首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use Arabidopsis thaliana as a model to investigate coordination of cell proliferation and cell elongation in the three components that develop side by side in the seed. Two of these, the embryo and its nurturing annex, the endosperm, are placed under zygotic control and develop within the seed integument placed under maternal control. We show that integument cell proliferation and endosperm growth are largely independent from each other. By contrast, prevention of cell elongation in the integument by the mutation transparent testa glabra2 (ttg2) restricts endosperm and seed growth. Conversely, endosperm growth controlled by the HAIKU (IKU) genetic pathway modulates integument cell elongation. Combinations of TTG2 defective seed integument with reduction of endosperm size by iku mutations identify integument cell elongation and endosperm growth as the primary regulators of seed size. Our results strongly suggest that a cross talk between maternal and zygotic controls represents the primary regulator of the coordinated control of seed size in Arabidopsis.  相似文献   

2.
The embryo envelope tissues in both mature dry seed and duringearly germination of Phacelia tanacetifolia were investigatedby bright-field and fluorescence light microscopy and scanningelectron microscopy. The ruminate seed had an irregularly reticulatesurface owing to the presence of polygonal areas, correspondingto the cells of the seed coat. The raised margins of these cellsjoined at the lobe tips, where radially arranged thickeningsoccurred. The unitegmic seed coat was made up of three distinctlayers: the frayed outer layer, the middle layer with portionsrising outwards to form the radial thickenings, and the innerlayer, the thickness of which was greatest in the micropylarzone. The endosperm tissue had two regions, the micropylar andthe lateral endosperm, which differed in polysaccharide composition,thickness and metachromasy intensity, and presence (in the lateralendosperm) or absence (in the micropylar endosperm) of birefringenceof the cell walls. Moreover, in the micropylar region, wherethe embryo suspensor remnant was found, Ca-oxalate crystalswere scarce or absent. The presence of a partially permeablecuticle covering the seed endosperm was observed. Incubationof seeds in Lucifer Yellow CH indicated that water was ableto penetrate quickly into the seed coat along the pathway formedby the radial thickenings, the raised margins of the polygonalcells and the middle layer. Afterwards, LY-CH readily infiltratedthe apical portions of the seed lobes and then the whole endosperm.Following imbibition, morphological changes were found in themicropylar endosperm, such as the initial digestion of proteinbodies. In addition, both in the seed coat and in the endosperm,a weaker fluorescence, probably due to leaching of polyphenolicsubstances, was observed. Once the seed coat was broken at themicropylar end of the seed, the endosperm cap surrounding theradicle tip had to be punctured by it so that complete germinationcould occur. Weakening and rupture of the micropylar endospermare briefly discussed. Copyright 2000 Annals of Botany Company Phacelia tanacetifolia, seed coat, micropylar endosperm, endosperm cap, early germination, structure, histochemistry  相似文献   

3.
Genomic imprinting causes the expression of an allele depending on its parental origin. In plants, most imprinted genes have been identified in Arabidopsis endosperm, a transient structure consumed by the embryo during seed formation. We identified imprinted genes in rice seed where both the endosperm and embryo are present at seed maturity. RNA was extracted from embryos and endosperm of seeds obtained from reciprocal crosses between two subspecies Nipponbare (Japonica rice) and 93-11 (Indica rice). Sequenced reads from cDNA libraries were aligned to their respective parental genomes using single-nucleotide polymorphisms (SNPs). Reads across SNPs enabled derivation of parental expression bias ratios. A continuum of parental expression bias states was observed. Statistical analyses indicated 262 candidate imprinted loci in the endosperm and three in the embryo (168 genic and 97 non-genic). Fifty-six of the 67 loci investigated were confirmed to be imprinted in the seed. Imprinted loci are not clustered in the rice genome as found in mammals. All of these imprinted loci were expressed in the endosperm, and one of these was also imprinted in the embryo, confirming that in both rice and Arabidopsis imprinted expression is primarily confined to the endosperm. Some rice imprinted genes were also expressed in vegetative tissues, indicating that they have additional roles in plant growth. Comparison of candidate imprinted genes found in rice with imprinted candidate loci obtained from genome-wide surveys of imprinted genes in Arabidopsis to date shows a low degree of conservation, suggesting that imprinting has evolved independently in eudicots and monocots.  相似文献   

4.
Arabidopsis haiku mutants reveal new controls of seed size by endosperm   总被引:2,自引:0,他引:2  
In flowering plants, maternal seed integument encloses the embryo and the endosperm, which are both derived from double fertilization. Although the development of these three components must be coordinated, we have limited knowledge of mechanisms involved in such coordination. The endosperm may play a central role in these mechanisms as epigenetic modifications of endosperm development, via imbalance of dosage between maternal and paternal genomes, affecting both the embryo and the integument. To identify targets of such epigenetic controls, we designed a genetic screen in Arabidopsis for mutants that phenocopy the effects of dosage imbalance in the endosperm. The two mutants haiku 1 and haiku 2 produce seed of reduced size that resemble seed with maternal excess in the maternal/paternal dosage. Homozygous haiku seed develop into plants indistinguishable from wild type. Each mutation is sporophytic recessive, and double-mutant analysis suggests that both mutations affect the same genetic pathway. The endosperm of haiku mutants shows a premature arrest of increase in size that causes precocious cellularization of the syncytial endosperm. Reduction of seed size in haiku results from coordinated reduction of endosperm size, embryo proliferation, and cell elongation of the maternally derived integument. We present further evidence for a control of integument development mediated by endosperm-derived signals.  相似文献   

5.
6.
7.
The growth substances of the seeds of Cassia fistula were studied and the changes in the relative levels in the endosperm and embryo (plus cotyledons) with development of the seed were noted. Indoleacetic acid was found to be the major auxin component of the seed almost throughout its growth and development, while acidic inhibitors possibly belonging to β-complex were also noted in bioassay tests. The main source of the IAA in the seed is the endosperm, although measurable amounts are also present in the embryo. While this IAA activity in the endosperm is detectable till maturity of the fruit, it decreases relatively in the embryo to fall to insignificance at maturity of the seed. However, there is indication of the binding of such IAA in the embryo or the cotyledon, which can be released by alkaline hydrolysis but not before the seeds are matured. No such bound auxin could be detected in the endosperm. The inhibitors, on the other hand, are more prominent in the embryo than in the endosperm, particularly with ageing of the fruit. The possible significance of these changes in the growth factors has been discussed in relation to the age of the seed and the development of the embryo inside it.  相似文献   

8.
9.
Lipid particles have been isolated from seeds of wax bean (Phaseolus vulgaris), a species in which starch and protein rather than lipid are the major seed storage reserves. These lipid particles resemble oil bodies present in oil-rich seeds in that > 90% of their lipid is triacylglycerol. Moreover, this triacylglycerol is rapidly metabolized during seed germination indicating that it is a storage reserve. The phospholipid surfaces of oil bodies are known to be completely coated with oleosin which prevents their coalescence, particularly during desiccation of the developing seed. This would appear to be necessary since lipid is the major storage reserve in oil seeds, and there are very few alternate types of storage particles in the cytoplasm of oil seed endosperm to provide a buffer against coalescence of oil bodies by isolating them from one another. The present study indicates that the surfaces of lipid particles from wax bean are not completely coated with oleosin and feature regions of naked phospholipid. This finding has been interpreted as reflecting the fact that lipid particles in wax been seeds are less prone to coalescence than oil bodies of oil-rich seeds. This arises because the individual lipid particles are interspersed in situ among highly abundant protein bodies and starch grains and hence less likely to come in contact with one another, even during desiccation of the developing seed.  相似文献   

10.
In order to identify marker lines expressing GUS in various endosperm compartments and at different developmental stages, a collection of Arabidopsis thaliana (L.) Heynh. promoter trap lines were screened. The screen identified 16 lines displaying GUS-reporter gene expression in the endosperm, embryo and other seed organs. The distinctive patterns of GUS expression in these lines provide molecular markers for most cell compartments in the endosperm of Arabidopsis seeds at all developmental stages, and represent a valuable research tool for characterizing present and future Arabidopsis seed mutants. GUS expression patterns of these 16 lines are presented here. One line showed chalazal endosperm-specific GUS activity at the heart stage of embryo development. In six lines embryo-specific GUS activity was detected. Six lines exhibited GUS activity predominantly in the endosperm and embryo while two lines showed strong GUS activity in all seed organs. In one line GUS activity was detected in integuments and syncytial endosperm, while the GUS activity at the cotyledonary stage of the embryo was seed coat-specific. In addition, two funiculus markers and two silique markers expressed in the abscission zone and the guard cells are also presented.  相似文献   

11.
The evolution of endosperm, the tissue that nourishes developing embryos, has remained an enigma owing to its unique genetic composition. Because it contains both maternal (generally 2 doses) and paternal (1 dose) genomes, it is suggested to have evolved as a compromising tissue between the evolutionary interests of the maternal parent and offspring over resource allocation. This argument implies that in species where endosperm is highly functional and persistent, it quenches competition among developing embryos for resources and facilitates an equitable resource allocation to the developing offspring. Based on this argument we predict the association of well developed endosperm with certain features of fruits such as high ovule number per ovary and low extent of seed abortion. In this paper, we provide evidence in support of these predictions by analysing the data from 1131 species from the Flora of Presidency of Madras. We show that persistent and functional endosperm is more frequent in multiovulated than in uniovulated species and in species with less seed abortion. Our results also suggest that species with well developed endosperm tend to have uni-carpelled ovaries. Our analyses show that these associations are less likely to be emerging due to phylogenetic constraints. We argue that the endosperm has evolved as a maternal strategy of quenching the extent of sibling rivalry.  相似文献   

12.
Ingouff M  Jullien PE  Berger F 《The Plant cell》2006,18(12):3491-3501
Double fertilization of the female gametophyte produces the endosperm and the embryo enclosed in the maternal seed coat. Proper seed communication necessitates exchanges of signals between the zygotic and maternal components of the seed. However, the nature of these interactions remains largely unknown. We show that double fertilization of the Arabidopsis thaliana female gametophyte rapidly triggers sustained cell proliferation in the seed coat. Cell proliferation and differentiation of the seed coat occur in autonomous seeds produced in the absence of fertilization of the multicopy suppressor of ira1 (msi1) mutant. As msi1 autonomous seeds mostly contain autonomous endosperm, our results indicate that the developing endosperm is sufficient to enhance cell proliferation and differentiation in the seed coat. We analyze the effect of autonomous proliferation in the retinoblastoma-related1 (rbr1) female gametophyte on seed coat development. In contrast with msi1, supernumerary nuclei in rbr1 female gametophytes originate mainly from the endosperm precursor lineage but do not express an endosperm fate marker. In addition, defects of the rbr1 female gametophyte also reduce cell proliferation in the ovule integuments before fertilization and prevent further differentiation of the seed coat. Our data suggest that coordinated development of the seed components relies on interactions before fertilization between the female gametophyte and the surrounding maternal ovule integuments and after fertilization between the endosperm and the seed coat.  相似文献   

13.
14.
Seed development in flowering plants is a paradigm for the coordination of different tissues during organ growth. It requires a tight interplay between the two typically sexually produced structures: the embryo, developing from the fertilized egg cell, and the endosperm, originating from a fertilized central cell, along with the surrounding maternal tissues. Little is known about the presumptive signal transduction pathways administering and coordinating these different tissues during seed growth and development. Recently, a new signal has been identified emanating from the fertilization of the egg cell that triggers central cell proliferation without prior fertilization. Here, we demonstrate that there exists a large natural genetic variation with respect to the outcome of this signaling process in the model plant Arabidopsis thaliana. By using a recombinant inbred line population between the two Arabidopsis accessions Bayreuth-0 and Shahdara, we have identified two genetic components that influence the development of unfertilized endosperm. Exploiting this natural variation, we could further dissect the interdependence of embryo and endosperm growth during early seed development. Our data show an unexpectedly large degree of independence in embryo growth, but also reveal the embryo's developmental restrictions with respect to endosperm size. This work provides a genetic framework for dissection of the interplay between embryo and endosperm during seed growth in plants.  相似文献   

15.
BACKGROUND: In angiosperms the seed is the outcome of double fertilization, a process leading to the formation of the embryo and the endosperm. The development of the two seed compartments goes through three main phases: polarization, differentiation of the main tissues and organs and maturation. SCOPE: This review focuses on the maize kernel as a model system for developmental and genetic studies of seed development in angiosperms. An overview of what is known about the genetic and molecular aspects underlying embryo and endosperm formation and maturation is presented. The role played by embryonic meristems in laying down the plant architecture is discussed. The acquisition of the different endosperm domains are presented together with the use of molecular markers available for the detection of these domains. Finally the role of programmed cell death in embryo and endosperm development is considered. CONCLUSIONS: The sequence of events occurring in the developing maize seed appears to be strictly regulated. Proper seed development requires the co-ordinated expression of embryo and endosperm genes and relies on the interaction between the two seed components and between the seed and the maternal tissues. Mutant analysis is instrumental in unravelling the genetic control underlying the formation of each compartment as well as the molecular signals interplaying between the two compartments.  相似文献   

16.
17.
18.
The embryo of Arabidopsis seeds is symplasmically isolated from the surrounding seed coat and endosperm, and uptake of nutrients from the seed apoplast is required for embryo growth and storage reserve accumulation. With the aim of understanding the importance of nitrogen (N) uptake into developing embryos, we analysed two mutants of AAP1 (At1g58360), an amino acid transporter that was localized to Arabidopsis embryos. In mature and desiccated aap1 seeds the total N and carbon content was reduced while the total free amino acid levels were strongly increased. Separately analysed embryos and seed coats/endosperm of mature seeds showed that the elevated amounts in amino acids were caused by an accumulation in the seed coat/endosperm, demonstrating that a decrease in uptake of amino acids by the aap1 embryo affects the N pool in the seed coat/endosperm. Also, the number of protein bodies was increased in the aap1 endosperm, suggesting that the accumulation of free amino acids triggered protein synthesis. Analysis of seed storage compounds revealed that the total fatty acid content was unchanged in aap1 seeds, but storage protein levels were decreased. Expression analysis of genes of seed N transport, metabolism and storage was in agreement with the biochemical data. In addition, seed weight, as well as total silique and seed number, was reduced in the mutants. Together, these results demonstrate that seed protein synthesis and seed weight is dependent on N availability and that AAP1-mediated uptake of amino acids by the embryo is important for storage protein synthesis and seed yield.  相似文献   

19.
Maternal control of higher plant seed development is likely to involve female sporophytic as well as female gametophytic genes. While numerous female sporophytic mutants control the production of the ovule and the embryo sac true maternal effect mutations affecting embryo and endosperm development are rare in plants. A new class of female gametophytic mutants has been isolated that controls autonomous development of endosperm. Molecular analyses of these genes, known as FIS class genes, suggest that they repress downstream seed development genes by chromatin remodelling. Expression of the FIS genes in turn is modulated by parent specific expression or genomic imprinting which in turn is controlled by DNA methylation. Thus maternal control of seed development is a complex developmental event influenced by both genetic and epigenetic processes.  相似文献   

20.
Endosperm accounts for a large proportion of human nutrition and is also a major determinant of seed viability and size, not only in cereals, but also in species with ephemeral endosperms, such as soybean and oilseed rape. The extent of endosperm proliferation early in seed development is a crucial component in setting seed size; therefore, a biotechnological approach for the modification of this trait requires promoters active in early endosperm. To find such promoters, we constructed an array based on cDNAs extracted from developing Arabidopsis seeds enriched for proliferating endosperm. Hybridization with RNA extracted from vegetative and reproductive tissues, including endosperm, and subsequent data filtering yielded sets of endosperm-expressed and endosperm-preferred genes, including many hundreds not previously identified in array experiments designed to detect genes expressed in Arabidopsis seeds. Of eight promoters selected for validation, seven were active in early endosperm, three with no detected activity elsewhere in the plant. Therefore, this strategy has yielded proliferative phase endosperm promoters which should be useful in altering seed size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号