首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Etiolated leaves of three different species, maize, wheat, and pea, as well as a pea mutant (lip1) were used to compare the excitation spectra of protochlorophyllide (Pchlide) in the red region. The species used have different composition of short-wavelength and long-wavelength Pchlide forms. The relation between different forms was furthermore changed through incubating the leaves in 5-aminolevulinic acid (ALA), which caused an accumulation of short-wavelength Pchlide forms, as shown by changes in absorption and fluorescence spectra. This is the first time a comprehensive comparison is made between excitation spectra from different species covering an emission wavelength range of 675–750 nm using fluorescence equipment with electronic compensation for the variations in excitation irradiance. The different forms of Pchlide having excitations peaks at 628, 632, 637, 650, and 672 nm could be best measured at 675, 700, 710, 725, and 750 nm, respectively. Measuring emission at wavelengths between 675– 710 nm gave an exaggeration of the short-wavelength forms and measuring at longer wavelengths gave for the pea leaves an exaggeration of the 672 nm peak. In general, an energy transfer from short-wavelength Pchlide forms to long-wavelength Pchlide forms occurred, but such an energy transfer sometimes seemed to be limited as a result of a discrete location of the Pchlide spectral forms. The excitation spectra resembling the absorption spectrum most were measured at an emission wavelength of 740 nm. Measuring the excitation at 710 nm gave higher intensity of the spectra but the short-wavelength forms were accentuated.  相似文献   

2.
Changes in low-temperature fluorescence spectra of pea chloroplasts induced by the short-term heating were studied. Excitation spectra of the long-wavelength fluorescence were studied as well. Heating was carried out at 45°C for 5 min in the darkness or in the presence of white light sourced with intensities of 260 or 1400 μmol/m2 s. All variants of heating decreased the intensity of the long-wavelength fluorescence band. The integral of the excitation spectrum decreased after the exposure to heating in the darkness and increased after the exposure to heating in the presence of light. The observed changes in most intensive components — 726, 729 and 731 nm — of the long-wavelength fluorescence band, induced by various modes of heating, were similar. The changes in the fourth intensive component at 735 nm were different. Twenty-five components were found in the fine structure of the excitation spectrum of the long-wavelength fluorescence. Positions of most of peaks corresponded to the absorption peaks of Lhca proteins. Heat-induced changes in the excitation spectrum in the regions corresponding to the absorption of chl b and short-wavelength forms of chl a have been shown to correlate with changes in the intensities of the 726-, 729-, and 731-nm components of the long-wavelength fluorescence. This allows one to assign them to the emission of the outer antenna of Photosystem I. Changes in the intensity of the component at 735 nm correlated only with changes in excitation spectrum in the long-wavelength region that corresponded to the absorption of the long-wave-length forms of chlorophyll a. Therefore, the 735-nm component could be assigned to the emission of the Photosystem I inner antenna. Analysis of the changes induced by heating in the emission and excitation spectra of fluorescence revealed changes in the energy transfer in the outer and the inner antennas of Photosystem I. Heating in the darkness lowered the energy transfer in the outer and in the inner antennas. Both modes of heating in the presence of light increased the energy transfer in the outer antenna. For the inner antenna, presence of the light promotes an efficient of energy transfer at the levels close to the control one. It is proposed that illumination during heating exposure causes a specific state of the antenna complex in Photosystem I that provides an increase in funneling of the energy toward the reaction centers.  相似文献   

3.
Dilute aqueous solutions of hematoporphyrin (Hp) and its derivative (Hpd or PF II) have been found to undergo a transformation (aging) on keeping at room temperature leading to (i) shift of the Soret band from 395 nm to 405 nm, (ii) disappearance of visible bands I (610 nm) and IV (503 nm) and (iii) shift of the first emission band from 615 nm to 580 nm. The transformation was concentration dependent. The effects of concentration and temperature on the absorption spectra were much more pronounced in Hp than in Photofrin II (PF II). Variation of pH resulted in changes in the relative intensities of the absorption bands, possibly due to formation of different ionic species at different pH. The rate of transformation was accelerated in the presence of Zn ions (0.01 microM) and considerably increased at higher (50 microM) concentration. The effect of Cu ions was different from the effect of aging. It formed the metal-chelate even when present in very small amounts. The results (absorption and fluorescence analysis) suggest that in dilute solutions (conc. less than or equal to 2 microM) of Hp and PF II, Zn ions present in glass and water as impurity, deform the porphyrin nucleus leading to changes in the conjugated ring symmetry and hence changes in the absorption and fluorescence spectra, while in higher concentrations (greater than 2 microM) it forms the metal chelate as evidenced by their absorption and fluorescence spectra.  相似文献   

4.
Emission spectra of bacteriochlorophyll a fluorescence and absorption spectra of various purple bacteria were measured at temperatures between 295 and 4 K. For Rhodospirillum rubrum the relative yield of photochemistry was measured in the same temperature region. In agreement with earlier results, sharpening and shifts of absorption bands were observed upon cooling to 77 K. Below 77 K further sharpening occurred. In all species an absorption band was observed at 751-757 nm. The position of this band and its amplitude relative to the concentration of reaction centers indicate that this band is due to reaction center bacteriopheophytin. The main infrared absorption band of Rhodopseudomonas sphaeroides strain R26 is resolved in two bands at low temperature, which may suggest that there are two pigment-protein complexes in this species. Emission bands, like the absorption bands, shifted and sharpened upon cooling. The fluorescence yield remained constant or even decreased in some species between room temperature and 120 K, but showed an increased below 120 K. This increase was most pronounced in species, such as R. rubrum, which showed single banded emission spectra. In Chromatium vinosum three (835, 893 and 934 nm) and in Rps. sphaeroides two (888 and 909 nm) emission bands were observed at low temperature. The temperature dependence of the amplitudes of the short wavelength bands indicated the absence of a thermal equilibrium for the excitation energy distribution in C. vinosum and Rps. sphaeroides. In all species the increased in the yield was larger when all reaction centers were photochemically active than when the reaction centers were closed. In R. rubrum the increase in the fluorescence yield was accompanied by a decrease of the quantum yield of charge separation upon excitation of the antenna but not of the reaction center chlorophyll. Calculation of the F?rster resonance integral at various temperatures indicated that the increase in fluorescence yield and the decrease in the yield of photochemistry may be due to a decrease in the rate of energy transfer between antenna bacteriochlorophyll molecules. The energy transfer from carotenoids to bacteriochlorophyll was independent of the temperature in all species examined. The results are discussed in terms of existing models for energy transfer in the antenna pigment system.  相似文献   

5.
In this work the spectroscopic properties of the special low-energy absorption bands of the outer antenna complexes of higher plant Photosystem I have been investigated by means of low-temperature absorption, fluorescence, and fluorescence line-narrowing experiments. It was found that the red-most absorption bands of Lhca3, Lhca4, and Lhca1-4 peak, respectively, at 704, 708, and 709 nm and are responsible for 725-, 733-, and 732-nm fluorescence emission bands. These bands are more red shifted compared to "normal" chlorophyll a (Chl a) bands present in light-harvesting complexes. The low-energy forms are characterized by a very large bandwidth (400-450 cm(-1)), which is the result of both large homogeneous and inhomogeneous broadening. The observed optical reorganization energy is untypical for Chl a and resembles more that of BChl a antenna systems. The large broadening and the changes in optical reorganization energy are explained by a mixing of an Lhca excitonic state with a charge transfer state. Such a charge transfer state can be stabilized by the polar residues around Chl 1025. It is shown that the optical reorganization energy is changing through the inhomogeneous distribution of the red-most absorption band, with the pigments contributing to the red part of the distribution showing higher values. A second red emission form in Lhca4 was detected at 705 nm and originates from a broad absorption band peaking at 690 nm. This fluorescence emission is present also in the Lhca4-N-47H mutant, which lacks the 733-nm emission band.  相似文献   

6.
Dark-grown leaves of three different species, maize, wheat, pea and a pea mutant (lip1) have been used to study protochlorophyllide (Pchlide) spectral forms. As a comparison also pea epicotyls were used. Different native forms of Pchlide were identified using the variation in the spectral properties of the plant material and the second derivatives of the 77 K fluorescence excitation and emission spectra. The spectral forms were further characterised by Gaussian deconvolution. In addition to short-wavelength and long-wavelength forms the area between 660 and 730 nm was shown to contain, together with some vibrational bands, five far-red Pchlide forms. They had pairs of excitation and emission peaks at 658 and 666 nm, 668 and 680 nm, 677 and 690 nm, 686 and 698 as well as 696 and 728 nm, respectively. The presence of several far-red Pchlide forms in dark-grown leaves gave evidence for additional aggregated states of Pchlide under native conditions.  相似文献   

7.
Absorption and fluorescence spectra in the red region of water-soluble chlorophyll proteins, Lepidium CP661, CP663 and Brassica CP673, pigment System II particles of spinach chloroplasts and chlorophyll a in diethylether solution at 25 degrees C were analyzed by the curve-fitting method (French, C.S., Brown, J.S. and Lawrence, M.C. (1972) Plant Physiol 49, 421--429). It was found that each of the chlorophyll forms of the chlorophyll proteins and the pigment System II particles had a corresponding fluorescence band with the Stokes shift ranging from 0.6 to 4.0 nm. The absorption spectrum of chlorophyll a in diethylether solution was analyzed to one major band with a peak at 660.5 nm and some minor bands, while the fluorescence spectrum was analyzed to one major band with a peak at 664.9 nm and some minor bands. A mirror image was clearly demonstrated between the resolved spectra of absorption and fluorescence. The absorption spectrum of Lepidium CP661 was composed of a chlorophyll b form with a peak at 652.8 nm and two chlorophyll a forms with peaks at 662.6 and 671.9 nm. The fluorescence spectrum was analyzed to five component bands. Three of them with peaks at 654.8, 664.6 and 674.6 nm were attributed to emissions of the three chlorophyll forms with the Stokes shift of 2.0--2.7 nm. The absorption spectrum of Brassica CP673 had a chlorophyll b form with a peak at 653.7 nm and four chlorophyll a forms with peaks at 662.7, 671.3, 676.9 and 684.2 nm. The fluorescence spectrum was resolved into seven component bands. Four of them with peaks at 666.7, 673.1, 677.5 and 686.2 nm corresponded to the four chlorophyll a forms with the Stokes shift of 0.6--4.0 nm. The absorption spectrum of the pigment System II particles had a chlorophyll b form with a peak at 652.4 nm and three chlorophyll a forms with peaks at 662.9, 672.1 and 681.6 nm. The fluorescence spectrum was analyzed to four major component bands with peaks at 674.1, 682.8, 692.0 and 706.7 nm and some minor bands. The former two bands corresponded to the chlorophyll a forms with peaks at 672.1 and 681.6 nm with the Stokes shift of 2.0 and 1.2 nm, respectively. Absorption spectra at 25 degrees C and at --196 degrees C of the water-soluble chlorophyll proteins were compared by the curve-fitting methods. The component bands at --196 degrees C were blue-shifted by 0.8--4.1 nm and narrower in half widths as compared to those at 25 degrees C.  相似文献   

8.
Chlorophyll (Chl) molecules attached to plant light-harvesting complexes (LHC) differ in their spectral behavior. While most Chl a and Chl b molecules give rise to absorption bands between 645 nm and 670 nm, some special Chls absorb at wavelengths longer than 700 nm. Among the Chl a/b-antennae of higher plants these are found exclusively in LHC I. In order to assign this special spectral property to one chlorophyll species we reconstituted LHC of both photosystem I (Lhca4) and photosystem II (Lhcb1) with carotenoids and only Chl a or Chl b and analyzed the effect on pigment binding, absorption and fluorescence properties. In both LHCs the Chl-binding sites of the omitted Chl species were occupied by the other species resulting in a constant total number of Chls in these complexes. 77-K spectroscopic measurements demonstrated that omission of Chl b in refolded Lhca4 resulted in a loss of long-wavelength absorption and 730-nm fluorescence emission. In Lhcb1 with only Chl b long-wavelength emission was preserved. These results clearly demonstrate the involvement of Chl b in establishing long-wavelength properties.  相似文献   

9.
Properties of protonated dimeric forms of meso-tetraphenylporphine (TPP) and meso-tetra(p-aminophenyl)porphine (TAPP) bound with copolymer and also complexes produced by associated TAPP bound with copolymer, Mn2+, and Fe3+ are investigated by absorption, luminescence, and Raman spectroscopy. According to absorption spectra of protonated dimers of TPP, three dimeric forms of the porphyrin are observed in the ground state. However, selective excitation of these forms according to the fluorescence spectra reveals only two dimeric forms in the excited state. In contrast, similar selective excitation of TAPP bound with copolymer in aqueous-dioxane solution results in weak changes in the fluorescence spectra, nevertheless, there is strong interaction between porphyrin and macromolecular carboxyl groups in the ground state. In the case of the formation of the complexes between associated TAPP bound with copolymer, Mn2+ and Fe3+, a new band in the near IR region with a maximum at 840 nm is built up in the fluorescence spectrum. However, this near IR emission is completely quenched when new strong vibrational bands at approximately 1800 and 1900 cm-1 are revealed in the resonance Raman spectra of the complexes. The observed effects are explained in terms of direct participation of water molecules involved in the water-porphyrin dimeric complex in the processes of transformation of excitation energy. The involvement of water in this dimeric complex can lead to redistribution of flows of the energy degradation when transition metal ions play a role of the agent which enhances the trapping properties of the porphyrin-metal-ions complexes.  相似文献   

10.
A study was made of the chlorophyll fluorescence spectra between 100 and 4.2 K of chloroplasts of various species of higher plants (wild strains and chlorophyll b mutants) and of subchloroplast particles enriched in Photosystem I or II. The chloroplast spectra showed the well known emission bands at about 685, 695 and 715--740 nm; the System I and II particles showed bands at about 675, 695 and 720 nm and near 685 nm, respectively. The effect of temperature lowering was similar for chloroplasts and subchloroplast particles; for the long wave bands an increase in intensity occurred mainly between 100 and 50 K, whereas the bands near 685 nm showed a considerable increase in the region of 50--4.2 K. In addition to this we observed an emission band near 680 nm in chloroplasts, the amplitude of which was less dependent on temperature. The band was missing in barley mutant no. 2, which lacks the light-harvesting chlorophyll a/b-protein complex. At 4.7 K the spectra of the variable fluorescence (Fv) consisted mainly of the emission bands near 685 and 695 nm, and showed only little far-red emission and no contribution of the band at 680 nm. From these and other data it is concluded that the emission at 680 nm is due to the light-harvesting complex, and that the bands at 685 and 695 nm are emitted by the System II pigment-protein complex. At 4.2 K, energy transfer from System II to the light-harvesting complex is blocked, but not from the light-harvesting to the System I and System II complexes. The fluorescence yield of the chlorophyll species emitting at 685 nm appears to be directly modulated by the trapping state of the reaction center.  相似文献   

11.
Absorption and fluorescence spectra in the red region of water-soluble chlorophyll proteins, Lepidium CP661, CP663 and Brassica CP673, pigment System II particles of spinach chloroplasts and chlorophyll a in diethylether solution at 25°C were analyzed by the curve-fitting method (French, C.S., Brown, J.S. and Lawrence, M.C. (1972) Plant Physiol. 49, 421–429). It was found that each of the chlorophyll forms of the chlorophyll proteins and the pigment System II particles had a corresponding fluorescence band with the Stokes shift ranging from 0.6 to 4.0 nm.The absorption spectrum of chlorophyll a in diethylether solution was analyzed to one major band with a peak at 660.5 nm and some minor bands, while the fluorescence spectrum was analyzed to one major band with a peak at 664.9 nm and some minor bands. A mirror image was clearly demonstrated between the resolved spectra of absorption and fluorescence. The absorption spectrum of Lepidium CP661 was composed of a chlorophyll b form with a peak at 652.8 nm and two chlorophyll a forms with peaks at 662.6 and 671.9 nm. The fluorescence spectrum was analyzed to five component bands. Three of them with peaks at 654.8, 664.6 and 674.6 nm were attributed to emissions of the three chlorophyll forms with the Stokes shift of 2.0–2.7 nm. The absorption spectrum of Brassica CP673 had a chlorophyll b form with a peak at 653.7 nm and four chlorophyll a forms with peaks at 662.7, 671.3, 676.9 and 684.2 nm. The fluorescence spectrum was resolved into seven component bands. Four of them with peaks at 666.7, 673.1, 677.5 and 686.2 nm corresponded to the four chlorophyll a forms with the Stokes shift of 0.6–4.0 nm. The absorption spectrum of the pigment System II particles had a chlorophyll b form with a peak at 652.4 nm and three chlorophyll a forms with peaks at 662.9, 672.1 and 681.6 nm. The fluorescence spectrum was analyzed to four major component bands with peaks at 674.1, 682.8, 692.0 and 706.7 nm and some minor bands. The former two bands corresponded to the chlorophyll a forms with peaks at 672.1 and 681.6 nm with the Stokes shift of 2.0 and 1.2 nm, respectively.Absorption spectra at 25°C and at ?196°C of the water-soluble chlorophyll proteins were compared by the curve-fitting method. The component bands at ?196°C were blue-shifted by 0.8–4.1 nm and narrower in half widths as compared to those at 25°C.  相似文献   

12.
A study was made of the chlorophyll fluorescence spectra between 100 and 4.2 K of chloroplasts of various species of higher plants (wild strains and chlorophyll b mutants) and of subchloroplast particles enriched in Photosystem I or II. The chloroplast spectra showed the well known emission bands at about 685, 695 and 715–740 nm; the System I and II particles showed bands at about 675, 695 and 720 nm and near 685 nm, respectively. The effect of temperature lowering was similar for chloroplasts and subchloroplast particles; for the long wave bands an increase in intensity occurred mainly between 100 and 50 K, whereas the bands near 685 nm showed a considerable increase in the region of 50-4.2 K. In addition to this we observed an emission band near 680 nm in chloroplasts, the amplitude of which was less dependent on temperature. The band was missing in barley mutant no. 2, which lacks the lightharvesting chlorophyll a/b-protein complex. At 4.7 K the spectra of the variable fluorescence (Fv) consisted mainly of the emission bands near 685 and 695 nm, and showed only little far-red emission and no contribution of the band at 680 nm.From these and other data it is concluded that the emission at 680 nm is due to the light-harvesting complex, and that the bands at 685 and 695 nm are emitted by the System II pigment-protein complex. At 4.2 K, energy transfer from System II to the light-harvesting complex is blocked, but not from the light-harvesting to the System I and System II complexes. The fluorescence yield of the chlorophyll species emittting at 685 nm appears to be directly modulated by the trapping state of the reaction center.  相似文献   

13.
The detailed process of excitation transfer among the antenna pigments of the red alga Porphyra perforata was investigated by measuring time-resolved fluorescence emission spectra using a single-photon timing system with picosecond resolution. The fluorescence decay kinetics of intact thalli at room temperature revealed wavelength-dependent multi-component chlorophyll a fluorescence emission. Our analysis attributes the majority of chlorophyll a fluorescence to excitation originating in the antennae of PS II reaction centers and emitted with maximum intensities at 680 and 740 nm. Each of these fluorescence bands was characterized by two kinetic decay components, with lifetimes of 340-380 and 1700-2000 ps and amplitudes varying with wavelength and the photochemical state of the PS II reaction centers. In addition, a small contribution to the long-wavelength fluorescence band is proposed to arise from chlorophyll a antennae coupled to PS I. This component displays fast decay kinetics with a lifetime of approx. 150 ps. Desiccation of the thalli dramatically increases the contribution of this fast decay component.  相似文献   

14.
The steady-state fluorescence properties and uphill energy transfer were analyzed on intact cells of a chlorophyll (Chl) d-dominating photosynthetic prokaryote, Acaryochloris marina. Observed spectra revealed clear differences, depending on the cell pigments that had been sensitized; using these properties, it was possible to assign fluorescence components to specific Chl pigments. At 22 degrees C, the main emission at 724 nm came from photosystem (PS) II Chl d, which was also the source of one additional band at 704 nm. Chl a emissions were observed at 681 nm and 671 nm. This emission pattern essentially matched that observed at -196 degrees C, as the main emission of Chl d was located at 735 nm, and three minor bands were observed at 704 nm, 683 nm, and 667 nm, originating from Chl d, Chl a, and Chl a, respectively. These three minor bands, however, had not been sensitized by carotenoids, suggesting specific localization in PS II. At 22 degrees C, excitation of the red edge of the absorption band (which, at 736 nm, was 20 nm longer than the absorption maximum), resulted in fluorescence bands of Chl d at 724 nm and of Chl a at 682 nm, directly demonstrating an uphill energy transfer in this alga. This transfer is a critical factor for in vivo activity, due to an inversion of energy levels between antenna Chl d and the primary electron donor of Chl a in PS II.  相似文献   

15.
The influence of bovine serum albumin (BSA) on the formation of J-aggregates of meso-tetra(4-sulfonatophenyl)porphine (TPPS4) in aqueous acid solution (pH 1.3) has been investigated by means of absorption and fluorescence spectroscopy. TPPS4 concentration was kept constant at 2 microM while BSA concentration was varied to get TPPS4 : BSA molar ratios from 1 : 0.005 to 1 : 20. In the presence of protein at all used concentrations the intensity of J-aggregates absorption band was higher than that in the pure solution. Spectral changes indicated that the dynamic equilibrium of the aggregated TPPS4 species was highly dependent on the molar ratio between TPPS4 and BSA. Small relative concentrations of BSA (TPPS4 : BSA, 1 : 0.005-1 : 0.1) had a stimulating effect on formation of J-aggregates. Several fractions of J-aggregates located in protein and aqueous moieties were detected in mixed solutions at intermediate BSA concentrations (TPPS4 : BSA, 1 : 0.5-1 : 8), when the absorbance intensity of the J-aggregates was the highest. At the highest used BSA concentrations (TPPS4 : BSA, 1 : 10-1 : 20) the spectral properties of the remaining J-aggregates were similar to those typical for pure porphyrin solution. Additionally, the split of the Soret band into two with peaks at 440 nm and 423 nm was followed by the simultaneous appearance of Q bands and reflected the formation of TPPS4-BSA complexes including both protonated and deprotonated TPPS4 forms.  相似文献   

16.
The fluorescence properties and role in energy transfer of protochlorophyllide (Pchlide) forms were studied in dark-grown wheat leaves by conventional and laser excited high resolution methods in the 10 K–100 K temperature range. The three major spectral bands, with emission maxima at 633, 657 (of highest intensity) and 670 nm as Bands I, II, and III were analyzed and interpreted as the contributions of six different structural forms. Band I is the envelope of three (0,0) emission bands with maxima at 628, 632 and 642 nm. Laser excitation studies in the range of Band II at 10 K reveal the presence of a spectrally close donor band besides the acceptor, Band II. The intensity in Band III originates mostly from being the vibronic satellite of Band II, but contains also a small (0,0) band with absorption maximum at 674 nm. Excitation spectra show that besides the Pchlides with absorption around 650 nm within Band II, another significant population of Band I with absorption around 640 nm is also coupled by energy transfer to the acceptor of Band II. The spectral difference between the two donor forms indicate different dipolar environments. Upon increasing the temperature, the intensity of Band II and its satellite, Band III decrease, while Band I remains unaffected. Band II shows also a broadening towards the blue side at higher temperatures. Both the quenching of fluorescence and the spectral change was explained by a thermally activated formation of a non-fluorescent intermediate state in the excited state of Pchlide acceptors.  相似文献   

17.
A study of the absorption and fluorescence characteristics of the D1/D2/cytb-559 reaction centre complex of Photosystem II has been carried out by gaussian decomposition of absorption spectra both at room temperature and 72 K and of the room temperature fluorescence spectrum. A five component fit was found in which the absorption and fluorescence sub-bands could be connected by the Stepanov relation. The photobleaching and light-activated degradation in the dark of long wavelength pigments permitted a further characterisation of the absorption bands. The absorption (fluorescence) maxima of the five bands at room temperature are 660 nm (670 nm), 669 nm (675 nm), 675 nm (681 nm), 680 nm (683 nm), 681 nm (689 nm). A novel feature of this analysis is the presence of two approximately isoenergetic absorption bands near 680 nm at room temperature. The narrower one (FWHM=12.5 nm) is attributed to pheophytin while the broader band (FWHM=23 nm) is thought to be P680. The P680 band width is discussed in terms of homogeneous and site inhomogeous band broadening. The P680 fluorescence has a large Stokes shift (9 nm) and most fluorescence in the 690–700 nm range is associated with this chromophore.The three accessory pigment bands are broad (FWHM=17–24 nm) and the 660 nm gaussian is largely temperature insensitive thus indicating significant site inhomogeneous broadening.The very slight narrowing of the D1/D2/cytb-559 Qy absorption at crytogenic temperatures is discussed in terms of the coarse spectral inhomogeneity associated with the spectral forms and the apparently large site inhomogeneous broadening of short wavelength accessory pigments.  相似文献   

18.
During illumination of dark-grown plants protochlorophyllide (Pchlide) is continuously transformed to chlorophyllide (Chlide). Different dark-grown plants, maize ( Zea mays cv. Sundance), wheat ( Triticum aestivum cv. Kosack), pea ( Pisum sativum cv. Kelwedon wonder), the lip1 mutant of pea, and the aurea mutant of tomato ( Solanum lycopersicum ), have various ratios of spectral Pchlide forms in darkness. When the plants were illuminated and then returned to darkness Pchlide re-accumulated. The proportions of different Pchlide forms within the pool of re-accumulated Pchlide were followed by low temperature fluorescence emission and excitation spectra in green and greening leaves. After 1 h of illumination the spectral characteristics of regenerated Pchlide forms mirrored those of Pchlide in dark-grown plants and were thus species dependent. After a prolonged illumination period (24 h) as well as in fully green leaves energy transfer to chlorophyll (Chl) masked the presence of long-wavelength Pchlide in the fluorescence emission spectra. However, excitation spectra showed Pchlide absorption around 650 nm and its flash-induced disappearance confirmed its nature of phototransformable Pchlide. In fact the excitation spectra showed that the proportions of different Pchlide forms in green leaves highly resembled the proportions of Pchlide forms in dark-grown leaves and were specific for the plant variety. Thus Chl formation in both dark-grown and light-grown leaves can occur in a similar way through the main photoactive long-wavelength form of Pchlide.  相似文献   

19.
Amine-reactive N-hydroxysuccinimidyl esters of Alexa Fluor fluorescent dyes with principal absorption maxima at about 555 nm, 633 nm, 647 nm, 660 nm, 680 nm, 700 nm, and 750 nm were conjugated to antibodies and other selected proteins. These conjugates were compared with spectrally similar protein conjugates of the Cy3, Cy5, Cy5.5, Cy7, DY-630, DY-635, DY-680, and Atto 565 dyes. As N-hydroxysuccinimidyl ester dyes, the Alexa Fluor 555 dye was similar to the Cy3 dye, and the Alexa Fluor 647 dye was similar to the Cy5 dye with respect to absorption maxima, emission maxima, Stokes shifts, and extinction coefficients. However, both Alexa Fluor dyes were significantly more resistant to photobleaching than were their Cy dye counterparts. Absorption spectra of protein conjugates prepared from these dyes showed prominent blue-shifted shoulder peaks for conjugates of the Cy dyes but only minor shoulder peaks for conjugates of the Alexa Fluor dyes. The anomalous peaks, previously observed for protein conjugates of the Cy5 dye, are presumably due to the formation of dye aggregates. Absorption of light by the dye aggregates does not result in fluorescence, thereby diminishing the fluorescence of the conjugates. The Alexa Fluor 555 and the Alexa Fluor 647 dyes in protein conjugates exhibited significantly less of this self-quenching, and therefore the protein conjugates of Alexa Fluor dyes were significantly more fluorescent than those of the Cy dyes, especially at high degrees of labeling. The results from our flow cytometry, immunocytochemistry, and immunohistochemistry experiments demonstrate that protein-conjugated, long-wavelength Alexa Fluor dyes have advantages compared to the Cy dyes and other long-wavelength dyes in typical fluorescence-based cell labeling applications.  相似文献   

20.
Hematoporphyrin-Derivative (HpD), a widely-used tumor-specific photosensitizer, is a complex mixture of porphyrins whose composition has yet to be clarified. This paper reports on the behaviour of HpD in saline. From a spectroscopic point of view, the fresh solution is characterized by two main absorption peaks, attributable to monomeric and dimeric forms. With aging, a new porphyrin species (NPS) appears. To define the NPS, absorption, excitation and emission spectra were measured in different conditions and time-resolved fluorescence measurements were also performed. This species exhibits an absorption/excitation peak at 405 nm, an emission peak at 575 nm and a fluorescence decay time of approximately 3.5 ns. Its formation is strongly influenced by many environmental factors: in particular, gases diluted in the solution, temperature, pH and concentration. The presence of Oxygen and a pH value outside the 6-8 range may be considered inhibiting factors. The NPS seems to be quite important in the understanding of HpD tumor-specificity, since the presence of an emission band similar to the NPS one seems to be favoured in tumor cells as compared with normal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号