首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been reported in quite a number of literatures that doubled CO2 concentration increased the photosynthetic rate and dry matter production of C3 plants, but substantially affected C4 plants little. However, why may CO2 enrichment promote growth and either no change or decrease reproductive allocation of the C3 species, but havinag no effects on growth characteristics of the C4 plants? So far, there has been no satisfactory explanation on that mentioned above, except the differences in their CO2 compensatory points. In the past, although some studies on ultrastructure of the chloroplasts under doubled CO2 concentration were limitedly conducted. Almost all the relevant experimental materials were only from C3 plants not from C4 plants, and even though the results were of inconsistancy. Thereby, it needs to verify whether the differences in photosynthesis of C3 and C4 plants at doubled CO2 level is caused by the difference in their chloroplast deterioration. Experiments to this subject were conducted at the Botanical Garden of Institute of Botany, Academia Sinica in 1993 and 1994. Both experimental materials from C3 plant alfalfa (Medicago sativa) and C4 plant foxtail millet (Setaria italica) were cultivated in the cylindrical open-top chambers (2.2 m in diameter × 2.4 m in height) with aluminum frames covered by polyethylene film. Natural air or air with 350× 10-6 CO2 were blown from the bottom of the chamber space with constant temperature between inside and outside of the chamber 〈0.2℃〉. Electron microscopic observation revealed that the ultrastructure of the chloroplasts from C3 plant Medicago sativa and C4 plant Seteria italica growing under the same doubled CO2 concentration were quite different from each other. The differential characteristics in ultrastructure of chloro plasts displayed mainly in the configuration of thylakoid membrances and the accumulation of starch grains. They were as follows: 1. The most striking feature was the building up of starch grains in the chloroplasts of the bundle sheath cells (BSCs) and the mesophyll cells (MCs) at doubled CO2 concentra tion. The starch grains appeared centrifugally first in the BSCs and then in the chloroplast of the other MCs. It was worthy to note that the starch grains in the chloroplasts of C4 plant Setaria ira/ica were much more than those of the C3 plant Medicago sativa . The decline of photosynthesis in the doubled CO2-grown C4 plants might be caused by an over accumulation of starch grains, that deformed the chloroplast even demaged the stroma thylakoids and grana. There might exsist a correlation between the comformation of thylakoid system and starch grain accumulation, namely conversion and transfer of starch need energy from ATP, and coupling factor (CF) for ATP formation distributed mainly on protoplastic surface (PSu) of stroma thylakoid membranes, as well as end and margin membranes of grana thylakoids. Thereby, these results could provide a conclusive evidence for the reason of non effectiveness on growth characteristics of C4 plant. 2. Under normal condition , the mature chlolroplats of higher plants usually develop complete and regularly arranged photosynthetic membrane systems . Chloroplasts from the C4 plant Setaria italica, however, exerted significant changes on stacking degree, grana width and stroma thylakoid length under doubled CO2 concentration; In these changes, the grana stacks were smaller and more numerous, and the number of thylakoids per granum was greatly increased, and the stroma thylakoid was greatly lengthened as compared to those of the control chloroplasts. But the grana were mutually intertwined by stroma thylakoid. The integrity of some of the grana were damaged due to the augmentation of the intrathylakoid space . Similarly, the stroma thylakoids were also expanded. In case. the plant was seriously effected by doubled CO2 concentration as observed in C4 plant Setaria italica , its chloroplasts contained merely the stroma (matrix) with abundant starch grains, while grana and stroma thylakoid membranes were unrecognizable, or occasionally a few residuous pieces of thylakoid membranes could be visualized, leaving a situation which appeared likely to be chloroplast deterioration. However, under the same condition the C3 plant Medicago sativa possessed normally developed chloroplasts, with intact grana and stroma thylakoid membranes. Its chloroplasts contained grana intertwined with stroma thylakoid membranes, and increased in stacking degree and granum width, in spite of more accumulated starch grains within the chloroplasts. These configuration changes of the thylakoid system were in consistant with the results of the authors another study on chloroplast function, viz. the increased capacity of chloroplasts for light absorption and efficiency of PSⅡ.  相似文献   

2.
Pea plants (Pisum sativum L. cv. Greenfeast) were grown and exposed to supplementary UV-B radiation from day 17 after planting under growth cabinet conditions. The effects of this exposure on the ultrastructure of chloroplasts and the total soluble sugar and starch concentrations were estimated. Supplementary UV-B radiation was shown to damage the structure of chloroplasts, as manifested by dilation of thylakoid membranes, a progressive disruption of the thylakoid structure and disintegration of the double membrane envelope surrounding the chloroplast, accompanied by the accumulation of large starch grains. Diurnal changes observed in starch concentration suggest that the higher concentration of starch in supplementary UV-B-treated leaves is due to its immobilization, rather than to any increase in starch synthesis: soluble sugars accumulated and remained at a higher level and then later declined.  相似文献   

3.
利用透射电镜技术对Na2CO3胁迫下星星草叶肉细胞超微结构进行了观察。结果表明:未胁迫的叶肉细胞排列疏松,各种细胞器结构完整,叶绿体含少量淀粉粒和脂质球。轻度盐胁迫(2g/L,4g/L Na2CO3)对叶肉细胞超微结构影响较小。中度盐胁迫(6g/L,8g/L Na2CO3)引起叶肉细胞超微结构的变化,叶绿体类囊体肿胀,基粒紊乱,不含淀粉粒,脂质球数量增加,叶绿体由原来的梭形或椭球形变成圆球状;部分线粒体嵴消失,出现晶体结构;中央大液泡破裂;核逐渐降解。高度盐胁迫(10g/L,12g/L Na2CO3)下,叶绿体片层结构消失,脂质球数量增加,体积变大,被大量的膜片层所包围,叶绿体内、外膜消失,叶肉细胞中看不到叶绿体的存在;膜片层包围线粒体;叶肉细胞中可见大量的泡状结构和膜片层,叶肉细胞死亡。上述结果表明,细胞器特别是叶绿体膜结构的破坏与盐胁迫叶肉细胞最终死亡密切相关  相似文献   

4.
对高CO_2浓度下生长的大豆(Glycine max(L.)Merr.)不同叶位的叶片进行了电镜观察,揭示出大豆不同叶位叶片的叶绿体对倍增的CO_2浓度反应不一。其显著的超微结构差异特征是:1.叶位居中的叶片叶绿体积累的淀粉粒不仅很大,而且最多,有的叶绿体中的淀粉粒可达20个,几乎充满着叶绿体的基质空间。2.下位叶叶绿体的淀粉粒积累较多,通常为2~5个;3.上位叶叶绿体所含淀粉粒既小又少,虽然有的叶绿体中也积累有3~4个淀粉粒,但大多数叶绿体中所含淀粉粒仅有1~2个。以上结果联系到大豆中位叶的光合作用速率较高及对籽粒产量起作用最大来讨论是很有意义的。  相似文献   

5.
FORD  T. W. 《Annals of botany》1984,53(2):285-294
The presence of nucleus, chloroplasts, mitochondria, microbodiesand a vacuole are confirmed in Cyanidium caldarium strain CCAP1355/1. Chloroplasts usually contain parallel rows of unstackedthylakoids surrounded by a peripheral thylakoid, although theconcentric arrangement has also been observed. The chloroplastenvelope consists of two closely appressed membranes which canonly be resolved after gluteraldehyde—osmium fixation.The chloroplast of Rhodosorus marinus also contains parallel,unstacked thylakoids surrounded by a peripheral thylakoid but,in addition, a prominent, stalked pyrenoid projects into thecytoplasm and is bounded by both the peripheral thylakoid andthe chloroplast envelope. This structure is covered by a capof starch grains and contains membranous vesicles in the matrix.Phycobilisomes are absent from the chloroplasts of both algae.The recognition of C. caldarium as a rhodophyte is supportedby these observations. Cyanidium caldarium, Rhodosorus marinus, chloroplast ultrastructure  相似文献   

6.
Summary The ultrastructure of chloroplasts from two genera of coenocytic green algae,Codium andCaulerpa, were examined after suspension in hypotonic solution and in detergent at various concentrations. The capacity of the suspensions to carry out CO2-dependent and ferricyanide-dependent O2 evolution was measured under the same conditions of osmotic strength and detergent concentration.The chloroplasts in the preparations were in the form of cytoplasts and gave rates of O2 evolution comparable with those expected from undamaged chloroplasts. Suspension in hypotonic solution depressed the rate of CO2-dependent O2 evolution in both species, but this was partially restored in theCodium chloroplasts when these were re-suspended in iso-osmotic solutions. Major structural changes were observed only after suspension in buffer when theCodium chloroplasts lost their outer envelope, most of their stroma, and the thylakoids became swollen.Caulerpa chloroplasts were more variable in their response and, even when suspended in buffer only, the proportion of the plastids which had lost all of their stroma and thylakoid swelling was never as common as inCodium chloroplasts. However, once suspended in hyper-osmotic medium below 700 mosmolar,Caulerpa chloroplasts could not regain their capacity for CO2-dependent O2 evolution.Detergent treatment removed the cytoplast membrane but not the cytoplasmic material adhering to the chloroplast envelope. High concentrations of detergent were needed to cause loss of the chloroplast envelope, loss of stromal contents and unstacking of the thylakoids.Caulerpa chloroplasts were less sensitive to detergent than those ofCodium. There was no indication that specific structures such as the thylakoid organizing body were resistant to detergent action. The results show that exposure to hypotonic solutions and to detergent results in less damage to these chloroplasts than it would to those of higher plants. It is proposed that the basis of this unusual resistance is not due to the properties of the chloroplast membranes but to the presence of material which coats the organelles during isolation. This material is likely to be identical with the sulphated xylo-mannogalactan isolated from the vacuole contents of these algae and which has the visco-elastic properties essential to allow the organelles to resist disruption by osmotic forces and disintegration by detergents.  相似文献   

7.
Plants of the Podostemoideae, a subfamily of the unique aquatic angiosperm family Podostemaceae, which are found in rapids and waterfalls of the tropics and subtropics, have two different sizes of chloroplasts in their epidermis. These small and large chloroplasts are located separately in each epidermal cell along its upper and inner tangential walls, respectively. This is the first case of the chloroplast dimorphism in a single epidermal cell of angiosperms. While the large chloroplasts have well developed starch grains, the small chloroplasts have a normal granal ultrastructure but very few starch grains. This suggests that the small chloroplasts mainly function in CO2 uptake for photosynthesis from torrential water.  相似文献   

8.
Mesophyll chloroplasts of the C4-pathway grasses Sorghum and Paspalum and of the C3-pathway legume soybean undergo ultrastructural changes under moderate light intensities (170 w·m−2, 400-700 nanometers) at a tme when photosynthesis is much reduced by low temperature (10 C). The pattern of ultrastructural change was similar in these species, despite some differences in the initial sites of low temperature action on photosynthesis and differences in their mechanisms of CO2 fixation. Starch grains in the chloroplasts rapidly reduce in size when chilling stress is applied. At or before the time starch grains completely disappear the membranes of the individual stromal thylakoids close together, reducing the intraspace between them while the chloroplast as a whole begins to swell. Extensive granal stacking appears to hold the thylakoids in position for some time, causing initial swelling to occur in the zone of the peripheral reticulum, when present. At more advanced stages of swelling the thylakoid system unravels while the thylakoid intraspaces dilate markedly. Initial thylakoid intraspace contraction is tentatively ascribed to an increase in the transmembrane hydrogen ion gradient causing movement of cations and undissociated organic acids from the thylakoid intraspace to the stroma. Chloroplast swelling may be caused by a hold-up of some osmotically active photosynthetic product in the chloroplast stroma. After granal unraveling and redilation of the thylakoid intraspaces, chloroplasts appear similar to those isolated in low salt hypotonic media. At the initial stages of stress-induced ultrastructural change, a marked gradient in degree of chloroplast swelling is seen within and between cells, being most pronounced near the surface of the leaf directly exposed to light.  相似文献   

9.
Abstract The chloroplast ultrastructure, especially the thylakoid organization, the polypeptide composition of the thylakoid membranes and photosynthetic O2 evolution rate, chlorophyll (Chl) content and Chi a/b ratio were studied in leaves of nine plants growing in contrasting biotopes in the wild in South Finland. All the measurements were made at the beginning of the period of main growth on leaves approaching full expansion, when the CO2-saturated O2 evolution rate (measured at 20°C and 1500 μmol photons m?2s?1) was at a maximum, ranging from 19.2 to 6.9 μmol O2 cm?2 h?1. Among the species, the Chi a/b ratio varied between 3.75 and 2.71. In the mesophyll chloroplasts, the ratio of the total length of appressed to non-appressed thylakoid membranes varied between 1.07 and 1.79, the number of partitions per granum varied between 2.8 and 12.0 and the grana area between 21 and 42% of the chloroplast area. There was a significant relationship between the rate of O2 evolution of the leaf discs and the thylakoid organization in the mesophyll chloroplasts. The higher the O2 evolution rate, the lower was the ratio of the total length of appressed to non-appressed thylakoid membranes and also the lower the grana area. Although the relationship of the photosynthetic rate with the Chi content and the Chi a/b ratio of the leaves was not as clear, a significant negative correlation existed between the Chi a/b ratio and the ratio of appressed to non-appressed thylakoid membranes, indicating lateral heterogeneity in the distribution of different Chl- protein complexes.  相似文献   

10.
The root system of potato (Solanum tuberosum L. cv. Favorita) plants was treated with different O2 and CO2 concentrations for 35 d in aeroponic culture. Under 21 or 5 % O2 in the root zones, the thickness of leaves and palisade parenchyma significantly increased at 3 600 μmol(CO2) mol−1 in the root zone, compared with CO2 concentration 380 μmol mol−1 or low CO2 concentration (100 μmol mol−1). In addition, smaller cells of palisade tissue, more intercellular air spaces and partially two layers of palisade cells were observed in the leaves with root-zone CO2 enrichment. Furthermore, there was a significant increase in the size of chloroplasts and starch grains, and the number of starch grains per chloroplast due to elevated CO2 only under 21 % O2. In addition, a significant decline in the thickness of grana and the number of lamellas, but no significant differences in the number of grana per chloroplast were observed under elevated CO2 concentration. The accumulation of starch grains in the chloroplast under elevated CO2 concentration could change the arrangement of grana thylakoids and consequently inhibited the absorption of sun radiation and photosynthesis of potato plants.  相似文献   

11.
The ultrastructure of plastids was investigated in succulent leaves ofSedum rotundifolium to examine their changes during development. Leaves were categorized as etiolated, immature, young, and mature, based on their developmental stage and size. Of particular interest were the features of the tubular inclusion bodies (TIBs) and starch grains. These, along with vacuole size, showed remarkable changes over time. Etioplasts of unexposed leaves had prolamellar bodies, abundant starch grains, large TIB, few plastoglobuli, and thylakoid systems. Membranes of the thylakoids were still continuous with those of the prolamellar body. The plastids were often influenced by the presence and profile of inclusion bodies and starch grains throughout the early stages. Morphology was highly variable in the etioplasts but consistently hemispherical or ovoid in mature chloroplasts. TIB was most abundant in the etiolated leaves, but disappeared completely with development. Starch grains also became significantly reduced in size. Both young and mature mesophyll cells exhibited a normal chloroplast ultra-structure and huge central vacuoles, with an extremely thin peripheral cytoplasm. Grana were extensive and comprised a large portion of the chloroplasts. Traces of peripheral reticulum were also discovered in the chloroplasts of expanded leaves. The implications of these ultrastructural changes in the tubular inclusions and starch grains are discussed with relevance to Crassulacean acid metabolism (CAM).  相似文献   

12.
When spinach chloroplast membranes were exposed to osmotic stress in vitro, by incubation in 1.0 M sorbitol + 10 mM MgCl2 their oxygen evolving system was suppressed. The possible reasons for such inactivation of PS II mediated oxygen evolution were examined. There were conformational changes in the chloroplast membranes, as indicated by their absorption spectra. The pattern of sensitivity to DCMU was not altered. The sensitivity of PS II to water stress remained, even after a pre-wash treatment with NaCI (which removed 18 and 24 kD proteins) but not when the thylakoids were pretreated with NH20H or CaCl2 (removed manganese and 33 kD). The manganese content of thylakoid membranes was markedly reduced under osmotic stress in presence of magnesium. We suggest that exposure of chloroplasts to 1.0 M sorbitol in presence of Mg2+ released manganese from thylakoid membranes, thereby leading to a suppression in oxygen evolution.  相似文献   

13.
Soybean ( Glycine max (L.) Merr. ) plants were grown under ambient and elevated CO2 (plus 350 μL/L) concentration in cylindrical open-top chamber to examine their effects on the ultra- structure of chloroplasts. The upper, lower and mid-node leaves were harvested after 7 days full expansion under different CO2 concentrations and ultrathin section were prepared for transmission electron microscopy. In general, the average content of starch grains and thylakoid membranes in the chloroplasts under the elevated CO2 concentration were always higher than the control. Under higher CO2 concentration, there were smaller and less starch grains in the chloroplasts from upper-node leaves than those from mid-node leaves. The shape of their starch grains changed from elliptical to oval,and their thylakoid membranes and grana remained normal. At lower-node leaves, one or two oval, or three timer starch grains accumulated in the chloroplasts. In the mid-node leaves,however, some chloroplasts under higher CO2 concentration had rather large tim elliptical starch grains which could consequently cause disruption of grana and stroama thylakoids in the chloroplasts, whereas in other chloroplasts, the thylakoid membranes and grana were not deformed as the starch grains were smaller and elliptical. On the other hand, under higher CO2 concentration, the stacking degree of thylakoid membranes and starch grains accumulation in the mid-node leaves were significantly higher than those in the lower-node leaves,and slightly higher than the upper-node leaves. These results, in agreement with the chlorophyll contents and photosynthetic rate which reported by other authors in the past, indicated that the ultrastmcture response of the chloroplasts from different leaf nodes of soybeen under elevated CO2 coneentration were different. The seed yield of soybean at different nodes was decreased gradually from mid-nodes towards both upper- and lower-nodes. The greatest effect of elevated CO2 eoneentrafion on seed yeild was at the mid-node leaves. The variation of seed yields of soybean at different nodes under elevated CO2 concentration was in eoneert with the change in the ultrastmcture of chloroplasts and in turn the change in their photosynthetic rates of leaves at different nodes.  相似文献   

14.
NaCl对齿肋赤藓叶肉细胞超微结构的影响   总被引:3,自引:0,他引:3  
刘卫国  丁俊祥  邹杰  林喆  唐立松 《生态学报》2016,36(12):3556-3563
齿肋赤藓(Syntrichia caninervis)是古尔班通古特沙漠苔藓结皮层中的优势物种,对荒漠生态系统的稳定性及功能多样性具有十分重要的意义。利用透射电镜技术对不同浓度Na Cl胁迫下齿肋赤藓叶肉细胞超微结构进行了观察。结果表明:齿肋赤藓叶肉细胞在未胁迫(0 mmol/L)处理下排列疏松,各种细胞结构完整,叶绿体基质排列均匀且叶绿体内含少量淀粉粒和脂质球。在轻度盐Na Cl胁迫(100 mmol/L)下,齿肋赤藓叶肉细胞结构依然保持完整,叶绿体基质均匀,叶肉细胞超微结构仅有较小变化。在中度盐Na Cl胁迫(200、300 mmol/L)下,齿肋赤藓叶肉细胞发生质壁分离,出现晶体结构,且中央大液泡发生破裂;叶绿体由梭形变成椭球形或圆球状,出现空泡化并伴随有轻微的解体;叶绿体类囊体肿胀,脂质球数量增加。在高度Na Cl胁迫(400、500 mmol/L)下,齿肋赤藓细胞的质壁分离加剧,叶肉细胞出现大量泡状结构和膜片层,叶肉细胞死亡;叶绿体片层结构消失,空泡化加重,脂质球数量增加且体积变大,叶绿体内外膜消失,叶绿体大部分解体,在叶肉细胞中几乎看不到叶绿体的存在。上述结果表明,叶绿体膜结构的损伤与盐胁迫下叶肉细胞死亡有密切关系。  相似文献   

15.
A mutant of Arabidopsis thaliana with reduced content of C18:3 and C16:3 fatty acids in membrane lipids exhibited a 45% reduction in the cross-sectional area of chloroplasts and had a decrease of similar magnitude in the amount of chloroplast lamellar membranes. The reduction in chloroplast size was partially compensated by a 45% increase in the number of chloroplasts per cell in the mutant. When expressed on a chlorophyll basis the rates of CO2-fixation and photosynthetic electron transport were not affected by these changes. Fluorescence polarization measurements indicated that the fluidity of the thylakoid membranes was not significantly altered by the mutation. Similarly, on the basis of temperature-induced fluorescence yield enhancement measurements, there was no significant effect on the thermal stability of chlorophyll-protein complexes in the mutant. These observations suggest that the high content of trienoic fatty acids in chloroplast lipids may be an important factor regulating organelle biogenesis but is not required to support normal levels of the photosynthetic activities associated with the thylakoid membranes.  相似文献   

16.
Ultrastructural changes of the chloroplast which occur parallel to the decay of photosynthetic capacity during the heterotrophic ageing of Scenedesmus cells have been studied. A gradual disappearance of the starch grains took place as the nutrients in the growth medium were depleted. Accompanying this change was a deterioration in the structure of the cytoplasm coupled with a concomitant granular appearance. At the same time thylakoid structures were not only well preserved but accumulated more material. This resulted in an increasing number of stacked thylakoids and a thickening of the membranes.  相似文献   

17.
The C4-dicarboxylic-acid pathway of photosynthetic CO2 fixation found in tropical grasses has recently been demonstrated in members of the Amaranthaceae and Chenopodiaceae. In the tropical grasses this CO2-fixation pathway is correlated with specialized leaf anatomy and chloroplast structure. This investigation was undertaken to determine if leaf cells of some representatives of these other families had structural features similar to those of tropical grasses. The leaf anatomy of Amaranthus edulis and a variety of Atriplex species is very similar and it resembles that of grasses such as sugar cane. Prominent bundle sheaths are surrounded by a layer of palisade cells. Bundle-sheath cells of Am. edulis have large chloroplasts containing much starch, but the chloroplasts have grana. The palisade cells have much smaller chloroplasts containing very little starch. The bundle-sheath cell chloroplasts of At. lentiformis have grana, their profiles tend to be ovoid, and they contain abundant starch grains. The palisade cell chloroplasts contain little starch and their profiles are discoid. The bundle-sheath cells of both species contain mitochondria which are much larger than those in the palisade cells. The chloroplasts in both types of cells in both species have a highly developed peripheral reticulum. This reticulum is composed of anastomosing tubules which are contiguous with the inner plastid membrane. The leaf anatomy and cell ultrastructure of these dicots are similar to those of the tropical grasses possessing this new photosynthetic carbon-fixation pathway. These morphological features are interpreted as adaptations for the rapid transport of precursors and end products of photosynthesis. A hypothesis is presented stating that the unique morphological and biochemical characters of these plants represent adaptations for efficient and rapid carbon fixation in environments where water stress frequently limits photosynthesis.  相似文献   

18.
The ultrastructural organization and the photosynthesis reactions of chloroplast membranes were studied in three lethal mutants of Pisum sativum, Chl-1, Chl-19 and Chl-5, all lacking the capacity to evolve oxygen. The rates of 2,6-dichloroindophenol reduction, delayed fluorescence and electron-spin-resonance signal 1 indicate that Chl-1 and Chl-19 have an impaired activity in photosystem II (PS II), while in Chl-5 the electron transport is blocked between PS I and the reactions of CO2 fixation. Ultrathin sectioning demonstrates the presence of giant grana in the chloroplasts of Chl-1 and Chl-19, while the chloroplast structure of the Chl-5 is very similar to that of the wild-type. The grana of the Chl-19 mutant contain large multilamellar regions of tightly packed membranes. When the chloroplast membranes were studied by freeze-fracture, the exoplasmic and protoplasmic fracture faces (EF and PF, respectively) in both stacked and unstacked membranes were found to show large differences in particle concentrations and relative population area (per m2), and also in particle size distribution, between all mutant chloroplast membranes and the wild-type. A close correlation between increasing kmt (ratio of particle concentrations on PF/EF) and PS II activity was observed. The differences in particle concentrations on both fracture faces in different regions of the intact chloroplast membranes of the wild-type are the consequence of a rearrangement of existing membrane components by lateral particle movements since quantitative measurements demonstrate almost complete conservation of intramembrane particles in number and size during the stacking of stroma thylakoid membranes. The results indicating particle movements strongly support the concept that the chloroplast membranes have a highly dynamic structure.Abbreviations DPIP 2,6-dichloroindophenol - EF and PF exoplasmic and protoplasmic fracture faces, respectively - PS I and PS II photosystems I and II, respectively  相似文献   

19.
Triticum species of three ploidies were grown under ambient (375 μl/l) or elevated (FACE, 550 μl/l) CO2 concentration [CO2] to evaluate their response to CO2 enrichment. The consistent effect of elevated CO2 was an increase in concentration of starch and decrease in concentration of protein in the grain. Transmission electron micrographs revealed an increase in width and area of chloroplasts, and change in shape from elliptical in ambient to round in elevated [CO2]. There was a corresponding increase in starch grain size and number in chloroplasts. The large starch grains distributed among thylakoids resulted in separation and distortion of internal membrane system in chloroplasts. The level of response was different in species of different ploidy levels. Maximum increase in starch concentration, and least decrease in protein concentration, was observed in Triticum dicoccoides, which also proved the most suitable species in terms of C:N ratio.  相似文献   

20.
Dr. Niina Valanne 《Protoplasma》1976,89(3-4):359-369
Summary Sporelings and protonemata ofCeratodon purpureus were grown in darkness for one to two months. On their exposure to light, starch was observed after 30 minutes but only minor changes occurred in the chloroplast structure during the first hours. After one day in light, the chloroplasts had a structure similar to that of the chloroplasts of light-grown material. The dark-grown material evolved oxygen and assimilated CO2 readily after exposure to light. Nevertheless, maximization of the photosynthetic rate was not achieved until the second day in light, coinciding with the development of light-type chloroplasts. The ultrastructural localization of photosystems I and II revealed much higher activity of PS I in dark-adapted material than in material grown in light, whereas the activity of PS II appeared to be greater in light-grown material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号