首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antagonistic interactions between silicon and aluminum occur in living organisms. Thus, an experiment was performed to ascertain whether high dietary aluminum would accentuate the signs of silicon deprivation in rats and conversely whether silicon deprivation would accentuate the response to high dietary aluminum. The experiment was factorially arranged with two variables: silicon as sodium metasilicate, 0 or 40 μg/g diet, and aluminum as aluminum citrate, 0 or 500 μg/g diet. After 9 wk, body weights and plasma urea nitrogen were higher and plasma concentrations of threonine, serine, glycine, cystine, and methionine were lower in silicon-adequate than silicon-deprived rats. High dietary aluminum significantly decreased plasma phenylalanine. An interaction between aluminum and silicon affected plasma triglyceride, cholesterol, and phosphorus concentrations. High dietary aluminum decreased these variables when silicon was absent from the diet, but increased them when silicon was present. Skull iron and silicon concentrations were decreased and iron and zinc concentrations in the femur were increased by the addition of 500 μg Al/g diet. High dietary aluminum decreased tibia density in silicon-adequate rats, but increased tibial density in silicon-deprived rats. The findings indicate that in rats, high dietary aluminum can affect the response to silicon deprivation and dietary silicon can affect the response to high dietary aluminum.  相似文献   

2.
The interaction between nickel and iron was confirmed in rat metabolism. In a fully-crossed, two-way, three by four, factorially designed experiment, female weanling rats were fed a basal diet supplemented with iron at 0, 25, 50, and 100 μg/g and with nickel at 0, 5, and 50 μg/g. The basal diet contained about 10 ng of nickel and 2.3 μg of iron/g. After nine weeks, dietary iron affected growth, hematocrit, hemoglobin, plasma cholesterol, and in liver affected total lipids, phospholipids, and the contents of copper, iron, manganese, and zinc. By manipulating the iron content of the diet, effects of dietary nickel were shown in rats that were not from dams fed a nickel-deprived diet. Nickel affected growth, hematocrit, hemoglobin, plasma alkaline phosphatase activity, plasma total lipids, and in liver affected total lipids, and the contents of copper, manganese, and nickel. The interaction between nickel and iron affected hematocrit, hemoglobin, plasma alkaline phosphatase activity, and plasma phospholipids, and in liver affected size, content of copper, and perhaps of manganese and nickel. In severely iron-deficient rats, the high level of dietary nickel partially alleviated the drastic depression of hematocrit and hemoglobin, and the elevation of copper in liver. Simultaneously, high dietary nickel did not increase the iron level in liver and was detrimental to growth and appearance of severely iron-deficient rats. In nickel-deprived rats fed the borderline iron-deficient diet (25 μg/g) hematocrit and hemoglobin also were depressed. However, 5 μg Ni/g of diet were just as effective as 50 μg Ni/g of diet in preventing those signs of nickel deprivation. The findings in the present study suggested that nickel and iron interact with each other at more than one locus.  相似文献   

3.
Both arginine and silicon affect collagen formation and bone mineralization. Thus, an experiment was designed to determine if dietary arginine would alter the effect of dietary silicon on bone mineralization and vice versa. Male weanling Sprague-Dawley rats were assigned to groups of 12 in a 2×2 factorially arranged experiment. Supplemented to a ground corn/casein basal diet containing 2.3 μg Si/g and adequate arginine were silicon as sodium metasilicate at 0 or 35 μg/g diet and arginine at 0 or 5 mg/g diet. The rats were fed ad libitum deionized water and their respective diets for 8 wk. Body weight, liver weight/body weight ratio, and plasma silicon were decreased, and plasma alkaline phosphatase activity was increased by silicon deprivation. Silicon deprivation also decreased femoral calcium, copper, potassium, and zinc concentrations, but increased the femoral manganese concentration. Arginine supplementation decreased femoral molybdenum concentration but increased the femoral manganese concentration. Vertebral concentrations of phosphorus, sodium, potassium, copper, manganese, and zinc were decreased by silicon deprivation. Arginine supplementation increased vertebral concentrations of sodium, potassium, manganese, zinc, and iron. The arginine effects were more marked in the silicon-deprived animals, especially in the vertebra. Germanium concentrations of the femur and vertebra were affected by an interaction between silicon and arginine; the concentrations were decreased by silicon deprivation in those animals not fed supplemental arginine. The change in germanium is consistent with a previous finding by us suggesting that this element may be physiologically important, especially as related to bone DNA concentrations. The femoral and vertebral mineral findings support the contention that silicon has a physiological role in bone formation and that arginine intake can affect that role. The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area is an equal opportunity/affirmative action employer, and all agency services are available without discrimination. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

4.
The level and/or form of dietary iron, dietary nickel, and the interaction between them affected the trace element content of rat liver. Livers were from the offspring of dams fed diets containing 10–16 ng, or 20 μg, of nickel/g. Dietary iron was supplied as ferric chloride (30 μg/g) or ferric sulfate (30 μg, or 60 μg). In nickel-deprived rats fed 60 μg of iron/g of diet as ferric sulfate, at age 35 days, levels of iron and zinc were depressed in liver and the level of copper was elevated. At age 55 days, iron was still depressed, copper was still elevated, but zinc also was elevated. In rats fed 30 μg of iron/g of diet as ferric chloride, liver iron content was higher in nickel-deprived than in nickel-supplemented rats at 30, but not at 50, days of age. Also manganese and zinc were lower in nickel-deprived than in nickel-supplemented rats at age 35 days if their dams had been on experiment for an extended period of time (i.e., since age 21 days). Thus, the levels of copper, iron, manganese, and zinc in liver were affected by nickel deprivation, but the direction and extent of the affects depended upon the iron status of the rat.  相似文献   

5.
In three fully crossed, factorially arranged, completely randomized experiments, female weanling rats were fed a basal diet (containing about 10 ng of nickel and 2.3 μg of iron/g) supplemented with graded levels of nickel and iron. Iron was supplemented to the diet in experiment 1 at levels of 0, 25, 50, and 100 μg/g as a mixture of 40% FeSO4·nH2O and 60% Fe2(SO4)3·nH2O; in experiment 2 at levels of 0, 12.5, 25, 50, and 100 μg/g as Fe2(SO4)3·nH2O; in experiment 3 at levels of 0, 25, and 50 μg/g as either the mixture of ferric-ferrous sulfates, or as ferric sulfate only. Nickel as NiCl2·3H2O was supplemented to the diet in experiment 1 at levels of 0, 5, and 50 μg/g; in experiment 2 at levels of 0 and 50 μg/g; and in experiment 3 at levels of 0 and 5 μg/g. Regardless of dietary nickel, rats fed no supplemental iron exhibited depressed iron content and elevated copper, manganese, and zinc contents in the liver. Nickel and iron did not interact to affect iron, manganese, and zinc in liver. Liver copper was inconsistently affected by an interaction between nickel and iron. Nickel deprivation apparently accentuated the elevation of the copper level in livers of severely iron-deficient rats. Experiment 3 showed that the form of dietary iron altered the effect of nickel deprivation on the iron content of the liver. When only ferric sulfate was supplemented to the diet, liver iron content was depressed in nickel-deprived rats. On the other hand, when the ferric-ferrous mixture was supplemented to the diet, nickel deprivation apparently elevated the iron content in the liver. The findings support the views that (1) parameters that are affected by an interaction between nickel and iron are limited in factorially arranged experiments, and (2) the form and level of dietary iron markedly influence the effect of nickel deprivation in the rat.  相似文献   

6.
The interaction between dietary copper and zinc as determined by tissue concentrations of trace elements was investigated in male Sprague-Dawley rats. Animals were fed diets in a factorial design with two levels of copper (0.5, 5 μg/g) and five levels of zinc (1, 4.5, 10, 100, 1000 μg/g) for 42 d. In rats fed the low copper diet, as dietary zinc concentration increased, the level of copper decreased in brain, testis, spleen, heart, liver, and intestine. There was no significant effect of dietary copper on tissue zinc levels. In the zinc-deficient groups, the level of iron was higher in most tissues than in tissues from controls (5 μg Cu, 100 μg Zn/g diet). In the copper-deficient groups, iron concentration was higher than control values only in the liver. These data show that dietary zinc affected tissue copper levels primarily when dietary copper was deficient, that dietary copper had no effect on tissue zinc, and that both zinc deficiency and copper deficiency affected tissue iron levels.  相似文献   

7.
An analysis of the interaction between dietary iron (Fe) and zinc (Zn) was performed by using data from Sprague-Dawley rats in a 5 x 4 fully crossed factorially arranged experiment. The concentrations of 9 trace elements from the liver and 10 from the heart were determined and subjected to diverse statistical analyses and were classified by their response to the interaction between dietary Fe and Zn. The interaction was studied by using analysis of variance (ANOVA), discriminant analysis, and logistic regression to determine the direction of interaction; that is, did dietary Fe affect dietary Zn or did dietary Zn affect dietary Fe? The use of discriminant analysis allowed for using multiple parameters (rather than a single parameter) to determine possible interactions between Fe and Zn. Thus, two main levels of interaction were studied: the separate response of each tissue mineral and the response of some grouped minerals. The responses studied were the effect of dietary Zn on tissue trace element parameters, the effect of dietary Fe on the parameters, the effect of dietary Zn on combined (grouped) parameters, and the effect of dietary Fe on combined parameters. As determined by ANOVA, only three individual trace elements--liver Fe, Cu, and Mo--were significantly affected by the interaction between Fe and Zn. However, a broader interaction between Fe and Zn is revealed when groups of, rather than single, trace elements arestudied. For example, an interaction between dietary Fe and Zn affects the weighted linear combination of heart Ca, Cu, K, Mg, Mn, P, and Zn. This article presents the hypothesis that grouped parameters may be useful as status indicators. The complete dataset can be found at http://www.gfhnrc.ars. usda.gov/fezn.  相似文献   

8.
The effect of dietary calcium on the metabolism of iron, zinc, copper, and manganese in male and female rats was investigated. For 3 or 6 weeks the rats were fed three diets containing: (1) 0.26, (2) 0.52, or (3) 2.08% Ca. The apparent absorption of iron was depressed by the high calcium diet, and manganese absorption was highest in the low calcium groups. Generally there was a decrease in the absorption of minerals from 3 to 6 weeks. With an increase in the dietary calcium the absorption of Ca and P decreased. The liver iron concentration in the females fed diet 3 decreased from about 600 to 200 microg/g dry weight. The high calcium intake also caused a slight increase in the heart calcium levels in both sexes. However, diet 3 prevented kidney calcification in the female rats at 6 weeks and this was attributed to a dramatic decrease in the urinary phosphorus, although the calcium had increased about 40 times. In males, on the other hand, the high calcium diet caused some kidney calcification.  相似文献   

9.
Sporadic reports have appeared that suggest silicon plays a functional role in immune function by affecting lymphocyte proliferation. In addition, there is also considerable interest in supplemental arginine as a modulator of immune function. Therefore, the purpose of this animal experiment was to determine the effect of supplemental compared to adequate arginine on immune function as measured by splenic T-lymphocyte proliferation in the presence of adequate or inadequate dietary silicon. The independent variables were, per gram of fresh diet, silicon supplements of 0 or 35 μg and arginine supplements of 0 or 5 mg. The basal diet contained 2.3 μg silicon/g and 7.82 mg l-arginine/g. After feeding the male rats (nine per treatment group) for 8 wk, spleen lymphoid cells were isolated and cultured with methyl-3[H]thymidine. Supplemental arginine significantly decreased Con-A-induced DNA synthesis of splenic T-lymphocytes, but the response to arginine was influenced by dietary silicon. The decreased DNA synthesis was more marked when rats were fed adequate silicon than when fed inadequate silicon. Also, when arginine was not supplemented, DNA synthesis was higher in lymphocytes from rats fed an adequate silicon diet than rats fed the inadequate silicon diet. These findings support the hypothesis that an interaction between silicon and arginine affects immune function and that inadequate dietary silicon impairs splenic lymphocyte proliferation in response to an immune challenge. The U.S. Department of Agriculture, Agricultural Research Service, Northern Plains Area is an equal opportunity/affirmative action employer, and all agency services are available without discrimination. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

10.
The response of duodenal cytosolic aconitase (c-aconitase) to oral repletion of graded doses of iron (Fe) during Fe-deficiency was studied in rats (WNIN strain). In addition, in vitro effect of zinc (Zn) on the enzyme activity was studied using duodenal cytosol. Iron-depleted male rats were orally repleted with either 100 or 190 or 370 microg of Fe/day (n=6, each) for 2 weeks. Fe repletion was found to increase linearly the activity of duodenal c-aconitase along with the indicators of iron status. The correlation coefficient (r) between c-aconitase and haemoglobin and mucosal ferritin was 0.6453 and 0.8441, respectively. The effects of zinc (0-40 microM) in vitro on the kinetics of c-aconitase from iron-replete stock diet fed rats (n=4) showed that Zn competitively inhibited the enzyme with a Ki (app.) of 28 microM. These observations suggest that c-aconitase is a critical target involved in the assimilation of Fe and excess dietary Zn can result in negative interactions.  相似文献   

11.
A series of nine experiments were done to obtain further evidence that boron might be involved in major mineral metabolism (Ca, P, and Mg), thus indicating that boron is an essential nutrient for animals. Eight factorially arranged experiments of 6–10 wk durations were done with weanling Sprague-Dawley male rats. One factorially arranged experiment was done with weanling spontaneously hypertensive rats. The variables in each experiment were dietary boron supplements of 0 and 3 μg/g, and dietary magnesium supplements of either 200 (Experiments 1–3) or 100 (Experiments 4–9) and 400 μg/g. In Experiments 7 and 9, a third variable was dietary manganese supplements of 25 and 50 μg/g. Methionine status was varied throughout the series of experiments by supplementing the casein-based diet with methionine and arginine. Findings were obtained indicating that the severity of magnesium deprivation and the methionine status of the rat strongly influence the extent and nature of the interaction between magnesium and boron, and the response to boron deprivation. When magnesium deprivation was severe enough to cause typical signs of deficiency, a significant interaction between boron and magnesium was found. Generally, the interaction was characterized by the deprivation of one of the elements making the deficiency signs of the other more marked. The interaction was most evident when the diet was not supplemented with methionine and especially when the diet contained luxuriant arginine. Signs of boron deprivation were also more marked and consistent when the diet contained marginal methionine and luxuriant arginine. Among the signs of boron deprivation exhibited by rats fed marginal methionine were depressed growth and bone magnesium concentration, and elevated spleen wt/body wt and kidney wt/body wt ratios. Because the boron supplement of 3 μg/g did not make the dietary intake of this element unusual, it seems likely that the response of the rats to dietary boron in the present study were manifestations of physiological, not pharmacological, actions, and support the hypothesis that boron is an essential nutrient for the rat. Mentions of a trademark or proprietary product does not consitute a guarantee or warranty of the product by the US Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

12.
Effects in rats of iron on lead deprivation   总被引:1,自引:0,他引:1  
In two fully crossed, two-factor experiments, F1 generation male rats were fed a basal diet supplemented with lead (lead acetate) at 0 or 2 micrograms/g and iron (ferric sulfate) at 50 or 250 micrograms/g (Experiment 1). Supplements in Experiment 2 were lead at 0 or 1 micrograms/g and iron at 50, 250, or 1000 micrograms/g. After 28 or 50 d in Experiment 1, and 35 d in Experiment 2, a relationship between lead and iron was found. Body weight was lower in low-lead than lead-supplemented 28-d-old rats regardless of dietary iron, whereas hematocrit and hemoglobin were lower in low-lead than lead-supplemented rats fed 50 micrograms iron/g diet. A similar finding was obtained with hematocrit and hemoglobin in 35-d-old rats. Dietary lead did not affect rats fed 250 or 1000 micrograms iron/g diet. Also, feeding low dietary lead did not affect 50-d-old rats regardless of dietary iron. Liver and bone concentrations of lead were markedly affected by dietary lead and iron. The concentration of lead in liver and bone was lower in low-lead than lead-supplemented rats. Compared to rats fed 50 micrograms iron/g diet, rats fed 250 micrograms iron/g diet exhibited a decreased lead concentration in liver and bone. This decrease was accentuated by lead supplementation. The findings suggest that lead acted pharmacologically to affect iron metabolism in rats.  相似文献   

13.
Diets with a higher proportion of polyunsaturated fatty acids (i.e., linoleic acid) have decreased iron absorption and utilization compared with diets containing a higher proportion of the saturated fatty acid stearic acid (e.g., beef tallow). However, less is known regarding the influence of other polyunsaturated or monounsaturated fatty acids, along with higher dietary iron, on iron absorption and utilization. The present study was conducted to compare the effects of dietary fat sources known to vary in (n-3), (n-6), and (n-9) fatty acids on iron utilization and liver mineral concentrations. Male weanling rats were fed a diet containing 10, 35, or 100 μg/g iron in combination with saffower oil, flaxseed oil, olive oil, or beef tallow for 8 wk. Indicators of iron status, iron utilization, and liver iron concentrations were unaffected by an interaction between the fat source and iron concentration. Plasma copper was the only variable affected by an interaction between the fat source and dietary iron. Findings of this study demonstrate that flaxseed oil and olive oil may alter tissue minerals and affect iron utilization. Further studies should be conducted to establish the effect of varying (n-3), (n-6), and (n-9) fatty acids on trace mineral status and iron utilization. Data were presented in part at Experimental Biology 2000 as a poster session. A. D. Shotton and E. A. Droke, Dietary fat and iron modify immune function, FASEB J. 14, A239 (2000).  相似文献   

14.
The nutritional influence of zinc on markers of bone extracellular matrix resorption and mineralization was investigated in growing rats. Thirty male weanling rats were randomly assigned to consume AIN-93G based diets containing 2.5, 5, 7.5, 15 or 30 μg Zn/g diet for 24 days. Femur zinc increased substantially as zinc increased from 5 to 15 μg/g diet and modestly between 15 and 30 μg/g (P<.05). By morphological assessment, trabecular bone increased steadily as dietary zinc increased to 30 μg/g. Increasing dietary zinc tended to decrease Zip2 expression nonsignificantly and elevated the relative expression of metallothionen-I at 15 but not 30 μg Zn/g diet. Femur osteoclastic resorption potential, indicated by matrix metalloproteinases (MMP-2 and MMP-9) and carbonic anhydrase-2 activities decreased with increasing dietary zinc. In contrast to indicators of extracellular matrix resorption, femur tartrate-resistant acid and alkaline phosphatase activities increased fourfold as dietary zinc increased from 2.5 to 30 μg Zn/g. Likewise, 15 or 30 μg Zn/g diet resulted in maximum relative expression of osteocalcin, without influencing expression of core-binding factor α-1, collagen Type 1 alpha-1, or nuclear factor of activated T cells c1. In conclusion, increased trabecular bone with additional zinc suggests that previous requirement estimates of 15 μg Zn/g diet may not meet nutritional needs for optimal bone development. Overall, the up-regulation of extracellular matrix modeling indexes and concomitant decrease in resorption activities as dietary zinc increased from 2.5 to 30 μg/g provide evidence of one or more physiological roles for zinc in modulating the balance between bone formation and resorption.  相似文献   

15.
Three groups (14 rats each) were fed one of the following diets for 8 wks: a control purified basal diet containing 12 ppm zinc, 5 ppm copper, and 35 ppm iron; the basal diet with less than 2 ppm zinc; or the basal diet supplemented with 1000 ppm zinc. Rats fed the zinc-deficient diet had decreased weight gain, moderate polydipsia, and intermittent mild diarrhea. The zinc-supplemented rats had a cyclical pattern of food intake and weight loss from weeks 5 to 8. Tissue concentrations suggest that zinc and copper were not mutually antagonistic with chronic dietary imbalances. If tissue element concentrations reflected intestinal uptake, then competition and/or inhibition of intestinal uptake occurred between zinc and iron. The fluctuations in tissue element concentrations that occurred with increased duration of the study were at variance with previous studies of shorter time periods. The dietary proportions of zinc, copper, and iron appear to influence zinc, copper, and iron metabolism at the intestinal and cellular transport levels over a given period of time.  相似文献   

16.
The balances and content of essential elements (iron, copper, zinc, chromium and manganese) in the body of Wistar, Zucker lean and Zucker obese rats fed a reference or cafeteria diet from day 30 to 60 after birth have been studied. Intestinal iron absorption compensated for low iron content of the cafeteria diet and the extra needs of growth and fat deposition. It can be assumed that the altered energy regulation processes that afflict the genetically obese rat are not directly related to altered iron metabolism. Obese Zucker rats had lower copper tissue concentrations than lean rats, but when fed a cafeteria diet the differences between Zucker rats strains disappear. This cannot be traced to large differences in diet copper concentration. A low diet availability of zinc—such as that of cafeteria-fed fa/fa rats—is easily compensated for by increasing absorption. So, as a consequence, we can conclude that genetic obesity did not impair zinc absorption. There was no deficit of zinc in any of the groups studied; the rats have enough capacity to extract zinc within a wide range of dietary concentrations. The absorption of dietary chromium was inversely proportional to its concentration. The ability to extract chromium from the diet and the very low urinary losses are a consequence of its scarcity in most dietary items. Despite wide variations in the manganese of the diets, the absorption rates were practically unchanged except for obese rats fed the cafeteria diet. It seems that this low absorptive capacity is enough to supply the rat with the manganese it needs, since a sizeable—but subjected to 8-fold-span variations-proportion is lost in the urine. This alone points towards a considerable excess of manganese in both diets studied. Obesity does not have a significant effect on the abilities to absorb and retain minerals, since these processes were more related to dietary availability. Management of essential metals by obese rats depends whether this condition is genetic or induced by diet. Most of the differences observed can be related to differences in diet concentration, to the excess fat content or different metabolic attitude to use substrates of obese animals. The data presented show that the cafeteria diet used adequately serves the mineral needs of the rat, since the rat adapts its absorbing and retaining strategies to match the dietary availability of these minerals.  相似文献   

17.
In three fully crossed, three-way, two-by-two-by-four experiments, male weanling Long-Evans rats were fed a basal diet supplemented with vanadium (ammonium metavanadate)-at 0 and 1 μg/g, cystine at 3.0 and 8.5 mg/g, and iron (ferric sulfate) at 0 (Expts. 1 and 2) or 5 (Expt. 3), 15, 100, and 500 μg/g. After 6 wk, a relationship between vanadium and iron that was influenced by dietary cystine was found. The interaction among vanadium, iron, and cystine was demonstrated best by the hematocrit and hemoglobin findings, which were similar. In all Expts., hematocrits were depressed in rats fed the two lower levels of iron. In Expts. 2 and 3, vanadium deprivation exacerbated the depression of hematocrits in rats fed 15 μg iron and 3.0 mg cystine/g diet. In Expt. 1, the effect was similar, but less marked. On the other hand, in Expts. 1 and 3 when supplemental cystine was 8.5 mg/g, vanadium deprivation did not exacerbate, but tended to alleviate the depression of hematocrits in rats fed 15 μg iron/g diet. When dietary iron was 15 μg/g in Expt. 2, the exacerbation of the depression of hematocrits by vanadium deprivation was much less in rats fed 8.5 rather than 3.0 mg cystine/g diet. Dietary vanadium had little effect on depressed hematopoiesis in severely iron-deficient rats. The findings indicated that vanadium neither substitutes for iron at some metabolic site, nor stimulates iron absorption; but has a positive influence on the utilization of iron after absorption.  相似文献   

18.
This study was designed to examine the relationship between the fructose-copper interaction and tissue sorbitol concentrations. Weanling male rats were provided with a diet which contained 62.7% fructose and 0.6 microg copper/g (F-Cu) for 4 weeks. At this time, rats were changed to either a fructose diet which contained 6.0 microg copper/g or to a starch diet with or without copper for 2 weeks. When compared with the other dietary groups, it was found that rats fed the F-Cu diet grew poorly; had altered relative liver, pancreatic, heart, and kidney sizes; were anemic; and had higher tissue concentrations of pancreatic and heart glucose, liver, pancreatic, heart, and kidney fructose, and liver, pancreatic, and kidney sorbitol. When rats were changed from the F-Cu diet to one containing copper or to a starch diet with or without copper, weight gain, relative liver, pancreatic and heart sizes, and hematocrit improved significantly. In general, there was a reduction in pancreatic and heart glucose; liver, pancreatic, heart, and kidney fructose; and pancreatic and kidney sorbitol concentrations when rats were changed from the F-Cu diet to any of the other diets. We conclude that the fructose-copper interaction may have a common biochemical basis related to the metabolism of glucose, fructose, and sorbitol.  相似文献   

19.
To clarify the influence of dietary tin deficiency on growth and mineral status, the following two different synthetic diets were fed to male Wistar rats: group 1—a diet containing 1.99 μg tin/g; group 2—a diet containing 17 ng tin/g. The rats in group 2 showed poor growth, lowered response to sound, and alopecia, with decreased food efficiency compared with rats in group 1. The changes of mineral concentrations in tissues observed in group 2, compared with group 1, are summarized as follows: calcium concentration in lung increased; magnesium concentration in lung decreased; iron concentrations in spleen and kidney increased; iron concentration in femoral muscle decreased; zinc concentration in heart decreased; copper concentrations in heart and tibia decreased; manganese concentrations in femoral muscle and tibia decreased. These results suggest that tin may be essential for rat growth.  相似文献   

20.
Mineral and trace element interactions were studied in a balance trial with rats. Calcium, copper, and zinc were supplied to a rapeseed meal diet in a factorial design. Animals were fedad libitum, and absorption, excretion, and retention of the elements were evaluated either as fractions of total intake or in relation to nitrogen retention to account for differences in food intake and lean body mass increment. The intrinsic content of minerals and trace elements was sufficient to support growth at a rate that could be expected from the rapeseed protein quality. However, when calcium was included in the diet, the intrinsic dietary level of zinc appeared to be limiting, despite the fact that the zinc level was twice the recommended level. Additional zinc supply reversed growth impairment. This calcium-zinc interaction is believed to be owing to the formation of phytate complexes. Calcium addition influenced the calcium, phosphorus, magnesium, zinc, and iron—but not the copper—balances. The addition of calcium reduced the availability of the intrinsic zinc, whereas no effect was seen in the zinc-fortified groups. The availability of intrinsic copper was in a similar way significantly impaired by addition of dietary zinc, where-as copper-supplied groups were unaffected by zinc addition. Intrinsic iron availability was also dependent upon zinc addition, although in a more ambigouus way. Thus, addition of extrinsic minerals to a diet high in phytate can result in significant impairments of growth and mineral utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号