首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper we present a model that maps epistatic effects onto a genealogical tree for a haploid population. Prior work has demonstrated that genealogical structure causes the genotypic values of individuals to covary. Our results indicate that epistasis can reduce genotypic covariance that is caused by genealogical structure. Genotypic effects (both additive and epistatic) occur along the branches of a genealogical tree, from the base of the tree to its tips. Epistasis reduces genotypic covariance because there is a reweighting of the contribution of branches to the states of genotypes compared to the additive case. Branches near the tips of a genealogical tree contribute proportionally more genetic effects with epistasis than without epistasis. Epistatic effects are most numerous at basal positions in a genealogical tree when a population is constant in size and experiencing no selection, optimizing selection, diversifying selection or directional selection, indicating that epistatic effects are typically old. For a population that is growing in size, epistatic effects are most numerous at midpoints in a genealogical tree, indicating epistatic effects are of moderate age. Our results are important in that they suggest epistatic effects may typically explain deep (old) divergences and broad patterns of divergence that exist in populations, except in growing populations. In a growing population, epistatic effects may cause more within group divergence higher up in a tree and less between group divergence that is deep in a tree. The distribution of the number of epistatic effects and the expected variance and covariance in the number of epistatic effects is also provided assuming neutrality.  相似文献   

3.

Background  

The mass extirpation of the island of Moorea's endemic partulid tree snail fauna, following the deliberate introduction of the alien predator Euglandina rosea, represents one of the highest profile conservation crises of the past thirty years. All of the island's partulids were thought to be extirpated by 1987, with five species persisting in zoos, but intensive field surveys have recently detected a number of surviving wild populations. We report here a mitochondrial (mt) phylogenetic estimate of Moorean partulid wild and captive lineage survival calibrated with a reference museum collection that pre-dates the predator's introduction and that also includes a parallel dataset from the neighboring island of Tahiti.  相似文献   

4.
5.
Animal mitochondrial DNA (mtDNA) is known to contain information about the genealogical relations among closely related species and is shown here to yield information about distant relations as well. Our results also draw attention to the need for caution in using third positions of codons for tree construction. This is evident from comparative studies of the cytochrome b gene in 13 species representing major groups within the order of perching birds (Passeriformes). Sequences of a 924 base-pair segment of this gene were obtained from each of these species via the polymerase chain reaction and a novel set of versatile primers. With a woodpecker sequence as an outgroup, trees that separate songbirds from other perching birds and resolve the ancient branch leading to songbirds were obtained utilizing the conservative first and second positions of codons. Analysis of positions within codons suggests that, for deep branches, the skewed base composition at the fast-changing third positions can result in phylogenetic disinformation, which conflicts with the information retained in the first and second positions. The mitochondrial tree shows broad concordance with that based on hybridization of nuclear DNA; however, parsimony and maximum likelihood methods suggest a close kinship between thrushes and Australian babblers, in agreement with the traditional morphological classification.  相似文献   

6.
Three hormonal neuropeptides have been purified from the sinus gland of the Mexican crayfish Procambarus bouvieri by means of a single-step HPLC method: The molt-inhibiting hormone (MIH) and two isoforms of the crustacean hyperglycemic hormone (CHH-B and CHH-C). Compositional analysis and partial characterization of three neuropeptides revealed such a high degree of homology that we consider them to be members of a family. Circular dichroic spectra of the three neuropeptides showed that the secondary structure of both isoforms of the CHH are very similar, but that there are important differences in secondary structure between MIH and the CHHs, especially in helix content and in disordered regions.  相似文献   

7.
8.
Green tree frogs, Litoria caerulea, in the wet-dry tropics of northern Australia remain active during the dry season with apparently no available water and temperatures that approach their lower critical temperature. We hypothesized that this surprising activity might be because frogs that are cooled during nighttime activity gain water from condensation by returning to a warm, humid tree hollow. We measured the mass gained when a cool frog moved into either a natural or an artificial hollow. In both hollows, water condensed on cool L. caerulea, resulting in water gains of up to 0.93% of body mass. We estimated that the water gained was more than the water that would be lost to evaporation during activity. The use of condensation as a means for water gain may be a significant source of water uptake for species like L. caerulea that occur in areas where free water is unavailable over extended periods.  相似文献   

9.
10.
Genetic analysis of the Ehlers-Danlos syndrome in a large family tree   总被引:1,自引:0,他引:1  
The results of genetic investigation of Ehlers - Danlos syndrome in the kindred of 205 members are presented. The autosomal dominant inheritance hypothesis was tested using two modes of ascertainment, complete and truncated. The data from the segregation analysis provide evidence for the Ehlers - Danlos syndrome type I being inherited as an autosomal dominant trait.  相似文献   

11.
Whole genome sequencing is helping generate robust phylogenetic hypotheses for a range of taxonomic groups that were previously recalcitrant to classical molecular phylogenetic approaches. As a case study, we performed a shallow shotgun sequencing of eight species in the tropical tree family Chrysobalanaceae to retrieve large fragments of high‐copy number DNA regions and test the potential of these regions for phylogeny reconstruction. We were able to assemble the nuclear ribosomal cluster (nrDNA), the complete plastid genome (ptDNA) and a large fraction of the mitochondrial genome (mtDNA) with approximately 1000×, 450× and 120× sequencing depth respectively. The phylogenetic tree obtained with ptDNA resolved five of the seven internal nodes. In contrast, the tree obtained with mtDNA and nrDNA data were largely unresolved. This study demonstrates that genome skimming is a cost‐effective approach and shows potential in plant molecular systematics within Chrysobalanaceae and other under‐studied groups.  相似文献   

12.
13.
14.
A new family of "hypervariable minisatellites" has been identified in the genome of man and of a variety of animal species using as a probe a DNA segment isolated from the M 13 bacteriophage. This finding provides a new series of hyperpolymorphic genetic markers and renders the "DNA-fingerprinting" methodology available to every molecular biology laboratory.  相似文献   

15.
16.
Genealogical discordance, or when different genes tell distinct stories although they evolved under a shared history, often emerges from either coalescent stochasticity or introgression. In this study, we present a strong case of mito‐nuclear genealogical discordance in the Australian rainforest lizard species complex of Saproscincus basiliscus and S. lewisi. One of the lineages that comprises this complex, the Southern S. basiliscus lineage, is deeply divergent at the mitochondrial genome but shows markedly less divergence at the nuclear genome. By placing our results in a comparative context and reconstructing the lineages' demography via multilocus and coalescent‐based approximate Bayesian computation methods, we test hypotheses for how coalescent variance and introgression contribute to this pattern. These analyses suggest that the observed genealogical discordance likely results from introgression. Further, to generate such strong discordance, introgression probably acted in concert with other factors promoting asymmetric gene flow between the mitochondrial and nuclear genomes, such as selection or sex‐biased dispersal. This study offers a framework for testing sources of genealogical discordance and suggests that historical introgression can be an important force shaping the genetic diversity of species and their populations.  相似文献   

17.
18.
19.
Cystic fibrosis in Finland: a molecular and genealogical study   总被引:4,自引:4,他引:0  
Summary The incidence of cystic fibrosis (CF) in Finland is one tenth that in other Caucasian populations. To study the genetics of CF in Finland, we used a combined molecular and genealogical approach. Out of the 20 Finnish families with a living CF patient, 19 were typed for eight closely linked restriction fragment length polymorphisms (RFLP) at the MET, D7S8, and D7S23 loci. The birthplaces of the parents and grandparents were traced using population registries. Allele and haplotype frequencies in Finland are similar to those of other European and North American populations, but are modified by sampling: two regional CF gene clusters, evidently the results of a founder effect, were identified. Generally, the gene was evenly distributed over the population, carrier frequency being estimated at approximately 1.3%. We conclude that CF in Finland is caused by the common Caucasian mutation(s), and that the low frequency of the gene can be explained by a negative sampling effect and genetic drift.  相似文献   

20.
Animal-specific gene families involved in cell-cell communication and developmental control comprise many subfamilies with distinct domain structures and functions. They diverged by subfamily-generating duplications and domain shufflings before the parazoan-eumetazoan split. Here, we have cloned 40 PTK cDNAs from choanoflagellates, Monosiga ovata, Stephanoeca diplocostata and Codosiga gracilis, the closest relatives to animals. A phylogeny-based analysis of PTKs revealed that 40 out of 47 subfamilies analyzed have unique domain structures and are possibly generated independently in animal and choanoflagellate lineages by domain shufflings. Seven cytoplasmic subfamilies showed divergence before the animal-choanoflagellate split originated by both duplications and shufflings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号