP or VIP mRNA in the early developing embryo CNS. Using a sensitive in situ hybridization assay with a 33P-labeled riboprobe, we show here that the VIP gene is expressed at least as early as E11 in the mouse hindbrain. Northern blot analysis on RNA from brain dissected from mouse embryos beginning at E14 confirmed that a correct-size mRNA for VIP was present by E14 and at later time points. Expression of the VIP2 receptor gene was also detected by northern analysis in E14 mouse brains. These studies support the hypothesis that VIP produced by the embryo exerts important effects on embryonic nervous system development.  相似文献   

4.
Both vasoactive intestinal peptide (VIP) and glucagon rapidly elevated cyclic AMP levels in embryonic chick retinal pigment epithelium (RPE), in culture as well as in freshly dissected tissue. In cultured cells, the half-maximal activities of VIP and glucagon were 5 X 10(-8) M and 3 X 10(-8) M, respectively. After 3 min of reaction, VIP elevated intracellular cyclic AMP by 100-fold; elevation with glucagon was up to 10-fold. Both neuropeptides stimulated adenylate cyclase activity in RPE membranes. Glucagon showed a half-maximal activity of 1 X 10(-8) M. VIP remained more effective than glucagon in stimulating adenylate cyclase activity, but the dose-response curve was shifted to a higher concentration range when compared to that of the VIP-elevated intracellular cyclic AMP.  相似文献   

5.
Abstract: Müller glial cells from the rat retina were examined for their capacity to produce nitric oxide (NO). Treatment of retinal Müller glial (RMG) cells with lipopolysaccharide (LPS), interferon-γ, and tumor necrosis factor-α induced NO synthesis as determined by nitrite release in media. Simultaneous addition of LPS, interferon-γ, and tumor necrosis factor-α caused the largest increase in NO synthesis. NO biosynthesis was detected after 12 h and was dependent on the dose of LPS, interferon-γ, and tumor necrosis factor-α. Stereoselective inhibitors of NO synthase (NOS), cycloheximide and transforming growth factor-β, blocked cytokine-induced NO production. Cytosol from LPS/cytokine-treated RMG cultures, but not from unstimulated cultures, produced a calcium/calmodulin-independent conversion of l -arginine to l -citrulline that was completely blocked by NOS inhibitor. The expression of NOS in RMG cells was confirmed by northern blot analysis, in which stimulation of these cells led to an increase in NOS mRNA levels. We conclude that RMG cells can express an inducible form of NOS similar to the macrophage isoform. High NO release from activated RMG cells might represent a protection from infection but may also contribute to the development of retinal pathologies.  相似文献   

6.
Vasoactive intestinal peptide (VIP) and secretin are two related peptides that activate adenylate cyclase on membranes of striatal neurons and glial cells from embryonic mouse brain grown in primary culture. On the two cell types, the maximal activation that could be induced by secretin was only 40% above basal activity, which represented less than 15% of the maximal effect obtainable with VIP. From competition experiments performed on glial cells and the neuroblastoma X glioma hybrid, NG 108-15, a cell line known to possess both VIP and secretin sensitive-adenylate cyclase, we demonstrate that secretin does not activate VIP receptors. Furthermore, secretin has an apparent high affinity (EC50 10(-8) M) for its receptors on striatal neurons and NG 108-15 whereas an apparent low affinity (EC50 7 X 10(-6) M) was found on striatal glial cells. This suggests the existence of either two distinct secretin receptors or a desensitized form.  相似文献   

7.
The expression of gangliosides of the lactosylceramide (LC) and of the gangliotetraosylceramide (GTC) series on the surface of cells from the chick neural retina was investigated by double-color indirect immunofluorescence. GD3 was assumed to be representative of LC and was detected using a specific monoclonal antibody. GM1 was assumed to be representative of GTC and was detected using the binding of cholera toxin followed by the binding of cholera toxin antibodies. The expression of polysialosylated GTC (polysialosyl-GTC) was detected using the cholera toxin-cholera toxin antibody experimental approach, after conversion of polysialosyl-GTC to GM1 by treatment of the cells with neuraminidase. In retinas from 6-day-old embryos (R6), most cells (approximately 80%) expressed GD3 but not GTC. After culturing for 7 days, (R6+7), the expression of GTC was found confined to neuron-like cells; flat cells derived from Müller cells expressed GD3 but were negative for GTC expression. On the other hand, postmitotic Müller cells obtained from 13-day-old embryo (R13) or 1-day-old hatched chick retina (RP1) expressed GD3, GM1, and polysialosyl-GTC but were unable to maintain the expression of these GTCs when kept in culture for several days. According to these results, retinal cells can be defined on the basis of their ganglioside expression as follows: (a) retinoblasts, by the expression of GD3; (b) postmitotic neuronal cells, by the expression of GTC; and (c) postmitotic Müller cells, by the expression of GD3 and GTC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Vasoactive intestinal peptide (VIP) receptors have been identified in CNS by their chemical specificity and molecular size. Using synaptosomes isolated from rat cerebral cortex, it was shown that central VIP receptors discriminated among natural and synthetic VIP-related peptides, because half-maximal inhibition of [125I]VIP binding to synaptosomes was obtained for 0.6 nM VIP, 9 nM peptide histidine isoleucineamide (PHI), 50 nM VIP 2-28, 70 nM secretin, 100 nM rat growth hormone-releasing factor (GRF), and 350 nM human GRF. Other peptides of the VIP family, such as glucagon and gastric inhibitory polypeptide, did not interact with cortical VIP receptors. The molecular components of VIP receptors in rat cerebral cortex were identified after [125I]VIP cross-linking to synaptosomes using the cross-linker dithiobis(succinimidyl propionate). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of synaptosomal proteins revealed two major [125I]VIP-protein complexes of Mr 49,000 and 18,000. The labeling of the Mr 49,000 component was specific, because it was abolished by native VIP, whereas the labeling of the Mr 18,000 component was not. Natural VIP agonists reduced the labeling of the Mr 49,000 component with the following order of potency: VIP greater than PHI greater than secretin approximately equal to rat GRF. In contrast, glucagon and octapeptide of cholecystokinin were without effect, a result indicating its peptide specificity. Densitometric scanning of autoradiographs showed that the labeling of the Mr 49,000 component was inhibited by low VIP concentrations between 10(-10) and 10(-6) M (IC50 = 0.8 nM), a result indicating the component's high affinity for VIP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
10.
Accumulation of cyclic AMP in intact cultured pigment epithelial cells was rapidly enhanced by several agonists. These included vasoactive intestinal peptide (100-fold), glucagon (fivefold), thyroid-stimulating hormone (threefold), prostaglandin E1 (24-fold), L-isoproterenol (27-fold), and histamine (fourfold). The rapidity and magnitude of these effects suggest that these agonists may regulate important retinal pigment epithelial cell functions.  相似文献   

11.
Abstract: Previous reports have demonstrated that glutamate stimulates c- fos mRNA expression in primary cultures of mouse cerebral cortical neurons. We show here that vasoactive intestinal peptide (VIP) induces c- fos mRNA expression; however, this effect of VIP is completely inhibited by the noncompetitive NMDA receptor antagonist MK-801, therefore indicating that VIP stimulates c- fos expression in a glutamate-dependent manner. A similar effect was observed with pituitary adenylate cyclase-activating polypeptide27 (PACAP27). At the intracellular level, coactivation of protein kinases A and C mediates the glutamate-dependent stimulation of c- fos expression evoked by VIP, because either H-89 or staurosporin inhibits the effect of VIP as well as that of glutamate. These results point to a "biochemical AND gate" mechanism, which implies the obligatory activation of both protein kinases A and C in the transduction of c- fos expression. In summary, this article provides evidence that VIP and PACAP27 potentiate the effect of glutamate, the principal effector on c- fos expression, suggesting that both peptides can increase the "throughput" or "strength" of glutamate-containing circuits in the cerebral cortex.  相似文献   

12.
In slices obtained from the ventral and the dorsal guinea pig spinal cord both forskolin and vasoactive intestinal peptide (VIP) caused a dose-dependent stimulation of the production of cyclic AMP. By contrast capsaicin stimulated cyclic AMP formation only in the dorsal cord; no effect was observed in the ventral cord. The alpha 2-adrenergic agonist UK-14,304 dose-dependently inhibited the production of cyclic AMP in both the dorsal and ventral aspects of the cord when the formation of cyclic AMP had been stimulated with 3 microM forskolin, the maximal inhibition amounting to 25-32%. Also the basal (i.e., unstimulated) production of cyclic AMP was inhibited, the inhibition amounting to about 16-18%. However, after stimulation of cyclic AMP formation in the dorsal cord with capsaicin, UK-14,304 was virtually ineffective in inhibiting the accumulation of cyclic AMP. Also, when the formation of cyclic AMP was stimulated with VIP, UK-14,304 was virtually ineffective in inhibiting the formation of cyclic AMP both in the ventral and the dorsal parts of the cord. When cyclic AMP production had been stimulated with forskolin the ability of UK-14,304 to inhibit the formation of cyclic AMP was not attenuated by capsaicin, either in the ventral or in the dorsal cord. The results are discussed with the notion that cyclic AMP inhibitory spinal cord alpha 2-adrenoceptors are located on cells accessible to stimulation of cyclic AMP with forskolin but not with capsaicin or VIP.  相似文献   

13.
The mouse neuroblastoma cell line N18TG2 synthesizes and secretes a VIP-like immunoreactive material. The majority of this VIP-like material from both cell and media extracts elutes on HPLC in the same position as porcine or rat VIP. Several additional peaks which appear in the media extracts may represent variant forms or degradation products of VIP. The synthesis and release of VIP was significantly enhanced by agents which elevate cAMP levels directly (dbcAMP and forskolin) or through a receptor mediated process (secretin). These agents are also known to promote differentiation of these cells. The synthesis and release of VIP was also enhanced by ascorbate (thought to be a co-factor for the enzyme which amidates the carboxyl-terminal of VIP) [11]. In the presence of forskolin, ascorbate had a synergistic effect on the release of VIP, suggesting that forskolin and ascorbate are elevating VIP levels by different mechanisms; forskolin through a possible effect on VIP mRNA synthesis or translation, and ascorbate by increasing the rate of VIP processing. These results suggest that VIP synthesis and release is controlled by more than one process, whose rate can be altered with pharmacological agents.  相似文献   

14.
15.
Abstract: In this study we analyzed the involvement of the cyclic AMP (cAMP)-protein kinase A system in the regulation of interleukin 6 production by cultured cortical astrocytes. Vasoactive intestinal peptide strongly increased, in a dose-dependent manner, interleukin 6 production. This effect was reduced when protein kinase A was blocked by KT-5720; it was not affected by calphostin C, a protein kinase C inhibitor. Forskolin caused a concentration-dependent increase in interleukin 6 release that was also inhibited by KT-5720. Because prostaglandins are believed to play a role in interleukin 6 production, we tried to determine whether the stimulatory effects of vasoactive intestinal peptide and forskolin on cytokine release might be mediated by stimulation of prostaglandin production in cortical astrocytes. Vasoactive intestinal peptide did not increase the production of either prostaglandin E2 or F. Conversely, forskolin concentration-dependently stimulated the production of both prostaglandins, an effect that was blocked by indomethacin. Indomethacin did not affect either vasoactive intestinal peptide- or forskolin-stimulated interleukin 6 production. To exclude the possibility that prostaglandins participate in interleukin 6 production induced by forskolin, we tested prostaglandins E2 and F. The former was completely ineffective in eliciting the cytokine production, whereas prostaglandin F slightly increased interleukin 6 production only at the highest concentrations. 8-Bromo-cAMP and dibutyryl-cAMP stimulated interleukin 6 production to a lesser extent than vasoactive intestinal peptide and forskolin. In conclusion, we provide evidence that vasoactive intestinal peptide increases interleukin 6 production by astrocytes through the stimulation of the cAMP-protein kinase A pathway, an effect that is reproduced by cAMP analogues. In addition, we point out that prostaglandins are not involved in vasoactive intestinal peptide- and forskolin-mediated induction of interleukin 6 production in cultured astrocytes.  相似文献   

16.
Abstract: The aim of the present study was to examine the roles of membrane depolarization, calcium influx, and cyclic AMP synthesis in regulating the stability and inactivation of serotonin N -acetyltransferase activity (NAT) in cultured chick photoreceptor cells. NAT activity was induced by pretreating cells for 6 h with 1 µ M forskolin. Cycloheximide was subsequently added, and the rate of loss of enzyme activity (inactivation) was determined. After induction, in the presence of cycloheximide, NAT activity declined with a half-life of ∼30 min. The rate of inactivation was greatly reduced when depolarizing concentrations of K+, forskolin, 8-bromoadenosine 3',5'-cyclic monophosphate, or 3-isobutyl-1-methylxanthine were added together with cycloheximide. The apparent increase in NAT stability caused by K+ was abolished by addition of EGTA or nifedipine and potentiated by Bay K 8644, indicating the involvement of Ca2+ influx through dihydropyridine-sensitive channels. MDL-12330A, an inhibitor of K+-stimulated cyclic AMP formation, blocked the effect of depolarizing concentrations of K+. This result suggests that the effect of Ca2+ influx on the stability of NAT is at least partially mediated by increased levels of cyclic AMP. Thus, depolarization-evoked Ca2+ influx and cyclic AMP formation have two roles in the regulation of NAT activity in chick photoreceptor cells. First, they stimulate the de novo synthesis of NAT or a regulatory protein required for NAT activity. Second, they increase the half-life of the enzyme, presumably by regulating the turnover of existing enzyme molecules.  相似文献   

17.
目的:检测复合应激大鼠模型阴茎组织中降钙素基因相关肽(CGRP)、血管活性肠肽(VIP)的表达,并观察伊木萨克片对二者表达的影响。方法:选用56只正常雄性SD大鼠,其中10只为正常对照组(N),余46只为造模组,采用富含环境雌激素饲料+寒冷环境的干预条件建立复合性应激大鼠模型(20 w),并随机将其分为模型组(B1)、自然恢复组(B2)和伊木萨克干预组(B3),药物干预2 w后,免疫组化及Western blot方法检测大鼠阴茎组织中CGRP、VIP的表达。结果:①大鼠阴茎组织中CGRP表达:B1、B2组较N组明显减少(P0.05);B3组较B1、B2组明显增多(P0.05)。②大鼠阴茎组织中VIP表达:B1、B2组较N组显著降低(P0.05);B3组较B1、B2组显著升高(P0.05)。结论:复合应激大鼠模型阴茎组织中CGRP、VIP明显减少,伊木萨克片干预可抑制此变化。  相似文献   

18.
Primary cultures of neonatal murine brain have been reported to express multiple receptors that regulate adenylate cyclase activity. Since for the most part these results were obtained with mixed cell cultures, it has been difficult to define receptor profiles for specific cell types. With this concern in mind a series of studies has been initiated designed to identify specific receptors present on highly purified, immunocytochemically defined astroglia derived from the cerebral cortices of neonatal rats. In this study the capacity of a variety of peptide hormones to regulate cyclic AMP metabolism in these cells was examined. Fibroblasts derived from the meninges represent a predictable source of contamination in primary CNS culture. Thus, to assign more clearly specific receptors to the astroglial cell population, receptor-mediated regulation of cyclic AMP accumulation was also examined in fibroblasts. Cyclic AMP accumulation in astroglia was stimulated by catecholamines (acting at beta 1-adrenergic receptors), prostaglandin E1, vasoactive intestinal polypeptide, alpha-melanocyte-stimulating hormone, and adrenocorticotropin. Bombesin, luteinizing hormone-releasing hormone, neurotensin, thyrotropin-releasing hormone, somatostatin, secretin, and vasopressin did not significantly increase cyclic AMP levels in these cultures. Catecholamines, acting at alpha 2-adrenergic receptors, and somatostatin inhibited agonist-stimulated cyclic AMP accumulation. In meningeal cell cultures catecholamines (acting at beta 2- and alpha 2-adrenergic receptors) and prostaglandin E1 regulated cyclic AMP levels. However, vasoactive intestinal peptide did not stimulate and somatostatin did not inhibit cyclic AMP accumulation in these cells.  相似文献   

19.
The effects of neuropeptide Y (NPY) on pineal gland cyclic AMP (cAMP) accumulation were investigated using dispersed pinealocytes from rats. NPY inhibited the intracellular cAMP accumulation stimulated by isoproterenol and norepinephrine in a dose-dependent manner during a 10-min incubation of pinealocytes. NPY (1 x 10(-7) M) also inhibited vasoactive intestinal peptide (VIP)- and cholera toxin-induced cAMP accumulation. The inhibitory effect of NPY on isoproterenol-induced cAMP accumulation was completely abolished by a 5-h pretreatment of pinealocytes with 1 microgram/ml of pertussis toxin (PT). These results suggest that NPY participates in modulation of cAMP production in the rat pineal gland through PT-sensitive G protein. Yohimbine, an alpha 2-adrenergic antagonist, blocked NPY inhibition of isoproterenol-stimulated cAMP accumulation. On the other hand, the alpha 2-adrenergic agonist clonidine by itself did not affect cAMP accumulation stimulated by isoproterenol but significantly potentiated NPY action. The present study demonstrates that NPY inhibits beta-adrenergic or VIPergic stimulation of the pineal gland cAMP accumulation. The inhibitory effect of NPY is mediated through PT-sensitive G protein. Our results also suggest that NPY exerts its action to affect alpha 2-adrenoceptor function.  相似文献   

20.
In mouse cerebral cortical slices, noradrenaline (NA) potentiates cyclic AMP (cAMP) accumulation elicited by vasoactive intestinal peptide (VIP) through alpha 1-adrenergic receptors. This synergism is inhibited by indomethacin, and the prostaglandins E2 and F2 alpha mimic the effect of NA. In the present study, we observed that the synergism between VIP and NA is not inhibited by the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) or the diacylglycerol-lipase inhibitor RHC 80267, thus further stressing the role of phospholipase A2 activation. Various neuroactive agents that potentiate the stimulatory effect of VIP on cAMP formation were also examined. As with NA, the potentiation by histamine and adenosine is inhibited by indomethacin. In contrast to NA, histamine, and adenosine, the synergistic interaction between phorbol esters and VIP on cAMP formation is abolished by H-7 but not by indomethacin. The potentiation by baclofen, a gamma-aminobutyric acidB receptor agonist, is partially inhibited by the 5-lipoxygenase inhibitor nafazatrom. The synergism between ouabain and VIP is reduced by H-7 but not by indomethacin and nafazatrom. These data indicate that the stimulation of cAMP formation elicited by VIP is under the modulation of various neuroactive agents that trigger diverse intracellular mechanisms to potentiate the effect of the peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号