首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of human intermediate density lipoproteins (IDL) to HepG2 cells was studied. We found that human 125I-IDL interact with a binding site of high-affinity (Kd 0.74 micrograms/ml, Bmax 0.049 micrograms/mg cell protein) and a binding site of lower affinity (Kd 86.8 micrograms/ml; Bmax 0.53 micrograms/mg cell protein). The high-affinity binding sites show characteristics of LDL-receptors since they interact with IDL and low-density lipoproteins (LDL) and are calcium dependent. The low-affinity binding sites are calcium-independent and interact with IDL, LDL, high density lipoproteins-3 (HDL3), apolipoprotein (apo) E-liposomes, apoCs-liposomes, apoA-I-liposomes but not with liposomes containing albumin or erythrocyte membrane proteins. Therefore, HepG2 cells have on their surface a binding site that resembles or is identical to the lipoprotein binding site (LBS) that we found on rat liver membranes (Brissette and No?l (1986) J. Biol. Chem. 261, 6847-6852). Internalization, degradation and cholesterol ester selective uptake were determined in the presence or in the absence of a sufficient amount of human HDL3 to abolish the interaction of IDL to the LBS in order to obtain information on the function of this site. Our results suggest that the LBS participates in the internalization of IDL but not in their degradation and that it is responsible for the selective uptake of cholesterol esters of IDL.  相似文献   

2.
Preparative free flow isotachophoresis (ITP) was used for the fractionation of apoB-containing lipoproteins (d less than 1.063 g/ml) from fasting and postprandial sera derived from normolipidemic individuals. According to their net electric mobility, four major particle groups (I-IV) have been recognized. The fast-migrating particles in group I, which correspond predominantly to very low density lipoproteins (VLDL), are rich in triglycerides, free cholesterol, phosphatidylcholine, and apoE and C apolipoproteins. This group expresses nonspecific binding to fibroblasts but binds to HepG2 cells with high affinity (KD = 3.6 micrograms/ml, Bmax = 37 ng) to a single class of binding sites. The particles migrating in group II, which are related to intermediate density lipoproteins (IDL), are richer in cholesteryl esters and apoB than those in group I. They interact specifically with a single site on fibroblasts (KD = 7.8 micrograms/ml, Bmax = 54 ng) while on HepG2 cells two binding sites, one with a higher (KD = 3.5 micrograms/ml, Bmax = 22 ng) and one with a lower affinity component (KD = 16.9 micrograms/ml, Bmax = 53 ng), are involved. The particles migrating in groups III and IV correspond to low density lipoproteins (LDL). The protein moiety of both fractions consists almost exclusively of apoB. Group III represents cholesteryl ester-rich LDL particles, while the particles in group IV contain smaller amounts of cholesteryl esters. The lipoproteins of both groups are ligands for apoB,E-receptors. However, the particles in group IV interact with fibroblasts with the highest affinity (KD = 2.3 micrograms/ml, Bmax = 58 ng) and with the biphasic HepG2 cell binding sites with the lowest affinity of all analyzed groups (KD1 = 11.2 micrograms/ml, Bmax1 = 58 ng, KD2 = 68 micrograms/ml, Bmax2 = 170 ng). When apoB-containing lipoproteins were isolated from postprandial sera of the same individuals, significant changes in the lipid composition were observed only in particle groups I and II, where the triglyceride and phospholipid content was enhanced. Group I particles from postprandial serum bind to HepG2 cells with a higher affinity (KD = 2.5 micrograms/ml) than group I particles from fasting serum. Postprandial group II particles bind with the same affinity to the biphasic HepG2 cell receptor as fasting group II particles, while the affinities of postprandial group III (KD1 = 4.1 micrograms/ml, KD1 = 47 micrograms/ml) and group IV particles (KD1 = 3.9 micrograms/ml, KD2 = 38 micrograms/ml) to the high affinity binding site of the biphasic receptor are enhanced.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Very low density lipoproteins rich or poor in high molecular weight apolipoprotein B (Bh-rich or Bh-poor VLDL, respectively) were prepared from rats fasted for 2 days and animals fasted and then refed for 2 days, respectively. Bh-rich or Bh-poor VLDL remnants (IDL) were also prepared by in vitro lipolysis of the corresponding VLDL preparations, and their apolipoprotein (apo) profile and lipid composition determined. Bh-rich IDL are richer in esterified cholesterol than Bh-poor IDL, but poorer in apoC and triglycerides. The binding of 125I-labeled Bh-rich IDL and 125I-labeled Bh-poor IDL to rat liver membranes was assessed by saturation-curve studies. Both types of IDL bound to high- and low-affinity sites on rat liver membranes. There were no significant differences between the binding of IDL produced from Bh-rich or Bh-poor VLDL to either the high- or low-affinity sites. However, by masking the low-affinity binding sites with saturating amounts of human high density lipoproteins 3 (HDL3), we were able to demonstrate that Bh-rich IDL bound to high-affinity binding sites with five times less affinity than Bh-poor IDL. These results show that saturating the low-affinity binding sites of rat liver membranes reveals differences in the binding abilities of lipoproteins to the high-affinity sites. Also, an analysis of apo and lipid compositions of the two types of IDL reveals that the apoBh contribution is likely to be responsible for differences in affinities of IDL for the high-affinity binding sites of rat liver membranes.  相似文献   

4.
Upon incubation with rat liver membranes, radioiodinated rat intermediate density lipoproteins (IDL) interacted with at least two binding sites having a low and a high affinity as demonstrated by the curvilinear Scatchard plots obtained from the specific binding data. The purpose of our work was to identify the nature of these binding sites. Human low density lipoproteins (LDL), contain apolipoprotein B only, and human high density lipoproteins (HDL3), containing neither apolipoprotein B nor E, were both capable of decreasing the specific binding of rat 125I-IDL. The Scatchard analysis clearly revealed that only the low affinity component was affected by the addition of these human lipoproteins. In fact, the low affinity binding component gradually decreased as the amount of human LDL or HDL3 increased in the binding assay. At a 200-fold excess of human LDL or HDL3, the low affinity binding was totally masked, and the Scatchard plot of the specific 125I-IDL binding became linear. Only the high affinity binding component was left, enabling a precise measurement of its binding parameters. In a series of competitive displacement experiments in which the binding assay contained a 200-fold excess of human LDL or HDL3, only unlabeled rat IDL effectively displaced the binding of rat 125I-IDL. We conclude that the low affinity binding of rat IDL to rat liver membranes is due to weak interactions with unspecified lipoprotein binding sites. The camouflage of these sites by human lipoproteins makes possible the study of IDL binding to the high affinity component which likely represents the combined effect of IDL binding to both the remnant and the LDL receptors.  相似文献   

5.
The high and low affinity binding sites for PACAP were identified in rat astrocytes using [125I]PACAP27 as the labeled ligand. Scatchard analysis of displacement of the bound tracer by unlabeled PACAP27 indicated the existence of two classes of binding sites, with the dissociation constant (Kd) = 1.22 +/- 0.4 nM, the binding maximal capacity (Bmax) = 821 +/- 218 fmols/mg protein for the high affinity binding site, and Kd = 0.59 +/- 0.06 microM, Bmax = 563 +/- 12 pmols/mg protein for the low affinity binding site, respectively. The specificity of [125I]PACAP27 binding was tested using PACAP38 and peptides structurally related to PACAP, such as VIP, GHRF, PHI, secretin and glucagon. PACAP38 completely displaced the binding of [125I]PACAP27 and Scatchard analysis also indicated the presence of two classes of binding sites with similar Kd and Bmax to those for PACAP27. VIP and GHRF competed with [125I]PACAP27, but to a much lesser extent than unlabeled PACAP27 in binding. Other peptides tested did not displace the binding of [125I]PACAP27 at 10(-6) M.  相似文献   

6.
We have demonstrated specific, high affinity binding of a biologically active Tyr23-monoiodinated derivative of ACTH, [125I][Phe2,Nle4]ACTH 1-24, in rat brain homogenates. Similarly, in metabolically inhibited and noninhibited rat whole brain slices there is a specific "binding-sequestration" process that is dependent on time, protein concentration, and pH. In homogenates, binding curves were best described by a two-site model and provided the following parameters: Kd1 = 0.65 +/- 0.47 nM, Bmax1 = 21 +/- 41 fmol/mg protein; Kd2 = 97 +/- 48 nM, Bmax2 = 3.5 +/- 1.8 pmol/mg protein. In metabolically viable brain slices, concentration-competition curves of [125I][Phe2,Nle4]ACTH 1-24 binding-sequestration can be described by three components (Kd1 = 14 +/- 24 nM, Bmax1 = 50 +/- 95 fmol/mg protein; Kd2 = 2.4 +/- 1.9 microM, Bmax2 = 44 +/- 49 pmol/mg protein; Kd3 = 0.16 +/- 1.0 mM, Bmax3 = 5.3 +/- 54 nmol/mg protein). Metabolic inhibition, by removal of glucose and addition of 100 microM ouabain, abolishes the lowest affinity, highest capacity binding-sequestrian component only (Kd1 = 7.1 +/- 14 nM, Bmax1 = 8.7 +/- 16 fmol/mg protein; Kd2 = 7.4 +/- 4.49 microM, Bmax2 = 37 +/- 27 pmol/mg protein). The two binding-sequestration parameter estimates obtained from metabolically inhibited tissue slices are not significantly different from those of the two higher affinity components obtained with noninhibited tissue. Thus, metabolic inhibition permits demonstration of ACTH receptor binding only, unconfounded by sequestration or internalization of ligand:receptor complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The receptor sites for 1,4-dihydropyridine (DHP) calcium channel ligands were identified and pharmacologically characterized in partially purified canine coronary artery smooth muscle (CSM) membranes (purification factor for 1,4-DHPs 2.8 and 2.2 respectively) using Ca2+ channel agonist (-)-S-[3H]BAYK 8644 and antagonist (+)-[3H]PN 200-110 as radioligands. The beta-adrenergic receptors were identified with (-)-3-[125I]iodocyanopindolol (ICYP). Specific binding of 1,4-DHPs and ICYP to membrane fraction was saturable, reversible and of both high and low affinity. The Kd for 1,4-DHP Ca2+ channel agonist was 0.59 +/- 0.05 and for antagonist 0.35 +/- 0.06 nmol/l and for low affinity binding sites Kd = 9.0 +/- 0.18 and 18.0 +/- 1.1 nmol/l. The high affinity 1,4-DHP binding (Bmax = 265 +/- 21 and 492 +/- 12 fmol/mg protein), showed stereoselectivity, temperature-dependence as well as pharmacological specificity: isoprenaline- and GTP-sensitivity, positive modulation with dilthiazem and negative modulation with verapamil, that is, properties characteristic of 1,4-DHP receptor sites on L-type Ca2+ channels. The low affinity binding sites were characterized as nonselective, temperature independent, dipyridamol-sensitive and represented a nucleoside transporter. The proportion of high affinity binding sites identified in the CSM membranes was 1.85 : 1.0 in favour of the antagonist. Results obtained with [125I]omega Conotoxin GVI A demonstrated that CSM membrane fractions isolated from median layers of coronary artery were devoid of substantial contamination with fragments of neuronal cells.  相似文献   

8.
Recombinant human single-chain urokinase (rscu-PA), two-chain urokinase (tcu-PA), and diisopropyl-fluorophosphate-treated tcu-PA (DFP-tcu-PA) bound to cultured human and porcine endothelial cells in a rapid, saturable, dose-dependent and reversible manner. Analysis of specific binding results in cultured human umbilical vein endothelial cells (HUVECs) gave the following estimated values for Kd and Bmax: 0.57 +/- 0.08 nM (mean +/- S.E.) and 188,000 +/- 18,000 sites/cell for 125I-labeled rscu-PA; 0.54 +/- 0.10 nM and 132,000 +/- 23,900 sites/cells for 125I-labeled tcu-PA; 0.89 +/- 0.14 nM and 143,000 +/- 30,300 sites/cell for 125I-labeled DFP-tcu-PA, respectively. Values for Kd were similar for primary and subcultured (six passages) HUVECs, but Bmax values were lower in subcultured HUVECs. Similar Kd values were found in cultured porcine endothelial cells; however, Bmax values varied depending on the endothelial cell type. All 125I-labeled urokinase forms yielded similar cross-linked approximately 110-kDa ligand-receptor complexes with cultured HUVECs, and 125I-labeled DFP-tcu-PA bound to a single major approximately 55-kDa protein in whole-cell lysates (ligand blotting/autoradiography), suggesting the presence of a single major approximately 55-kDa urokinase receptor in cultured HUVECs. The approximately 55-kDa urokinase receptor, isolated from several separate batches of cultured HUVECs (3-5 micrograms of protein, approximately 1 x 10(9) cells), by ligand affinity chromatography, exhibited the following properties: retained biologic activity as evidenced by its ability to bind 125I-labeled rscu-PA by ligand blotting/autoradiography and formation of a cross-linked 125I-labeled approximately 110-kDa rscu-PA-receptor complex; single-chain approximately 55-kDa protein, following reduction; complete conversion to and formation of a single major deglycosylated approximately 35-kDa protein, following treatment with N-glycanase.  相似文献   

9.
Disa J  Floyd LE  Edwards RM  Douglas SA  Aiyar NV 《Peptides》2006,27(6):1532-1537
Urotensin-II (U-II), a ligand for the G-protein-coupled receptor UT, has been characterized as the most potent mammalian vasoconstrictor identified to date. Although circulating levels of U-II are altered in lower species (e.g., fish) upon exposure to hypo-osmotic stress, little is known about the actions of this cyclic undecapeptide within the kidney, an organ that plays a pivotal role in the control of cardiovascular homeostasis, influencing both cardiac preload (plasma volume) and after load (peripheral resistance). The present study reports the identification of specific, high affinity [125I]hU-II binding sites in Sprague-Dawley rat kidney outer medulla by autoradiography and also through membrane radioligand binding (Kd 1.9 +/- 0.9 nM and Bmax 408 +/- 47 amol mm(-2) and Kd 1.4 +/- 0.3 nM and Bmax 51.3 +/- 7.8 fmol mg(-1) protein, respectively). Differences were observed in the binding characteristics within rat strains. Compared to the Sprague-Dawley, Wistar Kyoto (WKY) and spontaneously hypertensive (SHR) rat kidney outer medulla displayed low density < 20 fmol mg(-1) protein and low affinity (> 1 microM) [125I]hU-II binding sites. Thus, the relative contribution of specific U-II binding sites to the physiological actions of U-II in the control of cardiorenal homeostasis is worthy of further investigation.  相似文献   

10.
The regulation of the hepatic catabolism of normal human very-low-density lipoproteins (VLDL) was studied in human-derived hepatoma cell line HepG2. Concentration-dependent binding, uptake and degradation of 125I-labeled VLDL demonstrated that the hepatic removal of these particles proceeds through both the saturable and non-saturable processes. In the presence of excess unlabeled VLDL, the specific binding of 125-labeled VLDL accounted for 72% of the total binding. The preincubation of cells with unlabeled VLDL had little effect on the expression of receptors, but reductive methylation of VLDL particles reduced their binding capacity. Chloroquine and colchicine inhibited the degradation of 125I-labeled VLDL and increased their accumulation in the cell, indicating the involvement of lysosomes and microtubuli in this process. Receptor-mediated degradation was associated with a slight (13%) reduction in de novo sterol synthesis and had no significant effect on the cellular cholesterol esterification. Competition studies demonstrated the ability of unlabeled VLDL, low-density lipoproteins (LDL) and high-density lipoproteins (HDL) to effectively compete with 125I-labeled VLDL for binding to cells. No correlation was observed between the concentrations of apolipoproteins A-I, A-II, C-I, C-II and C-III of unlabeled lipoproteins and their inhibitory effect on 125I-labeled VLDL binding. When unlabeled VLDL, LDL and HDL were added at equal contents of either apolipoprotein B or apolipoprotein E, their inhibitory effect on the binding and uptake of 125I-labeled VLDL only correlated with apolipoprotein E. Under similar conditions, the ability of unlabeled VLDL, LDL and HDL to compete with 125I-labeled LDL for binding was a direct function of only their apolipoprotein B. These results demonstrate that in HepG2 cells, apolipoprotein E is the main recognition signal for receptor-mediated binding and degradation of VLDL particles, while apolipoprotein B functions as the sole recognition signal for the catabolism of LDL. Furthermore, the lack of any substantial regulation of beta-hydroxy-beta-methylglutaryl-CoA reductase and acyl-CoA:cholesterol acyltransferase activities subsequent to VLDL degradation, in contrast to that observed for LDL catabolism, suggests that, in HepG2 cells, the receptor-mediated removal of VLDL proceeds through processes independent of those involved in LDL catabolism.  相似文献   

11.
Hepatic catabolism of lipoproteins containing apolipoproteins B or E is enhanced in rats treated with pharmacologic doses of 17 alpha-ethinyl estradiol. Liver membranes prepared from these rats exhibit an increased number of receptor sites that bind 125I-labeled human low density lipoproteins (LDL) in vitro. In the present studies, this estradiol-stimulated hepatic receptor was shown to recognize the following rat lipoproteins: LDL, very low density lipoproteins obtained from liver perfusates (hepatic VLDL), and VLDL-remnants prepared by intravenous injection of hepatic VLDL into functionally eviscerated rats. The receptor also recognized synthetic lamellar complexes of lecithin and rat apoprotein E as well as canine high density lipoproteins containing apoprotein E (apo E-HDLc). It did not recognize human HDL or rat HDL deficient in apoprotein E. Much smaller amounts of this high affinity binding site were also found on liver membranes from untreated rats, the number of such sites increasing more than 10-fold after the animals were treated with estradiol. Each of the rat lipoproteins recognized by this receptor was taken up more rapidly by perfused livers from estrogen-treated rats. In addition, enrichment of hepatic VLDL with C-apoproteins lowered the ability of these lipoproteins to bind to the estradiol-stimulated receptor and diminished their rate of uptake by the perfused liver of estrogen-treated rats, just as it did in normal rats. The current data indicate that under the influence of pharmacologic doses of estradiol the liver of the rat contains increased amounts of a functional lipoprotein receptor that binds lipoproteins containing apoproteins B and E. This hepatic lipoprotein receptor appears to mediate the uptake and degradation of lipoproteins by the normal liver as well as the liver of estradiol-treated rats. The hepatic receptor bears a close functional resemblance to the LDL receptor previously characterized on extrahepatic cells.  相似文献   

12.
Characteristics, day-night changes, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) modulation, and localization of melatonin binding sites in the brain of a marine teleost, European sea bass Dicentrarchus labrax, were studied by radioreceptor assay using 2-[(125)I]iodomelatonin as a radioligand. The specific binding to the sea bass brain membranes was rapid, stable, saturable and reversible. The radioligand binds to a single class of receptor site with the affinity (Kd) of 9.3 +/-0.6 pM and total binding capacity (Bmax) of 39.08 +/-0.86 fmol/mg protein (mean+/-SEM, n=4) at mid-light under light-dark (LD) cycles of 12:12. Day-night changes were observed neither in the Kd nor in the Bmax under LD 12:12. Treatment with GTPgammaS significantly increased the Kd and decreased the Bmax both at mid-light and mid-dark. The binding sites were highly specific for 2-phenylmelatonin, 2-iodomelatonin, melatonin, and 6-chloromelatonin. Distribution of melatonin binding sites in the sea bass brain was uneven: The Bmax was determined to be highest in mesencephalic optic tectum-tegmentum and hypothalamus, intermediate in telencephalon, cerebellum-vestibulolateral lobe and medulla oblongata-spinal cord, and lowest in olfactory bulbs with the Kd in the low picomolar range. These results indicate that melatonin released from the pineal organ and/or retina plays neuromodulatory roles in the sea bass brain via G protein-coupled melatonin receptors.  相似文献   

13.
Characterization of gingival epithelium epidermal growth factor receptor   总被引:1,自引:0,他引:1  
The binding characteristics of gingival epithelium epidermal growth factor (EGF) receptor were investigated using epithelial cell membranes from bovine gingiva. The binding of [125I]EGF was found to be time and protein concentration dependent, reversible, and specific. Unlabeled EGF competed for [125I]EGF binding with IC50 of 0.25nM and maximum displacement of 93% at 0.81nM. Scatchard analysis of the binding data inferred the presence of two binding sites, one of high affinity (Kd = 3.3 nM and Bmax = 47.3fmol/mg protein) and the other of a low affinity (Kd = 1.6 microM and Bmax = 1.9pmol/mg protein). Crosslinking of [125I]EGF to gingival membranes followed by polyacrylamide gel electrophoresis and autoradiography revealed a receptor protein of 170kDa.  相似文献   

14.
High affinity receptors for angiotensin II have been identified on purified cardiac sarcolemmal membranes. Equilibrium binding studies were performed with 125I-labeled angiotensin II and purified sarcolemmal vesicles from calf ventricle. The curvilinear Scatchard plots were evaluated by nonlinear regression analysis using a two-site model which identified a high affinity site Kd1 = 1.08 +/- 0.3 nM and N1 = 52 +/- 10 fmol/mg of protein and a low affinity site Kd2 = 52 +/- 16 nM and N2 = 988 +/- 170 fmol/mg of protein. Monovalent and divalent cations inhibited the binding of 125I-angiotensin II by 50%. The affinity of angiotensin II analogs for the receptor was determined using competitive binding assays; sarcosine, leucine-angiotensin II (Sar,Leu-angiotensin II), Kd = 0.53 nM; angiotensin II, Kd = 2.5 nM; des-aspartic acid-angiotensin II, Kd = 4.81 nM; angiotensin I, Kd = 77.6 nM. There is a positive correlation between potency in inducing positive inotropic response in myocardial preparations reported by others and potency for the hormone receptor observed in the binding assays. Pseudo-Hill plots of the binding data showed that agonists display biphasic binding with Hill numbers around 0.65 while antagonists recognized a single class of high affinity receptors with Hill numbers close to unity. These data were confirmed using 125I-Sar,Leu-angiotensin II in equilibrium binding studies which showed that this antagonist bound to a single class of receptor sites; Kd = 0.42 +/- 0.04 nM and N = 1050 +/- 110 fmol/mg of protein. Competition-binding experiments with this 125I-peptide yielded monophasic curves with Hill numbers close to unity for both agonists and antagonists. Membrane-bound 125I-angiotensin II was covalently linked to its receptor by the use of bifunctional cross-linking reagents such as dithiobis(succinimidyl propionate) and bis[2-(succinimidooxycarbonyloxy)ethyl]sulfone. Analysis of the membranes showed the labeling of a component with an apparent Mr = 116,000. The affinity labeled species showed characteristics expected of a functional component of the high affinity receptor. The affinity labeling of this membrane component was inhibited by nanomolar angiotensin II or Sar,Leu-angiotensin II. Together these data indicate that high affinity receptors exist for angiotensin II that most likely mediate the positive inotropic effects of this hormone on myocardial cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Selective uptake of cholesteryl esters (CE) from lipoproteins by cells has been extensively studied with high density lipoproteins (HDL). It is only recently that such a mechanism has been attributed to intermediate and low density lipoproteins (IDL and LDL). Here, we compare the association of proteins and CE from very low density lipoproteins (VLDL), IDL, LDL and HDL3 to HepG2 cells. These lipoproteins were either labelled in proteins with 125I or in CE with 3H-cholesteryl oleate. We show that, at any lipoprotein concentration, protein association to the cells is significantly smaller for IDL, LDL, and HDL3 than CE association, but not for VLDL. At a concentration of 20 microg lipoprotein/mL, these associations reveal CE-selective uptake in the order of 2-, 4-, and 11-fold for IDL, LDL, and HDL3, respectively. These studies reveal that LDL and HDL3 are good selective donors of CE to HepG2 cells, while IDL is a poor donor and VLDL is not a donor. A significant inverse correlation (r2 = 0.973) was found between the total lipid/protein ratios of the four classes of lipoproteins and the extent of CE-selective uptake by HepG2 cells. The fate of 3H-CE of the two best CE donors (LDL and HDL3) was followed in HepG2 cells after 3 h of incubation. Cells were shown to hydrolyze approximately 25% of the 3H-CE of both lipoproteins. However, when the cells were treated with 100 microM of chloroquine, a lysosomotropic agent, 85 and 40% of 3H-CE hydrolysis was lost for LDL and HDL3, respectively. The fate of LDL and HDL3-CE in HepG2 cells deficient in LDL-receptor was found to be the same, indicating that the portion of CE hydrolysis sensitive to chloroquine is not significantly linked to LDL-receptor activity. Thus, in HepG2 cells, the magnitude of CE-selective uptake is inversely correlated with the total lipid/protein ratios of the lipoproteins and CE-selective uptake from the two best CE donors (LDL and HDL3) appears to follow different pathways.  相似文献   

16.
A Gulati  S Rebello  G Chari  R Bhat 《Life sciences》1992,51(22):1715-1724
The ontogeny of endothelin (ET) system in rats was studied in preterm (18 days of gestation), term (21 days of gestation) and 1 week post term rats. Brains were dissected out and (1) processed for the estimation of endogenous ET-1 by RIA and (2) membranes were prepared for radioreceptor binding. Receptor characteristics, affinity (Kd) and density (Bmax) were determined using [125I] ET-1 and [125I] SRT 6b (which is structurally similar to ET) and cold ET-1 or SRT 6b as displacer. ET levels were found to be 25.66 +/- 3.18 pg/g protein in preterm, 47.37 +/- 5.31 pg/g protein in term and 48.30 +/- 1.90 pg/g protein in post term rats. ET levels were significantly lower in preterm as compared to term and post term rats. Preterm, term and post term rats showed single high affinity binding site for both [125I] ET-1 and [125I] SRT 6b. The Kd values for [125I] ET-1 and [125I] SRT 6b binding were similar in preterm, term and post term rats. The Bmax values of both [125I] ET-1 and [125I] SRT 6b binding were found to be similar in preterm and term rats while they were significantly higher in post term rats. In adult (4 month old) rats the Kd values were similar to neonatal rats while the Bmax values were significantly lower than the post term neonatal rats. It is concluded that ET and its receptors are developmentally regulated and there is a possibility that endogenous ET is involved in the regulation of ET receptor density.  相似文献   

17.
Neuropeptide Y (NPY) binding sites in rat cardiac ventricular membranes have been characterized in detail. 125I-NPY bound to the membranes with high affinity. Binding was saturable, reversible and specific, and depended on time, pH and temperature. Analysis of the binding data obtained under optimal conditions, 2 hr, 18 degrees C and at pH 7.5, revealed the presence of low and high affinity binding sites. The high affinity binding sites had an apparent dissociation constant (Kd) of 0.38 nM and a binding capacity (Bmax) of 7.13 fmol/mg protein. The apparent Kd and Bmax for low affinity binding sites were 22.34 nM and 261.25 fmol/mg protein, respectively. Peptides unrelated to NPY did not compete with 125I-NPY for the binding sites even at 1 microM concentrations, whereas homologous peptides, peptide YY (PYY) and pancreatic polypeptide (PP), and NPY(13-36) inhibited 125I-NPY binding but with lower potency compared to NPY. 125I-NPY binding was sensitive to the nonhydrolyzable GTP analog, Gpp(NH)p, suggesting that the NPY receptor is coupled to the adenylate cyclase system. The ventricular membrane receptor characterized in this study may play an important role in mediating the physiological effects of NPY in the heart.  相似文献   

18.
The conversion of very low density (VLDL) to low density lipoproteins (LDL) is a two-step process. The first step is mediated by lipoprotein lipase, but the mechanism responsible for the second is obscure. In this study we examined the possible involvement of receptors at this stage. Apolipoprotein B (apoB)-containing lipoproteins were separated into three fractions, VLDL (Sf 100-400), an intermediate fraction IDL (Sf 12-100), and LDL (Sf 0-12). Autologous 125I-labeled VLDL and 131I-labeled 1,2-cyclohexanedione-modified VLDL were injected into the plasma of four normal subjects and the rate of transfer of apoB radioactivity was followed through IDL to LDL. Modification did not affect VLDL to IDL conversion. Thereafter, however, the catabolism of modified apoB in IDL was retarded and its appearance in LDL was delayed. Hence, functional arginine residues (and by implication, receptors) are required in this process. Confirmation of this was obtained by injecting 125I-labeled IDL and 131I-labeled cyclohexanedione-treated IDL into two additional subjects. Again, IDL metabolism was delayed by approximately 50% as a result of the modification. These data are consistent with the view that receptors are involved in the metabolism of intermediate density lipoprotein.  相似文献   

19.
Our previous studies showed that very low density lipoproteins, Sf 60-400 (VLDL), from hypertriglyceridemia subjects, but not VLDL from normolipemic subjects, suppress HMG-CoA reductase activity in normal human fibroblasts. To determine if this functional abnormality of hypertriglyceridemic VLDL resulted from differences in uptake of the VLDL by the low density lipoprotein (LDL) receptor pathway, we isolated VLDL subclasses from the d less than 1.006 g/ml fraction of normal and hypertriglyceridemic plasma by flotation through a discontinuous salt gradient for direct and competitive binding studies in cultured human fibroblasts. VLDL from the plasma of subjects with hypertriglyceridemia types 4 and 5 were at least as effective as normal LDL in competing for 125I-labeled LDL binding, uptake, and degradation when compared either on the basis of protein content or on a particle basis. By contrast, normolipemic Sf 60-400 VLDL were ineffective in competing with the degradation of 125I-labeled LDL, and Sf 20-60 VLDL (VLDL3) were less effective in reducing specific 125I-labeled LDL degradation than were LDL, consistent with their effects on HMG-CoA reductase activity. In direct binding studies, radiolabeled VLDL from hypertriglyceridemic but not normolipemic subjects were bound, internalized, and degraded with high affinity and specificity by normal fibroblasts. Uptake and degradation of iodinated hypertriglyceridemic VLDL Sf 100-400 showed a saturable dependence on VLDL concentration. Specific degradation plateaued at approximately 25 micrograms VLDL protein/ml, with a half maximal value at 6 micrograms/ml. The most effective competitor of hypertriglyceridemic VLDL uptake and degradation was hypertriglyceridemic VLDL itself. LDL were effective only at high concentrations. Uptake of normal VLDL by normal cells was a linear rather than saturable function of VLDL concentration. By contrast, cellular uptake of the smaller normal VLDL3 was greater than uptake of larger VLDL and showed saturation dependence. After incubation of normal VLDL with 125I-labeled apoprotein E, reisolated 125I-E-VLDL were as effective as LDL in suppression of HMG-CoA reductase activity, suggesting that apoE is involved in receptor-mediated uptake of large suppressive VLDL. We conclude that 1) hypertriglyceridemic VLDL Sf 60-400 are bound, internalized, and degraded by normal fibroblasts primarily by the high affinity LDL receptor-mediated pathway; 2) by contrast, normal VLDL, Sf 60-400 are bound, internalized, and degraded by normal fibroblasts primarily by nonspecific, nonsaturable routes; and 3) of the normal VLDL subclasses, only the smallest Sf 20-60 fraction is bound and internalized via the LDL pathway.  相似文献   

20.
The mechanism of hepatic catabolism of human low density lipoproteins (LDL) by human-derived hepatoma cell line HepG2 was studied. The binding of 125I-labeled LDL to HepG2 cells at 4 degrees C was time dependent and inhibited by excess unlabeled LDL. The specific binding was predominant at low concentrations of 125I-labeled LDL (less than 50 micrograms protein/ml), whereas the nonsaturable binding prevailed at higher concentrations of substrate. The cellular uptake and degradation of 125I-labeled LDL were curvilinear functions of substrate concentration. Preincubation of HepG2 cells with unlabeled LDL caused a 56% inhibition in the degradation of 125I-labeled LDL. Reductive methylation of unlabeled LDL abolished its ability to compete with 125I-labeled LDL for uptake and degradation. Chloroquine (50 microM) and colchicine (1 microM) inhibited the degradation of 125I-labeled LDL by 64% and 30%, respectively. The LDL catabolism by HepG2 cells suppressed de novo synthesis of cholesterol and enhanced cholesterol esterification; this stimulation was abolished by chloroquine. When tested at a similar content of apolipoprotein B, very low density lipoproteins (VLDL), LDL and high density lipoproteins (HDL) inhibited the catabolism of 125I-labeled LDL to the same degree, indicating that in HepG2 cells normal LDL are most probably recognized by the receptor via apolipoprotein B. The current study thus demonstrates that the catabolism of human LDL by HepG2 cells proceeds in part through a receptor-mediated mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号