首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major discoveries in marine microbiology over the past 4-5 decades have resulted in the recognition of bacteria as a major biomass component of marine food webs. Such discoveries include chemosynthetic activities in deep-ocean ecosystems, survival processes in oligotrophic waters, and the role of microorganisms in food webs coupled with symbiotic relationships and energy flow. Many discoveries can be attributed to innovative methodologies, including radioisotopes, immunofluorescent-epifluorescent analysis, and flow cytometry. The latter has shown the key role of marine viruses in marine system energetics. Studies of the components of the "microbial loop" have shown the significance of various phagotrophic processes involved in grazing by microinvertebrates. Microbial activities and dissolved organic carbon are closely coupled with the dynamics of fluctuating water masses. New biotechnological approaches and the use of molecular biology techniques still provide new and relevant information on the role of microorganisms in oceanic and estuarine environments. International interdisciplinary studies have explored ecological aspects of marine microorganisms and their significance in biocomplexity. Studies on the origins of both life and ecosystems now focus on microbiological processes in the marine environment. This paper describes earlier and recent discoveries in marine (aquatic) microbiology and the trends for future work, emphasizing improvements in methodology as major catalysts for the progress of this broadly-based field.  相似文献   

2.
Microfabrication meets microbiology   总被引:2,自引:0,他引:2  
This Review summarizes methods for constructing systems and structures at micron or submicron scales that have applications in microbiology. These tools make it possible to manipulate individual cells and their immediate extracellular environments and have the capability to transform the study of microbial physiology and behaviour. Because of their simplicity, low cost and use in microfabrication, we focus on the application of soft lithographic techniques to the study of microorganisms, and describe several key areas in microbiology in which the development of new microfabricated materials and tools can have a crucial role.  相似文献   

3.
Research on rumen microorganisms has contributed greatly to our understanding of anaerobic microbial ecosystems, and has also influenced feeding practices and nutritional modelling with ruminants. However, it can be argued that rumen microbiology has not yet fulfilled its true potential. Growth-promoting ionophores, antibiotics and microbial feed additives were introduced before their microbiological effects had been determined. A more pro-active role for the microbiologist was predicted with the advent of recombinant DNA technology. Whether ventures in molecular biology can be applied successfully to benefit nutrition and health is likely to depend on whether means can be found for maintaining new strains in vivo.  相似文献   

4.
微生物在生物圈中分布广泛,并且在地球物质循环中占有重要地位,但是约99﹪的微生物目前还不能通过传统的培养方法得到纯培养物(即未培养微生物),给这些未培养微生物的研究带来很大的困难。随着分子生物学的快速发展及其在微生物研究中的广泛运用,促进了以环境中未培养微生物为研究对象的新兴学科--环境基因组学的产生和发展。在不进行相关微生物培养分离的情况下,通过从环境样品中直接提取获得所有微小生物的全部遗传物质,并构建环境基因组文库;进一步利用功能基因组学研究策略,从文库中寻找编码产生新的有生物活性产物的基因;通过对系统发育相关锚定位点基因序列分析,从而确定特定生态环境体系中未培养微生物的种类结构组成及进化地位,并最终重建该体系中微生物群体的基本物质循环模式。此外,环境基因组学也可以在对未培养微生物生理生化特性深入了解的基础上,建立发展合适的培养体系,最终获得某些特定微生物的纯培养物。本文对环境基因组的构建及相关分析研究策略的进展进行了综述;同时介绍了其在微生物分类及生态学研究的应用。  相似文献   

5.
Metagenomics approaches in systems microbiology   总被引:2,自引:0,他引:2  
The world of microorganisms comprises a vast diversity of live organisms, each with its individual set of genes, cellular components and metabolic reactions that interact within the cell and communicate with the environment in many different ways. There is a strong imperative to gain a broader view of the wired and interconnected cellular and environmental processes as a whole via the systems microbiology approach in order to understand and predict ecosystem functioning. On the other hand, currently we experience a rise of metagenomics as an emerging tool to study communities of uncultured microorganisms. In this review, we conducted a survey of important methodologies in metagenomics and describe systems microbiology-like approaches for gaining a mechanistic understanding of complex microbial systems to interrogate compositional, evolutionary and metabolic properties. The review also discusses how metagenomics can be used as a holistic indicator for ecosystem response in terms of matter, nutrient and energy sources and functional networking.  相似文献   

6.
The application of microfluidics technology to microbiology research is an excellent platform for the analysis of microorganisms and their nucleic acids. This technology combines engineering, physics, chemistry, biology and computing to control the devices. In this perspective we discuss how microfluidics can be applied to microbiological research and used in diagnostic applications. We also summarize advantages and limitations of this technology, as well as highlight some recent microbiological applications.  相似文献   

7.
微生物学是基础医学和生物学的重要基础学科,微生物学专业培养的研究生是微生物领域科学研究和教学的高级后备人才,随着基础医学的发展,对微生物学专业研究人员的人文素养和科学素养要求越来越高,本专业研究生全面发展培育方式的改革,已成为高等医学教育改革的重要课题。本研究针对基础医学微生物专业研究生培养的现状,根据基础医学微生物学专业研究生的特点,着重探讨其人文素养和科学素养培育方式的改革,为培养具有优良的科研能力、科学素养、健全人格的人才提供一定的思路。  相似文献   

8.
Current and future applications of flow cytometry in aquatic microbiology   总被引:26,自引:0,他引:26  
Flow cytometry has become a valuable tool in aquatic and environmental microbiology that combines direct and rapid assays to determine numbers, cell size distribution and additional biochemical and physiological characteristics of individual cells, revealing the heterogeneity present in a population or community. Flow cytometry exhibits three unique technical properties of high potential to study the microbiology of aquatic systems: (i) its tremendous velocity to obtain and process data; (ii) the sorting capacity of some cytometers, which allows the transfer of specific populations or even single cells to a determined location, thus allowing further physical, chemical, biological or molecular analysis; and (iii) high-speed multiparametric data acquisition and multivariate data analysis. Flow cytometry is now commonly used in aquatic microbiology, although the application of cell sorting to microbial ecology and quantification of heterotrophic nanoflagellates and viruses is still under development. The recent development of laser scanning cytometry also provides a new way to further analyse sorted cells or cells recovered on filter membranes or slides. The main infrastructure limitations of flow cytometry are: cost, need for skilled and well-trained operators, and adequate refrigeration systems for high-powered lasers and cell sorters. The selection and obtaining of the optimal fluorochromes, control microorganisms and validations for a specific application may sometimes be difficult to accomplish.  相似文献   

9.
Summary Interest in the intrinsic behavior of microorganisms has led to the establishment of centers of expertise, known as Microbial Resource Centers (MRCs) built around specialized collections of cultures of microorganisms. Their main function is to accession, preserve and distribute authenticated, viable samples of microorganisms in consultation with the international scientific community for study and application. Microorganisms, which are exceptionally diverse, are found almost everywhere and affect human society in countless ways. Thus, modern microbiology has a great impact on medicine, agriculture, food science, ecology, genetics, biochemistry and many other fields. MRCs appear to be equally important to industry, to academia, and from the elementary to high school science teachers who can order specific educational strains. The basic microbiological knowledge of human society possesses the potential to revolutionize many aspects of human life. MRCs are a key resource to underpin these developments.  相似文献   

10.
The introduction of new approaches for characterizing microbial communities and imaging soil environments has benefited soil microbiology by providing new ways of detecting and locating microorganisms. Consequently, soil microbiology is poised to progress from simply cataloguing microbial complexity to becoming a systems science. A systems approach will enable the structures of microbial communities to be characterized and will inform how microbial communities affect soil function. Systems approaches require accurate analyses of the spatio-temporal properties of the different microenvironments present in soil. In this Review we advocate the need for the convergence of the experimental and theoretical approaches that are used to characterize and model the development of microbial communities in soils.  相似文献   

11.
Flow cytometry (FCM) is emerging as an important tool in environmental microbiology. Although flow cytometry applications have to date largely been restricted to certain specialized fields of microbiology, such as the bacterial cell cycle and marine phytoplankton communities, technical advances in instrumentation and methodology are leading to its increased popularity and extending its range of applications. Here we will focus on a number of recent flow cytometry developments important for addressing questions in environmental microbiology. These include (i) the study of microbial physiology under environmentally relevant conditions, (ii) new methods to identify active microbial populations and to isolate previously uncultured microorganisms, and (iii) the development of high-throughput autofluorescence bioreporter assays.  相似文献   

12.
This review deals with techniques and methods used in the study of the function and development of microorganisms occurring in soil with emphasis on the contributions of Czech Academician Ivan Málek and his coworkers or fellows (Jiří Macura, František Kunc) to the development of basic techniques used in soil microbiology. Early studies, including batch cultivation and respirometric techniques, as well as later developments of percolation and continuous-flow methods of cultivation of soil microorganisms are discussed. Recent developments in the application of analytical chemistry (HPLC or GC) and of molecular biological techniques to ecological questions that have revolutionized concepts in soil microbiology and microbial ecology are also briefly mentioned, including denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), phospholipid fatty acid analysis (PLFA) and others. The shift of soil microbiology from the study of individual microorganisms to entire microbial communities, including nonculturable species, is briefly discussed.  相似文献   

13.
14.
Search and discovery strategies for biotechnology: the paradigm shift.   总被引:21,自引:0,他引:21  
Profound changes are occurring in the strategies that biotechnology-based industries are deploying in the search for exploitable biology and to discover new products and develop new or improved processes. The advances that have been made in the past decade in areas such as combinatorial chemistry, combinatorial biosynthesis, metabolic pathway engineering, gene shuffling, and directed evolution of proteins have caused some companies to consider withdrawing from natural product screening. In this review we examine the paradigm shift from traditional biology to bioinformatics that is revolutionizing exploitable biology. We conclude that the reinvigorated means of detecting novel organisms, novel chemical structures, and novel biocatalytic activities will ensure that natural products will continue to be a primary resource for biotechnology. The paradigm shift has been driven by a convergence of complementary technologies, exemplified by DNA sequencing and amplification, genome sequencing and annotation, proteome analysis, and phenotypic inventorying, resulting in the establishment of huge databases that can be mined in order to generate useful knowledge such as the identity and characterization of organisms and the identity of biotechnology targets. Concurrently there have been major advances in understanding the extent of microbial diversity, how uncultured organisms might be grown, and how expression of the metabolic potential of microorganisms can be maximized. The integration of information from complementary databases presents a significant challenge. Such integration should facilitate answers to complex questions involving sequence, biochemical, physiological, taxonomic, and ecological information of the sort posed in exploitable biology. The paradigm shift which we discuss is not absolute in the sense that it will replace established microbiology; rather, it reinforces our view that innovative microbiology is essential for releasing the potential of microbial diversity for biotechnology penetration throughout industry. Various of these issues are considered with reference to deep-sea microbiology and biotechnology.  相似文献   

15.
To overcome many of the limitations associated with indirect detection methods, new techniques for the sensitive, specific, and direct detection of nucleic acids are required in order to accurately and quantitatively ascribe phenotype/function to uncultivated microorganisms. However, if advanced diagnostic and detection systems are going to be applied in environmental microbiology, future "biodetection" technologies and systems must be developed not from the point of view of the detector, but from the unique aspects of the environmental sample and the entire analytical process. This article highlights recent advances in nucleic acid-based technologies, and looks towards future advances that may address the broad needs and conditions imposed by environmental molecular microbiology.  相似文献   

16.
高通量测序技术是研究环境微生物的有效手段,而以纳米孔测序为代表的第三代测序技术以其测序读长长、测序速度快、测序数据实时监控、仪器方便携带、无GC偏好性、无需经过PCR扩增等显著优势有力推动了环境微生物研究的发展.本文对纳米孔测序技术的技术原理和特点进行了简要概述,重点介绍了纳米孔测序技术在环境微生物扩增子测序、宏基因组...  相似文献   

17.
Microorganisms exhibit high adaptability to extreme environments of outer space via phenotypic and genetic changes. These changes may affect astronauts in the space environment as well as on Earth because mutant microbes will inevitably return with the spacecraft. However, the role and significance of these phenotypic changes and the underlying mechanisms are important unresolved questions in the field of space biology. By reviewing, especially the Chinese studies, we propose a space microbial molecular effect theory, that is, the space environment affects the nature of genes and the molecular structure of microorganisms to produce phenotypic changes. In this review, we discussed three basic theories for the research of space microbiology, including (1) space microbial pathogenicity and virulence mutations and the human mutualism theory; (2) space microbial drug‐resistance mutations and metabolism associated with space pharmaceuticals theory; (3) space corrosion, microbial decontamination, and new materials technology theory.  相似文献   

18.
For twenty years, mass spectrometry (MS) has emerged as a particularly powerful tool for analysis and characterization of proteins in research. It is only recently that this technology, especially MALDI-TOF-MS (Matrix Assisted Laser Desorption Ionization Time-Of-Flight) has entered the field of routine microbiology. This method has proven to be reliable and safe for the identification of bacteria, yeasts, filamentous fungi and dermatophytes. MALDI-TOF-MS is a rapid, precise and cost-effective method for identification, compared to conventional phenotypic techniques or molecular biology. Its ability to analyse whole microorganisms with few sample preparation has greatly reduced the time to identification (1-2 min). Furthermore, this technology can be used to identify bacteria directly from clinical samples as blood culture bottles or urines. Future applications will be developed in order to provide direct information concerning virulence or resistance protein markers.  相似文献   

19.
The achievements of microbiology in the field of chemistry studying, molecular biology and cellular structure of bacteria are reflected in this review. The peculiarities of energetic, synthetic processes in prokaryotes and also the different methods of regulation of their metabolism have been shown. The achievements in the field of new strains construction and creation of biocatalysts on the basis of immobilized cells and enzymes for the biotechnological purposes have been elucidated. The role of microbiology in solving such social problems as the purification of environment from pollution, replenishing the resources of energy and protein which are rapidly exhausted has been shown.  相似文献   

20.
A recent publication has reported the fabrication of a new microbial culture device containing an array of unprecedented density - a million growth chambers. This micro-Petri chip should impact on various fields, including biotechnology, ecology, food microbiology and drug development, by enabling high-throughput screens and therefore the detection of rare phenotypes within a large population of microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号