首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
  1. White-tailed deer (Odocoileus virginianus Zimmermann) and insect pests negatively affect soybean production; however, little is known about how these herbivores potentially interact to affect soybean yield. Previous studies have shown deer browse on non-crop plants affects insect density and insect-mediated leaf damage, which together reduce plant reproductive output. In soybeans, reproductive output is influenced by direct and indirect interactions of different herbivores.
  2. Here, we quantified indirect interactions between two groups of herbivores (mammals and insects) and their effects on soybean growth and yield. We examined responses of insect pest communities along a gradient of deer herbivory (29% to 49% browsed stems) in soybean monocultures.
  3. Structural equation models showed that deer browse had direct negative effects on soybean plant height and yield. Deer browse indirectly decreased insect-mediated leaf damage by reducing plant height. Deer browse also indirectly increased pest insect abundance through reductions in plant height. Similarly, deer herbivory had an indirect positive effect on leaf carbon: nitrogen ratios through changes in plant height, thereby decreasing leaf nutrition.
  4. These results suggest that pest insect abundance may be greater on soybean plants in areas of higher deer browse, but deer browse may reduce insect herbivory through reduced leaf nutrition.
  相似文献   

2.
Debate on the relative importance of competition for resources and trophic interactions in shaping the biological diversity of living communities remains unsettled after almost a century. Recently, dramatic increases in ungulate populations have provided a useful quasi-experiment on the effects of unrestrained ungulates on forest ecology. The islands of Haida Gwaii (Canada) offer a unique situation to investigate the potential of large herbivores to control temperate forest community structure and diversity. Black-tailed deer Odocoileus hemionus Merriam, native to adjacent mainland areas of British Columbia, were introduced in 1878 and spread to all but a few islands. Because deer were not native to the archipelago, islands that still lack deer provide a rare instance of temperate forest vegetation and fauna that developed in the absence of large herbivores. The colonisation of different islands at different times, and the absence of significant predation allow us to assess whether and how a large herbivore can exert “top-down” control on vegetation and its associated fauna. We studied plant communities in forest interior and shoreline, on seven small islands of varying browse history. Three islands were untouched by deer, deer had been resident for about 15 years on two, and on another two deer had been present for more than 50 years. Without deer, vegetation in the understorey and/or shrub layer was dense or very dense. Structure and composition varied markedly within and between shoreline and interior communities. Without deer, shoreline communities were dominated by species absent from islands with deer. Where deer had been present for less than 20 years most plant species characteristic of shorelines on islands without deer were already absent or scarce, but in the forest interior species richness was less affected and extensive shrub thickets remained. On islands where deer had been present for >50 years vegetation below the browse line was extremely simplified, converging in both forest interior and shoreline towards an open assemblage of a few deer-tolerant species, basically two coniferous trees. This top down effect on the plant community reflected up the food chain so that understorey invertebrate and shrub-dependent songbird communities became simplified. In contrast, species densities of litter arthropods (especially weevils and millipedes) were highest where deer were present for >50 years. Canopy birds were unaffected by deer presence. In the absence of predators, major climatic stress or other means to control the herbivore, deer browsing created greatly simplified plant and animal communities.  相似文献   

3.
Edge habitats create environmental gradients that affect plant community composition and herbivore behavior. Silvicultural disturbance creates edge habitat with direct (via changes in light) and indirect (via changes in herbivore behavior) consequences for the growth and survival of tree seedlings, and thus, the composition of the future forest stands. Herbivores, particularly ungulates, can be a major limiting factor in oak regeneration, and silvicultural disturbance may alter the abundance or behavior of herbivores following harvest. We measured the severity of herbivory on experimentally planted white (Quercus alba) and black oak (Quercus velutina) seedlings by white-tailed deer (Odocoileus virginianus) and eastern cottontail rabbits (Sylvilagus floridanus), as well as foliar damage from insects, across gradients created by clearcuts in a deciduous forest in Indiana, USA. Overall browse pressure on oaks was low in our study. Nonetheless, spatial variation in herbivory depended on herbivore taxa; herbivory by rabbits was highest inside harvest openings, whereas foliar damage by insects peaked in the forest. Intensity of deer herbivory was constant across the edge. In addition, we observed indirect interactions among herbivore species mediated by a seedling’s browsing history. Herbivore damage by deer was positively related to past browsing by rabbits, and foliar damage from insects was positively related to past browsing by both deer and rabbits. Increasing woody plant competition reduced herbivory on seedlings by both deer and rabbits. Given the lack of spatial variability in deer herbivory and low overall herbivory by rabbits, we suspect that interactions between timber harvesting and herbivory did not have a strong impact on oak seedlings at our study sites.  相似文献   

4.
Ecological release from herbivory due to chemical novelty is commonly predicted to facilitate biological invasions by plants, but has not been tested on a community scale. We used metabolomics based on mass spectrometry molecular networks to assess the novelty of foliar secondary chemistry of 15 invasive plant species compared to 46 native species at a site in eastern North America. Locally, invasive species were more chemically distinctive than natives. Among the 15 invasive species, the more chemically distinct were less preferred by insect herbivores and less browsed by deer. Finally, an assessment of invasion frequency in 2,505 forest plots in the Atlantic coastal plain revealed that, regionally, invasive species that were less preferred by insect herbivores, less browsed by white‐tailed deer, and chemically distinct relative to the native plant community occurred more frequently in survey plots. Our results suggest that chemically mediated release from herbivores contributes to many successful invasions.  相似文献   

5.
Tannins in plant-herbivore interactions   总被引:2,自引:0,他引:2  
Tannins are the most abundant secondary metabolites made by plants, commonly ranging from 5% to 10% dry weight of tree leaves. Tannins can defend leaves against insect herbivores by deterrence and/or toxicity. Contrary to early theories, tannins have no effect on protein digestion in insect herbivores. By contrast, in vertebrate herbivores tannins can decrease protein digestion. Tannins are especially prone to oxidize in insects with high pH guts, forming semiquinone radicals and quinones, as well as other reactive oxygen species. Tannin toxicity in insects is thought to result from the production of high levels of reactive oxygen species. Tannin structure has an important effect on biochemical activity. Ellagitannins oxidize much more readily than do gallotannins, which are more oxidatively active than most condensed tannins. The ability of insects to tolerate ingested tannins comes from a variety of biochemical and physical defenses in their guts, including surfactants, high pH, antioxidants, and a protective peritrophic envelope that lines the midgut. Most work on the ecological roles of tannins has been correlative, e.g., searching for negative associations between tannins and insect performance. A greater emphasis on manipulative experiments that control tannin levels is required to make further progress on the defensive functions of tannins. Recent advances in the use of molecular methods has permitted the production of tannin-overproducing transgenic plants and a better understanding of tannin biosynthetic pathways. Many research areas remain in need of further work, including the effects of different tannin types on different types of insects (e.g., caterpillars, grasshoppers, sap-sucking insects).  相似文献   

6.
Abstract. 1. Community level oak–tannin–insect patterns have been largely unexplored since Paul Feeny's ground‐breaking research. Two hypotheses were tested for Quercus velutina and Q. alba in the Missouri Ozarks: abundance and richness of leaf‐chewing herbivores are negatively correlated with foliar condensed tannin concentrations and variation in condensed tannin concentrations explains variation in herbivore community structure. 2. In 2001, foliar condensed tannins in the understorey and canopy of these two oak species were quantified simultaneously with censuses of herbivores in May, during leaf expansion, and in June and August, when leaves were fully expanded. Thirty‐eight of the 134 species encountered had densities sufficient to be analysed individually (n = 10). Of those, Acronicta increta (Noctuidae) and Attelabus sp. (Curculionidae), both oak specialists, were negatively correlated with condensed tannins in the canopy of Q. alba. One additional specialist, Chionodes pereyra (Gelechiidae), was marginally negatively correlated with condensed tannins in the understorey of Q. velutina. Understorey species richness of May Q. velutina herbivores was negatively correlated with condensed tannins, as were total canopy insect density and species richness of August herbivores on Q. alba. 3. Principal component analysis (PCA) of insect abundances indicated that understorey and canopy Q. velutina and Q. alba had different communities of leaf‐chewing insects. Furthermore, condensed tannin levels contributed significantly to variation in PCA scores for Q. velutina, explaining 25% of the total variation. 4. Overall, these results indicate that specialists were more likely than generalists both to correlate negatively with condensed tannins and to occur in lower tannin habitats; abundance and richness of both early and late season fauna correlated negatively with tannins; and species were more likely to correlate negatively with condensed tannins when feeding on Q. alba than on Q. velutina and when feeding in the canopy than in the understorey. Future studies of tannin–insect interactions should manipulate leaf quality in combination with manipulations of other factors that likely influence community structure.  相似文献   

7.
Plants in suburban forests of eastern North America face the dual stressors of high white‐tailed deer density and invasion by nonindigenous plants. Chronic deer herbivory combined with strong competition from invasive plants could alter a plant''s stress‐ and defense‐related secondary chemistry, especially for long‐lived juvenile trees in the understory, but this has not been studied. We measured foliar total antioxidants, phenolics, and flavonoids in juveniles of two native trees, Fraxinus pennsylvanica (green ash) and Fagus grandifolia (American beech), growing in six forests in the suburban landscape of central New Jersey, USA. The trees grew in experimental plots subjected for 2.5 years to factorial treatments of deer access/exclosure × addition/no addition of the nonindigenous invasive grass Microstegium vimineum (Japanese stiltgrass). As other hypothesized drivers of plant secondary chemistry, we also measured nonstiltgrass herb layer cover, light levels, and water availability. Univariate mixed model analysis of the deer and stiltgrass effects and multivariate structural equation modeling (SEM) of all variables showed that both greater stiltgrass cover and greater deer pressure induced antioxidants, phenolics, and flavonoids, with some variation between species. Deer were generally the stronger factor, and stiltgrass effects were most apparent at high stiltgrass density. SEM also revealed that soil dryness directly increased the chemicals; deer had additional positive, but indirect, effects via influence on the soil; in beech photosynthetically active radiation (PAR) positively affected flavonoids; and herb layer cover had no effect. Juvenile trees’ chemical defense/stress responses to deer and invasive plants can be protective, but also could have a physiological cost, with negative consequences for recruitment to the canopy. Ecological implications for species and their communities will depend on costs and benefits of stress/defense chemistry in the specific environmental context, particularly with respect to invasive plant competitiveness, extent of invasion, local deer density, and deer browse preferences.  相似文献   

8.
Phytophagous insects can be affected by plant trait-mediated indirect effects of large herbivores, but little is known regarding how these effects change in response to different densities of large herbivores. To assess the response of an insect to plant qualitative change, the response of a woody vine (Aristolochia kaempferi) to browsing by sika deer (Cervus nippon) and utilization of young leaves by a swallowtail butterfly (Byasa alcinous) were investigated across a deer density gradient. Natural and simulated deer browsing stimulated the regrowth of A. kaempferi and improved nutritional and physical quality of leaves. Young leaves were frequently observed in areas with high deer densities. The proportion of young leaves among the leaves selected for oviposition was higher than their proportion of the total number of leaves. In areas with low deer densities, the utilization of young leaves by B. alcinous increased linearly with deer density, whereas in areas with high deer densities, the utilization of young leaves was around 90%.  相似文献   

9.
Ahistorical drivers such as nonnative invasive earthworms and high deer densities can have substantial impacts on ecosystem processes and plant community composition in temperate and boreal forests of North America. To assess the roles of earthworm disturbance, deer, and environmental factors in the understory, we sampled 125 mixed temperate-boreal forest sites across the western Great Lakes region. We utilized structural equation modeling (SEM) to address the hypothesis that earthworm disturbance to the upper soil horizons and selective herbivory by deer are associated with depauperate understory plant communities dominated by graminoid and nonnative species. Evidence of earthworm activity was found at 93 % of our sites and 49 % had high to very high severity earthworm disturbance. The SEM fit the data well and indicated that widespread nonnative earthworm disturbance and high deer densities had similar magnitudes of impact on understory plant communities and that these impacts were partially mediated by environmental characteristics. One-third of the variation in earthworm disturbance was explained by soil pH, precipitation, and litter quality. Deer density and earthworm disturbance both increased graminoid cover while environmental variables showed direct and indirect relationships. For example, the positive relationship between temperature and graminoids was indirect through a positive temperature effect on deer density. This research characterizes an integrated set of key environmental variables driving earthworm disturbance and deer impacts on the forest understory, facilitating predictions of the locations and severity of future change in northern temperate and boreal forest ecosystems.  相似文献   

10.
Plant tannins and insect herbivores: an appraisal   总被引:9,自引:0,他引:9  
Abstract. 1. The bioassays with tannins and insects, and the ecological studies on insects implicating tannins, are summarized and discussed.
2. Because of the great variation now shown in all aspects of the insect-tannin relationship, the difficulty of making generalizations is stressed.
3. The significance of plant tannins for insect herbivores is reconsidered in the light of recent work and little-known older work, which illustrate the very varied nature of its effects.  相似文献   

11.
We examined web-building spider species richness and abundance in forests across a deer density gradient to determine the effects of sika deer browsing on spiders among habitats and feeding guilds. Deer decreased the abundance of web-building spiders in understory vegetation but increased their abundance in the litter layer. Deer seemed to affect web-building spiders in the understory vegetation by reducing the number of sites for webs because vegetation complexity was positively correlated with spider density and negatively correlated with deer density. In contrast, the presence of vegetation just above the litter layer decreased the spider density, and deer exerted a negative effect on this vegetation, possibly resulting in an indirect positive effect on spider density. The vegetation just above the litter layer may be unsuitable as a scaffold for building webs if it is too flexible to serve as a reliable web support, and may even hinder spiders from building webs on litter. Alternatively, the negative effect of this vegetation on spiders in the litter may be as a result of reduced local prey availability under the leaves because of the reduced accessibility of aerial insects. The response to deer browsing on web-building spiders that inhabit the understory vegetation varied with feeding guild. Deer tended to affect web-invading spiders, which inhabit the webs of other spiders and steal prey, more heavily than other web-building spiders, probably because of the accumulated effects of habitat fragmentation through the trophic levels. Thus, the treatment of a particular higher-order taxon as a homogeneous group could result in misleading conclusions about the effects of mammalian herbivores.  相似文献   

12.
Overbrowsing by ungulates decimates plant populations and reduces diversity in a variety of ecosystems, but the mechanisms by which changes to plant community composition influence other trophic levels are poorly understood. In addition to removal of avian nesting habitat, browsing is hypothesized to reduce bird density and diversity through reduction of insect prey on browse‐tolerant hosts left behind by deer. In this study, we excluded birds from branches of six tree species to quantify differences in songbird prey removal across trees that vary in deer browse preference. Early in the breeding season, birds preyed on caterpillars at levels proportional to their abundance on each host. Combining these data with tree species composition data from stands exposed to experimentally controlled deer densities over 30 years ago, we tested whether overbrowsing by white‐tailed deer reduces prey biomass long after deer densities are reduced. Our analysis predicts total prey availability in the canopy of regenerating forests is fairly robust to historic exposure to high deer densities, though distribution of prey available from host species changes dramatically. This predicted compensatory effect was unexpected and is driven by high prey abundance on a single host tree species avoided by browsing deer, Prunus serotina. Thus, while we confirm that prey abundance on host trees can act as a reliable predictor for relative prey availability, this study shows that quantifying prey abundance across host trees is essential to understanding how changes in tree species composition interact with ungulate browse preference to determine prey availability for songbirds.  相似文献   

13.
We aimed to demonstrate an indirect relationship between a mammalian herbivore (sika deer) and herbivorous insects on the induced responses of a shared host plant, Viburnum dilatatum. Field studies were conducted at three sites (i.e. two islands and one mainland) and within a deer exclusion area. One island, Kinkazan (Kz) Island, harbored a high density of deer while the other sites (controls) had no deer or very low densities of deer. The deer exclusion area had been established approximately 10years earlier on Kz. We collected leaves above the browsing line of the deer and measured leaf hardness and tannin concentration. Leaf damage by insects was used as a measure of insect abundance. Leaves collected at Kz were harder than those from one of the control sites and from inside the deer exclusion area, while no difference was detected among the other controls and inside the exclusion area. In contrast, the tannin concentration of leaves from Kz was lower than in leaves from the control site. Leaf damage by herbivorous insects was lower in Kz than the other study sites. In addition, hole-type leaf damage tended to be higher inside, rather than outside, the exclusion area. These results suggest the possibility that deer browsing increased leaf hardness, which exerted an indirect negative effect on the herbivorous insects utilizing the common host plant. To our knowledge, this is the first study to provide evidence of indirect negative effects between mammalian herbivores and herbivorous insects sharing a host plant.  相似文献   

14.
We compared community composition, density, and species richness of herbivorous insects on the introduced plant Solidago altissima L. (Asteraceae) and the related native species Solidago virgaurea L. in Japan. We found large differences in community composition on the two Solidago species. Five hemipteran sap feeders were found only on S. altissima. Two of them, the aphid Uroleucon nigrotuberculatum Olive (Hemiptera: Aphididae) and the scale insect Parasaissetia nigra Nietner (Hemiptera: Coccidae), were exotic species, accounting for 62% of the total individuals on S. altissima. These exotic sap feeders mostly determined the difference of community composition on the two plant species. In contrast, the herbivore community on S. virgaurea consisted predominately of five native insects: two lepidopteran leaf chewers and three dipteran leaf miners. Overall species richness did not differ between the plants because the increased species richness of sap feeders was offset by the decreased richness of leaf chewers and leaf miners on S. altissima. The overall density of herbivorous insects was higher on S. altissima than on S. virgaurea, because of the high density of the two exotic sap feeding species on S. altissima. We discuss the importance of analyzing community composition in terms of feeding guilds of insect herbivores for understanding how communities of insect herbivores are organized on introduced plants in novel habitats.  相似文献   

15.
Vertebrate herbivores generally have greater effects than invertebrates on plants. However, few studies have investigated the effects of both invertebrate and vertebrate herbivores on a single plant species. In New Zealand, nationwide declines in mistletoe populations have often been attributed to possum herbivory, but never to insect herbivory. The main goal of the present study was to document levels of vertebrate and invertebrate herbivory on endemic New Zealand mistletoe plants to suggest whether herbivory is leading to mistletoe decline. In the present study, the annual amount of leaf loss from herbivory by the brushtail possum (Trichosurus vulpecula), insect herbivory and leaf abscission were measured in two populations each of three mistletoe species (Alepis flavida, Peraxilla colensoi, and Peraxilla tetrapetala, Loranthaceae). In two populations of each species from February 1997 to February 1998, abscission accounted for the most leaf loss (range 10–84% of total mean leaf area, mean 33%), whereas insects and possums usually removed small and similar amounts (less than 3%). Possum browse caused large amounts of abscission in only one population (A. flavida at Eglinton). Observed possum browse was more heterogeneous than insect browse among branches within a plant (possum coefficient of variation = 2.63, insect CV = 1.98, P < 0.001), among plants in a population (possum CV = 2.15, insect CV = 0.69, P < 0.001), and between populations (possum CV = 1.36, insect CV = 1.09). Moreover, insects damaged 100% of the study plants but never removed more than 16% of leaf area on a single plant, whereas possums only browsed 32% of the study plants but severely defoliated some plants. Thus, while the mean amount of biomass removed across a population may have important consequences for mistletoe survival, the effect of possums on mistletoe populations may also depend on the heterogeneity of browse among individuals in the population.  相似文献   

16.
Plants can act as vertical communication channels or ‘green phones’ linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection of the plant shoot elicited by root damage can impair the survival, growth and development of aboveground insect herbivores, thereby creating plant-based functional links between soil-dwelling insects and insects that develop in the aboveground ecosystem. The interactions between spatially separated insects below- and aboveground are not restricted to root and foliar plant-feeding insects, but can be extended to higher trophic levels such as insect parasitoids. Here we discuss some implications of plants acting as communication channels or ‘green phones’ between root and foliar-feeding insects and their parasitoids, focusing on recent findings that plants attacked by root-feeding insects are significantly less attractive for the parasitoids of foliar-feeding insects.Key words: above-belowground interactions, green phones, multitrophic plant-insect interactions, plant defense, plant volatiles, parasitoids  相似文献   

17.
The effects of long-term nitrogen loading on grassland insect communities   总被引:14,自引:0,他引:14  
Just as long-term nitrogen loading of grasslands decreases plant species richness and increases plant biomass, we have found that nitrogen loading decreases insect species richness and increases insect abundances. We sampled 54 plots that had been maintained at various rates of nitrogen addition for 14 years. Total insect species richness and effective insect diversity, as well as herbivore and predator species richness, were significantly, negatively related to the rate of nitrogen addition. However, there was variation in trophic responses to nitrogen. Detritivore species richness increased as nitrogen addition increased, and parasitoids showed no response. Insect abundances, measured as the number of insects and insect biovolume (an estimate of biomass), were significantly, positively related to the rate of nitrogen addition, as were the abundances of herbivores and detritivores. Parasitoid abundance was negatively related to the rate of nitrogen addition. Changes in the insect community were correlated with changes in the plant community. As rates of nitrogen addition increased, plant species richness decreased, plant productivity and plant tissue nitrogen increased, and plant composition shifted from C4 to C3 grass species. Along this gradient, total insect species richness and effective insect diversity were most strongly, positively correlated with plant species richness. Insect biovolume was negatively correlated with plant species richness. Responses of individual herbivores varied along the nitrogen gradient, but numbers of 13 of the 18 most abundant herbivores were positively correlated with their host plant biomass. Although insect communities did not respond as strongly as plant communities, insect species richness, abundance, and composition were impacted by nitrogen addition. This study demonstrates that long-term nitrogen loading affects the entire food chain, simplifying both plant and insect communities. Received: 18 May 1999 / Accepted: 5 January 2000  相似文献   

18.
Insect herbivores were sampled from the foliage of 15 species of Ficus (Moraceae) in rainforest and coastal habitats in the Madang area, Papua New Guinea. The collection included 13 193 individuals representing 349 species of leaf-chewing insects and 44 900 individuals representing 430 species of sap-sucking insects. Despite a high sampling intensity, the species accumulation curve did not reach an asymptote. This pattern was attributed to the highly aggregated distribution of insects on individual host trees. The number of insect species collected on a particular Ficus species ranged from 34 to 129 for leaf-chewing and from 51 to 219 for sap-sucking insects. Two Ficus species growing on the seashore sustained less speciose insect communities than their counterparts growing in forest. For the forest figs, significant predictors of insect species richness included leaf palatability and leaf production for leaf-chewing insects (40% of the variance explained), and tree density and leaf expansion for sap-sucking insects (75%). The high faunal overlap among Ficus communities and the importance of local resources for insect herbivores suggest that highly specialized interactions between insect herbivores and Ficus in Papua New Guinea have not been conserved in evolutionary time. This is at variance with the dogma of old, extremely specialized and conservative interactions between insect herbivores and their hosts, providing numerous ecological niches in the floristically rich tropics.  相似文献   

19.
Diet selection by mammalian herbivores is often influenced by plant community composition, and numerous studies have focused on the relationships between herbivore foraging decisions and food/plant species abundance. However, few have examined the role of neighbour palatability in affecting foraging of a target plant by large mammalian herbivores. We used a large-scale field dataset on diet selection by red deer Cervus elaphus in Fiordland National Park, New Zealand to: (1) estimate the palatability of native forest plant species to introduced deer from observed patterns of browse damage; and (2) examine whether intraspecific variation in browsing of plants can be related to variation in the local abundance of alternative forage species. Overall, 21 of the 53 forest species in our dataset were never browsed by deer. At a community level, plants were more likely to be browsed if they were in a patch of vegetation of high forage quality, containing high abundances of highly palatable species and/or low abundances of less-palatable species. Our findings suggest that deer make foraging decisions at both a coarse-grain level, selecting vegetation patches within a landscape based on the overall patch quality, and at a fine-grain level by choosing among individual plants of different species.  相似文献   

20.
The effects of foliar- and root-feeding insects on the dynamics of an early successional plant community, representing the first four years of colonisation, were examined. Subterranean insect herbivores were found to increase in density with increasing successional age of the plant community. In early succession, chewing insects mainly Coleoptera (Scarabaeidae) and Diptera (Tipulidae) were dominant. This was in direct contrast to the foliar-feeding insects, which were dominated by sap-feeders (mainly Auchenorrhynchan Hemiptera).Reduction of both foliar- and root-feeding insects with appropriate insecticides had different, but dramatic, consequences for the plant community. Reducing foliar herbivory resulted in large increases in perennial grass growth, with plant species richness being reduced as the grasses outcompeted the forbs. Reducing subterranean herbivory prolonged the persistence of annual forbs, greatly increased perennial forb colonisation and, as a consequence, plant species richness. Foliar-feeding insects thus act to delay succession by slowing grass colonisation. In contrast, root-feeding insects accelerate succession by reducing forb persistence and colonisation. The structure of early successional plant communities is therefore modified by the two modes of herbivory.This paper was presented at the Vth International Congress of Ecology (INTECOL), Japan, 1990, entitled Successional Communities of Plants and Insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号