首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brain serotonin (5-HT) modulates the neural effects of ethanol. In the present study, we investigated the changes in 5-HT level, 5-HT2A receptor binding and aldehyde dehydrogenase (ALDH) activity in brain stem and liver of ethanol treated rats and 5-HT2A regulation on ALDH in hepatocyte cultures in vitro. The 5-HT content in the brain stem and liver significantly decreased with an increased 5-HIAA/5-HT ratio in the ethanol treated rats compared to control. Scatchard analysis of [3H] (±)2,3-dimethoxyphenyl-1-[2-(-4-piperidine)-methanol] [3H] MDL 100907 against ketanserin in brain stem of ethanol treated rats showed a significant increase in B max without any change in K d compared to control. The competition curve for [3H] MDL 100907 against ketanserin fitted one-site model in both control and ethanol treated rats with unity as Hill slope value. A significant increase in V max of ALDH activity in liver and a significant decrease in K m in liver and brain stem of ethanol treated rats compared to control was observed. In 24 h culture studies, an increase in enzyme activity was observed in cells in medium with 10% ethanol. The elevated ALDH activity in ethanol treated cells was reversed to control level in presence of 10−5 and 10−7 M 5-HT. Ketanserin, an antagonist of 5-HT2A, reversed the effect of 5HT on 10% ethanol induced ALDH activity in hepatocytes. Our results showed that there was a decreased 5-HT content with an enhanced 5-HT2A receptor and aldehyde dehydrogenase activity in the brain stem of alcohol treated rats and in vitro hepatocyte cultures. The enhanced ALDH activity in ethanol supplemented hepatocytes was reversed to control level in presence of 10−5 and 10−7 M 5-HT.  相似文献   

2.
Aim Brain is the major target for the actions of ethanol and it can affect the brain in a variety of ways. In the present study we have investigated the changes in 5-HT level and the 5-HT2A receptors in the ethanol-treated rats. Methods Wistar adult male rats of 180–200 g body weight were given free access to 15% (v/v) (approx.7.5 g/Kg body wt./day) ethanol for 15 days. Controls were given free access to water for 15 days. Brain 5-HT and its metabolites were assayed by high performance liquid chromatography (HPLC) integrated with an electrochemical detector (ECD) fitted with C-18-CLS-ODS reverse phase column. 5-HT2A receptor binding assay was done with different concentrations of [3H] MDL 100907. Results The hypothalamic 5-HT content significantly increased (< 0.001) with a decreased (< 0.001) 5-HIAA/5-HT turnover in the ethanol-treated rats when compared to control. The corpus striatum 5-HT content significantly decreased (< 0.01) with increased (< 0.01) 5-HIAA/5- HT turnovers in the ethanol-treated rats when compared to control. Scatchard analysis of [3H] MDL 100907 against ketanserin in hypothalamus showed a significant increase (< 0.001) in Bmax with a decreased affinity (< 0.001) in ethanol-treated rats when compared to control. The competition curve for [3H] MDL 100907 against ketanserin fitted one-site model in all the groups with unity as Hill slope value. An increased Ki and log (EC50) value were also observed in ethanol-treated rats when compared to control. Scatchard analysis of [3H] MDL 100907 against ketanserin in the corpus striatum of ethanol-treated rats showed a significant increase (< 0.001) in Bmax and in affinity (< 0.01) when compared to control. The change in affinity of the receptor protein in both corpus striatum and hypothalamus shows an altered receptor. The competition curve for [3H] MDL 100907 against ketanserin fitted one-site model in all the groups with unity as Hill slope value. There was no significant change in Ki and log (EC 50) value in ethanol-treated rats when compared to control. Conclusion The present study demonstrated the enhanced 5-HT2A receptor status in hypothalamus and corpus striatum. The ethanol-induced enhanced 5-HT2A receptors in the hypothalamus and corpus striatum has clinical significance in the better management of ethanol addiction. This will have therapeutic application.  相似文献   

3.
The purpose of this study was to investigate the role of central 5-HT2C receptor binding in rat model of pancreatic regeneration using 60–70% pancreatectomy. The 5-HT and 5-HT2C receptor kinetics were studied in cerebral cortex and brain stem of sham operated, 72 h pancreatectomised and 7 days pancreatectomised rats. Scatchard analysis with [3H] mesulergine in cerebral cortex showed a significant decrease (p < 0.05) in maximal binding (Bmax) without any change in Kd in 72 h pancreatectomised rats compared with sham. The decreased Bmax reversed to sham level by 7 days after pancreatectomy. In brain stem, Scatchard analysis showed a significant decrease (p < 0.01) in Bmax with a significant increase (p < 0.01) in Kd. Competition analysis in brain stem showed a shift in affinity towards a low affinity. These parameters were reversed to sham level by 7 days after pancreatectomy. Thus the results suggest that 5-HT through the 5-HT2C receptor in the brain has a functional regulatory role in the pancreatic regeneration.  相似文献   

4.
Radiolabelled piperidine derivatives such as [11C]MDL 100907 and [18F]altanserin have played an important role in diagnosing malfunction in the serotonergic neurotransmission. A variety of novel piperidine MDL 100907 derivatives, possible to label with 18F-fluorine, were synthesized to improve molecular imaging properties of [11C]MDL 100907. Their in vitro affinities to a broad spectrum of neuroreceptors and their lipophilicities were determined and compared to the clinically used reference compounds MDL 100907 and altanserin. The novel compounds MA-1 (53) and (R)-MH.MZ (56) show Ki-values in the nanomolar range towards the 5-HT2A receptor and insignificant binding to other 5-HT receptor subtypes or receptors. Interestingly, compounds MA-1 (53), MH.MZ (55) and (R)-MH.MZ (56) provide a receptor selectivity profile similar to MDL 100907. These compounds could possibly be preferable antagonistic 18F-tracers for visualization of the 5-HT2A receptor status. Medium affine compounds (VK-1 (32), (51), (52), (54)) were synthesized and have Ki values between 30 and 120 nM. All promising compounds show log P values between 2 and 3, that is, within the range of those for the established radiotracers altanserin and MDL 100907. The novel compounds MA-1 (53) and (R)-MH.MZ (56) thus appear to be promising high affine and selective tracers of 18F-labelled analogues for 5-HT2A imaging with PET.  相似文献   

5.
1. The 5-HT2 receptors subdivision into the 5-HT2A/2B/2C subtypes along with the advent of the selective antagonists has allowed a more detailed investigation on the role and therapeutic significance of these subtypes in cognitive functions. The present study further analyzed the 5-HT2 receptors role on memory consolidation.2. The SB-200646 (a selective 5-HT2B/2C receptor antagonist) and LY215840 (a nonselective 5-HT2/7 receptor antagonist) posttraining administration had no effect on an autoshaped memory consolidation. However, both drugs significantly and differentially antagonized the memory impairments induced by 1-(3-chlorophenyl)piperazine (mCPP), 1-naphtyl-piperazine (1-NP), mesulergine, or N-(3-trifluoromethylphenyl) piperazine (TFMPP).3. In contrast, SB-200646 failed to modify the facilitatory procognitive effect produced by (±)-2,5-dimethoxy-4-iodoamphetamine (DOI) or ketanserin, which were sensitive to MDL100907 (a selective 5-HT2A receptor antagonist) and to a LY215840 high dose.4. Finally, SB-200646 reversed the learning deficit induced by dizocilpine, but not that by scopolamine; while SB-200646 and MDL100907 coadministration reversed memory deficits induced by both drugs.5. It is suggested that 5-HT2B/2C receptors might be involved on memory formation probably mediating a suppressive or constraining action. Whether the drug-induced memory impairments in this study are explained by simple agonism, antagonism, or inverse agonism at 5-HT2 receptors remains unclear at this time.6. Notably, the 5-HT2 receptor subtypes blockade may provide some benefit to reverse poor memory consolidation conditions associated with decreased cholinergic, glutamatergic, and/or serotonergic neurotransmission.  相似文献   

6.
Abstract: Previous studies have demonstrated species-specific differences in 5-hydroxytryptamine3 (5-HT3) receptors, but unequivocal evidence of 5-HT3 receptor subtypes, within a species, has not yet been obtained. The purpose of the current study was to test for heterogeneity in 5-HT3 receptors in murine tissues. 5-HT3 receptors in membranes derived from brain cerebral cortex of CD-1, C57BI/6, and Swiss Webster mice and ileum of CD-1 mice were labeled with the 5-HT3 receptor antagonist [3H]RS-42358–197. Structurally diverse competing ligands were then used to characterize the binding site. [3H]RS-42358-197 bound with similar affinity in each of the cortical tissues (mean KD= 0.14 nM; range, 0.06–0.32 nM) but bound with lower affinity in ileal tissue (2.5 nM). The density of sites labeled with [3H]RS-42358–197 ranged from 10.4 fmol/mg of protein in Swiss Webster mouse cortex to 44.2 fmol/mg of protein in Sprague-Dawley rat cortex. Displacing ligands produced a pharmacologic profile of the [3H]RS-42358–197 binding site consistent with it being a 5-HT3 receptor: (R)-YM060 > (S)-zacopride > (R)-zaco-pride > MDL 72222 > 2-methyl-5-HT. However, 10-fold differences in the affinity of certain ligands were found when comparing 5-HT3 binding sites in membranes from cerebral cortex of the different strains of mice and when comparing 5-HT3 binding sites in brain and ileal membranes prepared from the CD-1 mouse strain. Ligands demonstrating selectivity included RS-42358–197, (R)-za-copride, 1-(m-chlorophenyl) biguanide, (R)-YM060, and MDL 72222. These studies demonstrate tissue-and strain-dependent differences in murine 5-HT3 binding sites. This suggests that 5-HT3 receptors exist as multiple subtypes within species and that subtype-selective 5-HT3 ligands may be identified.  相似文献   

7.
The effect of N-ethoxycarbonyl-2-ethoxy-1, 2-dihydroquinoline (EEDQ) on 5-HT1A receptors was studied in Sprague Dawley rats. A single dose of EEDQ (4 mg/kg body wt., i.p.) significantly inactivated 5-HT1A receptors, as measured by [3H]8-hydroxy-2-[di-n-propylamino]-tetralin ([3H]8-OH-DPAT), in cortex (64%, p < 0.0001) and hippocampus (48%, p < 0.0001). A significant (p < 0.01) increase in the affinity of 5-HT1A receptors for radioligand was observed in both regions. A dose dependent protection of cortical 5-HT1A receptors from EEDQ inactivation with pre-treatment of different doses of 8-OH-DPAT (4–20 mg/kg) was observed, along with recovery of affinity of [3H]8-OH-DPAT for 5-HT1A receptors in both regions. Although, a dose of 4 mg/kg of 8-OH-DPAT failed to attenuate the effect of EEDQ on hippocampal 5-HT1A receptors, a significant protection of these receptors was observed with 10 and 20 mg/kg of 8-OH-DPAT. Displacement studies revealed that EEDQ has more affinity for cortical (Ki = 101.3 ± 11.8 nM) than hippocampal (Ki = 133.5 ± 25.8 nM) 5-HT1A receptors. A time dependent natural recovery of 5-HT1A receptors from inactivation by a single dose of EEDQ (4 mg/kg) was observed more in cortex compared to hippocampus over a period from 1 day to 14 days. The results of this study suggest that 8-OH-DPAT inhibited EEDQ inactivation of cortical and hippocampal 5-HT1A receptors in a concentration dependent manner. The synthesis and turnover of 5-HT1A receptors differ in cortex and hippocampus, as evident by earlier recovery in the cortex.  相似文献   

8.
The 5-HTergic system and particularly 5-HT2A receptors have been involved in prefrontal cognitive functions, but the underlying mechanisms by which the serotonin (5-HT) system modulates these processes are still unclear. In this work, the effects of prefrontal 5-HTergic denervation on the density and expression levels of 5-HT2A receptors were evaluated by immunohistochemical and molecular biology studies in the prefrontal cortex (PFC). The [3H]-Ketanserin binding study revealed an increase in the Bmax, along with no change in the binding affinity (KD) for 5-HT2A receptors. The increase in PFC of 5-HT2A receptor density in response to denervation was accompanied by increase in 5-HT2A receptor mRNA and protein levels. This increase in the number of 5-HT2A receptors may be interpreted as an adaptive plastic change, i.e., hypersensitivity; resulting from the selective pharmacological lesion of the raphe-proceeding 5-HTergic fibers to the PFC. Based on previous evidence, this could be strongly related to the abnormal expression of short-term memory.  相似文献   

9.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

10.
The objectives of this study were to characterize the effects of a chronic lithium (Li+) treatment on serotonin (5-HT) uptake sites and on 5-HT1A receptors, and to determine the eventual reversibility of the treatment. The experiments were carried out with membranes from rat cerebral cortex using 8-hydroxy-2-(propylamino)tetralin, or [3H]8-OH-DPAT, and [3H]citalopram to label 5-HT1A receptors and 5-HT uptake sites, respectively. Endogenous levels of 5-HT and 5-hydroxyindole-3-acetic acid (5-HIAA) were measured by high-performance liquid chromatography in the cingulate cortex. The saturation curves with [3H]8-OH-DPAT were always best fitted a two-site model. After a treatment with Li+ for 28 days, no alterations in the binding parameters of [3H]8-OH-DPAT to the high- and low-affinity binding sites could be documented. However, competition curves with 5-HT to inhibit [3H]8-OH-DPAT binding revealed a decreased proportion of sites with high affinity for the agonist, together with an increased density of sites with low affinity for 5-HT, suggesting an alteration in the coupling efficacy between 5-HT1A receptors and their transduction systems. Saturation studies with [3H]citalopram showed an increase (>40%) in the density of 5-HT uptake sites after chronic Li+, suggesting a more efficient 5-HT uptake process for the treated animals, in accord with clinical observations. Although 5-HT contents in cingulate cortex remained unchanged after the treatment, 5-HIAA levels decreased (>30%), leading to a diminished (almost 50%) 5-HT turnover; and also reflecting a more efficient uptake in the treated rats, so that less 5-HT could be degraded by extracellular monoamine oxidase. All the effects revealed by [3H]8-OH-DPAT and [3H]citalopram were reversed following a recovery period of two days without Li+. Since symptoms of bipolar affective disorders may reappear if the chronic Li+ treatment is interrupted, the reversibility of the observed effects further supports the importance of central 5-HT synaptic transmission in the pathophysiology and treatment of human affective disorders.  相似文献   

11.
Subhash  M. N.  Srinivas  B. N.  Vinod  K. Y.  Jagadeesh  S. 《Neurochemical research》1998,23(10):1321-1326
Inactivation of 5-HT1A and [3H]5-HT binding sites by N-Ethoxycarbonyl-2-ethoxy-1, 2-dihydro-quinoline (EEDQ) was studied in regions of rat brain. After exposure to EEDQ (4 mg/kg body wt.) for 7 days, it is observed that the density of 5-HT1 receptor sites was decreased by nearly 20% in both cortex and hippocampus. The decrease, however, in 5-HT1A sites was more significant (70%) in both the regions. The affinity of [3H]5-HT to 5-HT1 sites was decreased significantly in both cortex and hippocampus after exposure to EEDQ, without affecting the Kd of 5-HT1A sites. Displacement studies suggested that EEDQ has high affinity to 5-HT1 sites with a Ki of 42.9 ± 2.4 nM. After exposure neither basal nor 5-HT stimulated adenylyl cyclase activity was changed in cortex. The results of this study suggest that EEDQ decreases the density of 5-HT1 and 5-HT1A receptor sites but does not cause functional downregulation of these sites in rat brain.  相似文献   

12.
Subhash  M. N.  Jagadeesh  S. 《Neurochemical research》1997,22(9):1095-1099
The effect of chronic administration of Imipramine on [3H]Spiperone binding to 5-HT2 sites and inositoltrisphosphate (IP3) levels in rat cerebral cortex was studied. Our data shows that treatment with imipramine (5 mg/kg body weight, intraperitoneally) for 30 days significantly down regulates 5-HT2 receptors sites (262 ± 29 fmol/mg protein) in cerebral cortex (38%), compared to control rats (425 ± 60 fmol/mg protein., P < 0.001). However there was no significant change in the affinity of [3H]-Spiperone binding (kd) to 5-HT2 sites in cerebral cortex after exposure to imipramine (Kd = 0.84 ± 0.11 nM). It is also observed that imipramine treatment significantly reduces 5-HT stimulated [3H]IP3 formation in cerebral cortex (6,411 ± 708 dpm/mg protein), compared to the saline treated rats (12,238 ± 1,544 dpm/mg protein; P < 0.001), with concomitant decrease in Pdtlns-4–5-P2. This study suggests that the therapeutic action of imipramine in brain might be by reducing hypersensitivity of 5-HT2 receptors by down regulation, which leads to reduced levels of inositolphospholipids. This inturn reduces the levels of IP3. In conclusion, imipramine acts at presynaptic site by blocking the reuptake of serotonin and at post synaptic site it downregulates 5-HT2 sites with decreased IP3 levels after chronic exposure.  相似文献   

13.
Low levels of docosahexaenoic acid (DHA) have been linked to a number of mental illnesses such as memory loss, depression and schizophrenia. While supplementation of DHA is beneficial in improving memory and cognition, the influence of dietary fats on the neurotransmitters and receptors involved in cognitive function is still not known. The aim of this study was to investigate serotonin receptor (5-HT1A and 5-HT2A), cannabinoid receptor (CB1) and gamma-aminobutyric acid type A (GABAA) receptor binding densities in the brain of male rats fed a high-saturated-fat (HF) diet, as well as the effect of DHA supplementation on HF diet. Alterations of these receptors in the post-mortem rat brain were detected by [3H]-WAY-100635, [3H]-ketanserin, [3H]-CP-55,940 and [3H]-muscimol binding autoradiography, respectively. In the hippocampus, the 5-HT1A, CB1 and GABAA receptor binding densities significantly increased in response to an HF diet, while in the hypothalamus, 5-HT1A and CB1 binding densities significantly increased in HF-fed rats. Importantly, DHA supplementation prevented the HF-induced increase of receptors binding density in the hippocampus and hypothalamus. Furthermore, DHA supplementation attenuated 5-HT2A receptor binding density in the caudate putamen, anterior cingulate cortex and medial mammillary nucleus, which was also increased in HF group. This study showed that an HF diet increased 5-HT1A, 5-HT2A, CB1 and GABAA receptor binding densities in the brain regions involved in cognitive function and that dietary DHA can attenuate such alterations. These findings provide insight into the mechanism by which DHA supplementation ameliorates reduced cognitive function associated with an HF diet.  相似文献   

14.
《Life sciences》1994,55(20):PL403-PL407
The potent and selective 5-HT1A antagonist WAY 100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexanecarboxamide) was radiolabeled with 11C in high specific activity, and the in vivo properties of this radioligand were assessed in the brains of rats and monkeys. Following i.v. tail vein injection in rats, [11C]WAY 100635 rapidly penetrated into brain tissue and was retained over a 30–90 min time period in a manner consistent with the known distribution of 5-HT1A receptors. Pretreatment of rats with the selective 5-HT1A agonist (±)-8-OH-DPAT effectively blocked the retention of radioactivity in brain regions known to contain high densities of 5-HT1A receptors. The hippocampus-to-cerebellum radioactivity concentration ratio reached a maximum of 16:1 at 60 min post injection. Following i.v. injection of [11C]WAY 100635 in rhesus monkeys, the concentrations of radioactivity in brain regions were consistent with the reported distribution of 5-HT1A receptors in primates, and the frontal cortex-to-cerebellum ratio reached 5.5:1 at 80 min post injection. Pretreatment of the monkeys with (±)-8-OH-DPAT reduced this ratio to 1.4:1, and injection of (±)-8-OH-DPAT 20 min after the injection of [11C]WAY 100635 significantly displaced frontal cortex binding. The in vivo properties of [11C]WAY 100635 in rats and monkeys strongly support the future utility of this radioligand for imaging 5-HT1A receptors using positron emission tomography (PET).  相似文献   

15.
The binding of tritiated 8-hydroxy-2-(di-n-propyl-amino)tetralin, or [3H]8-OH-DPAT, to membranes from rat cerebral cortex and hippocampus could be inhibited by serotonin (5-HT) and buspirone, and by the 5-HT antagonists propranolol, NAN-190, pindolol, pindobind-5-HT1A, WAY100135, spiperone and ritanserin. All competition curves, except for ritanserin, best fitted a two-site model. In vitro treatment of the membranes withN-ethylmaleimide (NEM), to alkylate sulfhydryl groups, caused dose-dependent decreases of binding; the inhibition curves were biphasic, and the effects irreversible. Reduction of disulfide bonds withl-dithiothreitol (L-DTT) also decreased binding, but in a monophasic way; these effects were fully reversible in cortex, but only partially reversible in hippocampus. In the latter region, but not in cerebral cortex, previous occupancy by [3H]8-OH-DPAT partially protected binding from the effects of bothL-DTT and NEM, suggesting that the thiol groups in the receptor recognition site(s) of this brain region are readily accessible. The binding characteristics were examined with the aid of saturation curves, carried out with increasing concentrations, up to 140 nM, of [3H]8-OH-DPAT. The saturation data were suggestive of a two-site receptor model incorporating a high-affinity site (Kh of 0.3–0.5 nM) corresponding to the 5-HT1A receptor, and a low-affinity site (Kl ofca 25 nM). After in vivo alkylations, carried out by treating rats withN-ethoxycarbonyl-2-ethoxy-1,2-dihydro-quinoline (EEDQ), the saturation curves from both control and EEDQ-treated rats were again best fitted to a two-site model. For EEDQ-treated animals, a drastic decrease of 5-HT1A receptor activity was noted; this loss was greater in hippocampus than in cerebral cortex. Since the decrease in 5-HT1A receptors was not associated with changes in low-affinity binding, the results suggest independent regulations of the two [3H]8-OH-DPAT binding proteins. Altogether, the present data further supports the notion that [3H]8-OH-DPAT, besides labelling 5-HT1A receptors, also binds to other structures in rat cerebral cortex and hippocampus. Special issue dedicated to Dr. Kinya Kuriyama  相似文献   

16.
Abstract: G protein activation mediated by serotonin 5-HT1A and 5-HT1B/D receptors in guinea pig brain was investigated by using quantitative autoradiography of agonist-stimulated [35S]GTPγS binding to brain sections. [35S]GTPγS binding was stimulated by the mixed 5-HT1A/5-HT1B/D agonist L694247 in brain structures enriched in 5-HT1A binding sites, i.e., hippocampus (+140 ± 14%), dorsal raphe (+70 ± 8%), lateral septum (+52 ± 12%), cingulate (+36 ± 8%), and entorhinal cortex (+34 ± 5%). L694247 caused little or no stimulation of [35S]GTPγS binding in brain regions with high densities of 5-HT1B/D binding sites (e.g., substantia nigra, striatum, central gray, and dorsal subiculum). The [35S]GTPγS binding response was antagonized by WAY100635 (10 µM) and methiothepin (10 µM). In contrast, the 5-HT1B inverse agonist SB224289 (10 µM) did not affect the L694247-mediated [35S]GTPγS binding response, and the mixed 5-HT1B/D antagonist GR127935 (10 µM) yielded a partial blockade. The distribution pattern of the [35S]GTPγS binding response and the antagonist profile suggest the L694247-mediated response in guinea pig brain to be mediated by 5-HT1A receptors. In addition to L694247, 8-hydroxy-2-(di-n-propylamino)tetralin, and flesinoxan also stimulated [35S]GTPγS binding; their maximal responses varied between 46 and 52% compared with L694247, irrespective of the brain structure being considered. Sumatriptan, rizatriptan, and zolmitriptan (10 µM) stimulated [35S]GTPγS binding in the hippocampus by 20–50%. Naratriptan, CP122638, and dihydroergotamine stimulated [35S]GTPγS binding to a similar level as L694247 in hippocampus, lateral septum, and dorsal raphe. It appears that under the present experimental conditions, G protein activation through 5-HT1A but not 5-HT1B/D receptors can be measured in guinea pig brain sections.  相似文献   

17.
1. The serotonin1A(5-HT1A) receptors are members of a superfamily of seven transmembrane domain receptors that couple to G-proteins. They appear to be involved in various behavioral and cognitive functions. Although specific 5-HT1Aagonists have been discovered more than a decade back, the development of selective 5-HT1Aantagonists has been achieved only recently.2. We have examined the modulation of the specific antagonist [3H]p-MPPF binding to 5-HT1Areceptors from bovine hippocampal membranes by monovalent and divalent metal ions. Our results show that the antagonist binding to 5-HT1Areceptors is inhibited by both monovalent and divalent cations in a concentration-dependent manner. This is accompanied by a concomitant reduction in binding affinity.3. Our results also show that the specific antagonist p-MPPF binds to all available receptors in the bovine hippocampal membrane irrespective of their state of G-protein coupling and other serotonergic ligands such as 5-HT and OH-DPAT effectively compete with the specific antagonist [3H]p-MPPF.4. These results are relevant to ongoing analyses of the overall modulation of ligand binding in G-protein-coupled seven transmembrane domain receptors.  相似文献   

18.
We studied expression of the 5-HT1A receptor in cortical and limbic areas of the brain of the tree shrew. In situ hybridization with a receptor-specific probe and immunocytochemistry with various antibodies was used to identify distinct neurons expressing the receptor. In vitro receptor autoradiography with 3H-8-OH-DPAT (3H-8-hydroxy-2-[di-n-propylamino]tetralin) was performed to visualize receptor-binding sites. In the prefrontal, insular, and occipital cortex, 5-HT1A receptor mRNA was expressed in pyramidal neurons of layer 2, whereas 3H-8-OH-DPAT labeled layers 1 and 2 generating a columnar-like pattern in the prefrontal and occipital cortex. In the striate and ventral occipital cortex, receptor mRNA was present within layers 5 and 6 in pyramidal neurons and Meynert cells. Pyramid-like neurons in the claustrum and anterior olfactory nucleus also expressed the receptor. Principal neurons in hippocampal region CA1 expressed 5-HT1A receptor mRNA, and 3H-8-OH-DPAT labeled both the stratum oriens and stratum radiatum. CA3 pyramidal neurons displayed low 5-HT1A receptor expression, whereas granule neurons in the dentate gyrus revealed moderate expression of this receptor. In the amygdala, large pyramid-like neurons in the basal magnocellular nucleus strongly expressed the receptor. Immunocytochemistry with antibodies against parvalbumin, calbindin, and gamma aminobutyric acid (GABA) provided no evidence for 5-HT1A receptor expression in GABAergic neurons in cortical and limbic brain areas. Our data agree with previous findings showing that the 5-HT1A receptor mediates the modulation of glutamatergic neurons. Expression in the limbic and cortical areas suggested an involvement of 5-HT1A receptors in emotional and cognitive processes.This work was supported by the German Science Foundation (SFB 406; C4 to G.F.).  相似文献   

19.
To study the early effects of neonatal 5,7-dihydroxytryptamine lesions on 5-hydroxytryptamine1A (5-HT1A) receptors, we measured regional [3H]8-OH-DPAT-labeled 5-HT1A sites in binding assays and compared them to our previous studies of [3H]paroxetine-labeled 5-HT transporter sites during the first month in the same rats. While there were significant time- and dose-dependent effects of 5,7-DHT on 5-HT transporter sites, there were no significant changes in 5-HT1A sites in cortex, hippocampus, diencephalon, brainstem, cerebellum, or spinal cord. 5,7-DHT lesions also did not alter the Ki of Gpp(NH)p at brainstem 5-HT1A sites or the Ki of 5-HT in cortex or brainstem in the presence or absence of GTPS or Gpp(NH)p. There were significant regional differences between the density of 5-HT1A sites and 5-HT transporter sites. The ontogeny of brainstem 5-HT1A sites was a pattern of increases until three weeks postnatal, and 5,7-DHT lesions did not alter the ontogeny of 5-HT1A sites. These data suggest differential plasticity of 5-HT1A and 5-HT transporter binding sites during the first month after neonatal 5,7-DHT lesions.  相似文献   

20.
Although multiple roles of dopamine through D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptors are initiated primarily through stimulation or inhibition of adenylyl cyclase via Gs/olf or Gi/o, respectively, there have been many reports indicating diverse signaling mechanisms that involve alternative G protein coupling. In this study, dopamine-induced Gαq activation in rat brain membranes was investigated. Agonist-induced Gαq activation was assessed by increase in guanosine-5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding to Gαq determined by [35S]GTPγS binding/immunoprecipitation assay in rat brain membranes. Dopamine-stimulated Gαq functionality was highest in cortex as compared to hippocampus or striatum. In cerebral cortical membranes, this effect was mimicked by benzazepine derivatives with agonist properties at dopamine D1-like receptors, that is, SKF83959, SKF83822, R(+)-SKF81297, R(+)-SKF38393, and SKF82958, but not by the compounds with dopamine D2-like receptor agonist properties except for aripiprazole. Against expectation, stimulatory effects were also induced by SKF83566, R(+)-SCH23390, and pergolide. The pharmacological profiling by using a series of antagonists indicated that dopamine-induced response was mediated through dopamine D1-like receptor, which was distinct from the receptor involved in 5-HT-induced response (5-HT2A receptor). Conversely, the responses induced by SKF83566, R(+)-SCH23390, and pergolide were most likely mediated by 5-HT2A receptor, but not by dopamine D1-like receptor. Caution should be paid when interpreting the experimental data, especially in behavioral pharmacological research, in which SKF83566 or R(+)-SCH23390 is used as a standard selective dopamine D1-like receptor antagonist. Also, possible clinical implications of the agonistic effects of pergolide on 5-HT2A receptor has been mentioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号