首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Serial sections of 90 Sprague-Dawley rat brains with the pineal in situ were scanned to determine the occurrence and regional distribution of calcareous concretions within the pineal gland and its surrounding leptomeningeal tissue. In 90 % of the cases examined concretions were found in varying number and appearance, predominantly lying in the dorsal region of the pineal gland and in the distal portion of the pineal stalk.Discussing the hypothesis advanced by Lukaszyk and Reiter (1975) that the origin of pineal concretions may be related to a neurosecretory process involving a pineal carrier protein, called neuroepiphysin, it is thought that, in view of the intra- and extra-pineal occurrence of concretions, processes other than secretion should be considered. Since in the pineal organ lymphatics are lacking it may well be that, due to a reduced drainage of tissue fluid, the coagulation of intercellular organic debris mingled with minerals increases with age.Supported by a grant (Vo 135/4) of the Deutsche Forschungsgemeinschaft within the Schwerpunktprogramm Neuroendokrinologie  相似文献   

2.
Summary Electron microscopy was employed in a study of the pineal gland of the Mongolian gerbil (Meriones unguiculatus). It was determined that the gerbil pineal gland contains pinealocytes and glial cells with the pinealocytes being the predominant cell type. The pinealocytes contain numerous organelles traditionally considered as being either synthetic or secretory in function such as an extensive Golgi region, smooth (SER) and rough (RER) endoplasmic reticulum, secretory vesicles and microtubules. Other cytoplasmic components are also present in the pinealocytes (synaptic ribbons, subsurface cisternae) for which no function has been assigned. Dense-cored vesicles are rare. Vacuolated pinealocytes are present and appear to be intimately associated with the formation of the pineal concertions. Evidence presented supports the proposal that the concretions form within the vacuoles. Once the concretions reach an enlarged state, the vacuolated pinealocytes break down and the concretions are thus extruded into the extracellular space where they apparently continue to increase in size. The morphology of the glial cells was interpreted as indicative of a high synthetic activity. The glial cells contain predominantly the rough variety of endoplasmic reticulum and form an expansion around the wide perivascular area.Supported by NSF grant PCM 77-05734  相似文献   

3.
Morphometric analytical procedures were employed to study the pineal gland of the Mongolian gerbil following superior cervical ganglionectomy (SCGX). The purpose of this study was to define the effects of sympathetic denervation on the morphology of the gland at two time periods, 0500 and 1900 h (one hour before lights-on and lights-off, respectively). Fluorescence histochemistry was employed to determine catecholamine and indoleamine content in intact and denervated pineal glands. After SCGX, the pinealocytes decrease in size, concretions are prevented from forming, and the yellow fluorescence in the gland is lost. Following denervation a depression in the volume of most of the pinealocyte organelles, i.e., SER, RER/ribosomes, free cytoplasm, mitochondria and presumptive secretory vesicles, was also observed. However, synaptic ribbons increased in volume in the gerbils that had been killed at 1900 h. It appears that the sympathetic innervation to the pineal gland is a requirement for the presumptive secretory activity of the pinealocytes.  相似文献   

4.
Scanning electron microscopy of the human pineal gland showed two types of concretions, both which may be covered by micro-concretions, as well as the irregular surface of a cyst and group of formations considered as the endings of epiphyseal cell processes in a perivascular space.  相似文献   

5.
We found that some morphological properties of the pineal gland and submandibular salivary gland of mice are significantly distinct at the new and full moon. We suppose that the differences are initiated by the displacements of the electron-dense concretions in the secretory vesicles of pinealocytes. This presumably occurs under the influence of the gravitational field, which periodically changes during different phases of the moon. It seems that the pinealocyte is both an endocrine and gravisensory cell. A periodic secretion of the pineal gland probably stimulates, in a lunaphasic mode, the neuroendocrine system that, in turn, periodically exerts influence on different organs of the body. The observed effect probably serves, within the lifelong clock of a brain, to control development and aging in time.  相似文献   

6.
A new form of biomineralization has been studied in the pineal gland of the human brain. It consists of small crystals that are less than 20 microm in length and that are completely distinct from the often observed mulberry-type hydroxyapatite concretions. A special procedure was developed for isolation of the crystals from the organic matter in the pineal gland. Cubic, hexagonal, and cylindrical morphologies have been identified using scanning electron microscopy. The crystal edges were sharp whereas their surfaces were very rough. Energy dispersive spectroscopy showed that the crystals contained only the elements calcium, carbon, and oxygen. Selected area electron diffraction and near infrared Raman spectroscopy established that the crystals were calcite. With the exception of the otoconia structure of the inner ear, this is the only known nonpathological occurrence of calcite in the human body. The calcite microcrystals are probably responsible for the previously observed second harmonic generation in pineal tissue sections. The complex texture structure of the microcrystals may lead to crystallographic symmetry breaking and possible piezoelectricity, as is the case with otoconia. It is believed that the presence of two different crystalline compounds in the pineal gland is biologically significant, suggesting two entirely different mechanisms of formation and biological functions. Studies directed toward the elucidation of the formation and functions, and possible nonthermal interaction with external electromagnetic fields are currently in progress.  相似文献   

7.
The pineal organ of the spined rat is located deeply near the third ventricle. The organ shows a compact pattern of organization with pinealocytes and astrocytes arranged in cords and rosettes. Numerous concretions positive to chrome alum hematoxylin technic are visualized in the adjacent tissue near the pineal organ and in the vicinity of the veins which drain the blood of the organ. In the present work we discuss the probable origin of these concretions.  相似文献   

8.
Summary Calcium content and pineal concretions were studied in young (2–3 months) and old (28 months) Wistar rats. Samples, deep-frozen by liquid propane/isopentane and freeze-dried were analysed by means of X-ray microanalysis in a scanning electron microscope. Total semi-quantitative measurements revealed that pineals of old rats showed a marked increase of calcium compared with the pineals of young rats. It is thus suggested that a calcium-rich environment is responsible for the growth of pineal concretions, which only appear in old rats. Pineal calcifications in rats could thus be an indicator of aging and/or of a degenerating state.  相似文献   

9.
Postnatal development of the dog pineal gland. Light microscopy   总被引:3,自引:0,他引:3  
The light microscopical morphology of the dog pineal gland from the first postnatal day to maturity is described. In the first postnatal week, the pineal parenchyma shows immature cells and many mitotic figures. In this week, pigmented cells are observed for the first time, both in the pineal gland and in extrapineal nodules. Throughout the second week, the pineal parenchyma shows a cordonal pattern that disappears progressively in the following stages. From the 20-30th day onward, it is feasible to discern the cell types characteristic for the adult pineal gland. In the adult animals, the length of the pineal gland axes almost quadruplies that of the pineal gland in neonatal stages. The light microscopical features of the adult dog pineal gland are also described.  相似文献   

10.
为证实大鼠接触脑脊液神经元内视紫红质的存在及光照对其的影响,将大鼠处死后立即取出松果体,通过免疫组织化学方法用荧光显微镜检测视紫红质的存在;用电生理方法来证实光照对松果体上的视紫红质可产生作用。在松果体接触脑脊液神经元及松果体内部有视紫红质反应阳性细胞存在;光照松果体后,可使松果体的神经元诱发放电频率明显增加。并且,与光照前松果体自发放电相比有显著差异。哺乳动物松果体接触脑脊液神经元内存在有视蛋白;松果体除了经典的途径调节褪黑素的释放外,可能还有其他途径:光照松果体,可诱导松果体放电或放电频率增加,从而影响褪黑素的释放。  相似文献   

11.
The review analyzed morphology, molecular and functional aspects of pineal gland aging and methods of it correction. The pineal gland is central organ, which regulates activity of neuroimmunoendocrine, antioxidant and other organisms systems. Functional activity of pineal gland is discreased at aging, which is the reason of melatonin level changing. The molecular and morphology research demonstrated, that pineal gland hadn't strongly pronounced atrophy at aging. Long-term experience showed, that peptides extract of pineal gland epithalamin and synthetic tetrapeptide on it base epithalon restored melatonin secretion in pineal gland and had strong regulatory activity at neuroimmunoendocrine and antioxidant organism systems.  相似文献   

12.
S-Antigen is a soluble cell protein unique to the retina and pineal gland. In the former, it is a well-characterized molecule that participates in light-induced signal transduction in photoreceptor cells. In the latter, the functional role is presently not known. The expression of S-antigen and its mRNA was examined in the rat retina and pineal gland throughout the diurnal cycle and with light interruption of the dark cycle. A cDNA for rat S-antigen was isolated from a pineal gland library to examine the mRNAs. A 1.7-kb mRNA for S-antigen was observed in both the pineal gland and the retina. Retinal S-antigen mRNA was expressed throughout the diurnal cycle and increased with light interruption of the dark cycle. In contrast, pineal gland S-antigen mRNA levels were detectable only during the dark and were absent preceding and during light. The phenotypic expression of immunoreactive S-antigen, identified with two S-antigen monoclonal antibodies (MAbs), MAb A9C6 and MAb C10C10, was analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel (PAGE) and isoelectric focusing (IEF) electrophoresis. Immunoblot analysis of gels after SDS-PAGE revealed a single 46-kDa protein in retina. In contrast, two bands of approximately 43 and 46 kDa were identified in the pineal gland. Immunoblots of the retinal extracts separated by IEF electrophoresis revealed five S-antigen isomers, which vary quantitatively throughout the diurnal cycle and when light interrupted the dark cycle. Immunoblots of the pineal gland samples separated by IEF electrophoresis indicated that the pineal gland possesses four pineal gland-specific forms of S-antigen in addition to the five forms present in the retina. The differences observed in the mRNA and protein analyses suggest tissue-specific structural components for S-antigen in the retina and pineal gland that are not regulated in the same manner.  相似文献   

13.
Summary The avian pineal gland contains a circadian pacemaker that oscillates in vitro. Using a flow-through culture system it is possible to measure melatonin production from very small subsections of an individual gland. We have used this technique to attempt to localize the oscillators in the pineal. Progressive tissue reduction did not affect the rhythmicity of cultured pineals. Multiple pieces (up to eight) from a single pineal all were capable of circadian oscillation — establishing directly that a pineal gland contains at least eight oscillators. All pineal pieces were responsive to light, and single light pulses shifted the phase of the melatonin rhythm. Because pieces equivalent to less than one per cent of the whole gland were rhythmic and because the capacity for oscillation was distributed throughout the gland, an individual pineal appears to be composed of a population of circadian oscillators.  相似文献   

14.
Circadian clock system in the pineal gland   总被引:8,自引:0,他引:8  
  相似文献   

15.
The pineal gland is a neuroendocrine gland responsible for nocturnal synthesis of melatonin. During early development of the rodent pineal gland from the roof of the diencephalon, homeobox genes of the orthodenticle homeobox (Otx)- and paired box (Pax)-families are expressed and are essential for normal pineal development consistent with the well-established role that homeobox genes play in developmental processes. However, the pineal gland appears to be unusual because strong homeobox gene expression persists in the pineal gland of the adult brain. Accordingly, in addition to developmental functions, homeobox genes appear to be key regulators in postnatal phenotype maintenance in this tissue. In this paper, we review ontogenetic and phylogenetic aspects of pineal development and recent progress in understanding the involvement of homebox genes in rodent pineal development and adult function. A working model is proposed for understanding the sequential action of homeobox genes in controlling development and mature circadian function of the mammalian pinealocyte based on knowledge from detailed developmental and daily gene expression analyses in rats, the pineal phenotypes of homebox gene-deficient mice and studies on development of the retinal photoreceptor; the pinealocyte and retinal photoreceptor share features not seen in other tissues and are likely to have evolved from the same ancestral photodetector cell.  相似文献   

16.
Nerve fibers connecting the brain with the pineal gland of the Mongolian gerbil (central pinealopetal fibers) were investigated by means of light and electron microscopy. Several myelinated fibers penetrate from the brain into the deep pineal gland, extend further into the pineal stalk and continue to the superficial portion of the pineal gland. In the centripetal direction these fibers were traced to the stria medullaris and to the habenular nuclei, where they turned laterad and then occupied a position immediately ventral to the optic tract. As shown in electron micrographs, lesions of the habenular area led to degeneration of myelinated fibers and nerve boutons in the deep pineal gland, the pineal stalk and the superficial pineal gland. Only boutons containing clear transmitter vesicles (devoid of a dense core) were observed to degenerate after the habenular lesions. On the other hand, removal of the superior cervical ganglia resulted in degeneration of boutons containing small (40 to 60 nm in diameter) dense-core vesicles. Several of the nerve fibers that penetrate into the deep pineal directly from the brain (central fibers) exhibited a positive reaction for acetylcholinesterase (AChE). AChE-positive perikarya were located in the projections of the stria medullaris, the lateral portions of the deep pineal, the area of the posterior commissure, and the periventricular gray of the mesencephalon. Such perikarya were found neither in the pineal stalk nor in the superficial pineal gland. These results present anatomical evidence that the pineal organ of the Mongolian gerbil receives multiple nervous inputs mediated by peripheral autonomic (i.e., sympathetic) nerve fibers, on the one hand, and by central fibers, on the other.  相似文献   

17.
We investigated the effect of the pineal on sympathetic neurons that normally innervate the sublingual gland of the rat. When the pineal gland was transplanted into the sublingual gland, it remained as a distinct mass that was innervated by sympathetic axons. Injection of the retrograde tracer, Fast Blue, into the sublingual gland labelled sympathetic neurons in the ipsilateral superior cervical ganglion (SCG). Thirty per cent of all neurons labelled retrogradely by Fast Blue injection into transplanted pineal glands were immunoreactive for both neuropeptide Y (NPY) and calbindin. This combination is characteristic of sympathetic neurons innervating the pineal gland in its normal location, but not the sympathetic vasoconstrictor neurons normally innervating the sublingual gland. This, and our previous study in which the pineal gland was shown to similarly influence the phenotype of salivary secretomotor neurons, suggests that a range of different functional classes of sympathetic neuron are able to change their phenotype in response to signals released by the pineal gland.This work was supported by Project Grant No. 145634 from the National Health and Medical Research Council of Australia  相似文献   

18.
An immunohistochemical study of the pig pineal gland was carried out using monoclonal mouse antiserum against growth-associated protein GAP-43. The pineal glands were obtained from the 3, 5, 8 weeks old piglets. The immunopositive nerve fibers were observed in the pineal gland as well as in the habenular and the posterior comissural areas. They formed a dense network in the habenular area and the proximal part of the pineal gland. In the comissural area and in the apical part of the gland. single positive fibers were observed. The obtained results may suggest a difference in the plasticity of innervation between the particular regions of the pineal gland.  相似文献   

19.
The pineal functions are modulated by some neuropeptides including PHI and VIP. The presence of PHI-immunoreactive and VIP-immunoreactive nerve fibers in the pineal gland has been shown in several mammalian species. Both peptides influence the pineal serotonin N-acetyltransferase activity and melatonin synthesis. The aim of the present study was to examine the localization of PHI- and VIP-immunoreactive nerve fibers in the pig pineal gland. Four three-month old female pigs housed in natural light conditions, with free access to food and water, were used in the study. The pineals were fixed by perfusion with 4% paraformaldehyde in 0.1 M phosphate buffer. An immunohistochemical ABC streptavidin-biotin-complex method was used for the demonstration of PHI and VIP. PHI- and VIP-immunopositive nerve fibers were found in the pineal gland as well as in the habenular and posterior commissural areas. In the pineal gland, the density of PHI-immunoreactive nerve fibers was considerably higher than that of the fibers containing VIP. PHI- and VIP-immunopositive nerve fibers were more abundant in the cortical than in the medullary part of the gland. The nerve fibers formed bundles in the pineal capsule, from where they penetrated to the connective tissue septa and formed a dense meshwork surrounding blood vessels. In the parenchyma, PHI- and VIP-immunoreactive nerve terminals created baskets around clusters of pinealocytes. No PHI- or VIP-immunopositive cells were found in the pig pineal gland.  相似文献   

20.
In mammals, pineal gland is intimately concerned with the co-ordination of rhythm physiology. Biochemical characteristics of pineal gland in man and other mammals may provide strong, yet sometimes elusive support for the belief in functional individuality and probable importance of this tiny gland. In seasonal breeding animals, pineal gland function is very much dependent on the reproductive status. Therefore, the aim of this experiment is to note the circadian rhythmicity of different biochemical constituents of pineal gland during active and inactive phases of reproductive cycle of a seasonally breeding rodent, F. pennanti. In the present study, pineal biochemical constituents i.e. protein and cholesterol showed higher values during daytime (1400 h). The plasma melatonin level presented two peaks during active (April; at 1800 h and 0200 h) and inactive (December; at 1400 h and 0200 h) phases of reproductive cycle. The pineal protein, cholesterol and plasma melatonin values in term of basal and peak levels were higher during the reproductive inactive/pineal active phase. Therefore, pineal--also known to have antigonadotropic properties and cholesterol which appears conjugated with pineal serotonin, presented circadian rhythmicity along with the plasma level of melatonin. This rhythmicity noted in present study was dependent on the reproductive and pineal activity status, and might be regulated by the sex steroid receptor present on the pineal gland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号