首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-typeable Haemophilus influenzae (NTHi) is a significant cause of otitis media in children. We have employed single and multiple step electrospray ionization mass spectrometry (ESIMS) and NMR spectroscopy to profile and elucidate lipopolysaccharide (LPS) structural types expressed by NTHi strain 162, a strain obtained from an epidemiological study in Finland. ESIMS on O-deacylated LPS (LPS-OH) and core oligosaccharide (OS) samples of LPS provided information on the composition and relative abundance of glycoforms differing in the number of hexoses linked to the conserved inner-core element, L-alpha-D-Hepp-(1-->2)-[PEtn-->6]-L-alpha-D-Hepp-(1-->3)-L-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdop-(2-->6)-Lipid A of H. influenzae LPS. The strain examined was found to elaborate Hex2 to Hex5 LPS glycoform populations having structures identical to those observed for H. influenzae strain Rd [Risberg, A.; Masoud, H.; Martin, A.; Richards, J.C.; Moxon, E.R.; Schweda, E.K.H. Eur. J. Biochem. 1999, 261, 171-180], the strain for which the complete genome has been sequenced. In addition, sialyllactose-containing glycoforms previously identified in strain Rd as well as several NTHi strains, were identified as minor components. Multiple step tandem ESIMS (MS(n)) on dephosphorylated and permethylated OS provided information on the arrangement of glycoses within the major population of glycoforms and on the existence of additional isomeric glycoforms. Minor Hex1 and Hex6 glycoforms were detected and characterized where the Hex6 glycoform was comprised of a dihexosamine-containing pentasaccharide chain attached at the proximal heptose residue of the inner-core unit. LPS structural motifs present in the NTHi strain 162 are expressed by a genetically diverse set of disease causing isolates, providing the basis for a vaccine strategy against NTHi otitis media.  相似文献   

2.
A genetic basis for the biosynthetic assembly of the globotetraose containing lipopolysaccharide (LPS) of Haemophilus influenzae strain RM118 (Rd) was determined by structural analysis of LPS derived from mutant strains. We have previously shown that the parent strain RM118 elaborates a population of LPS molecules made up of a series of related glycoforms differing in the degree of oligosaccharide chain extension from the distal heptose residue of a conserved phosphorylated inner-core element, L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)-]-L-alpha-D-Hepp-(1-->5)-alpha-Kdo. The fully extended LPS glycoform expresses the globotetraose structure, beta-D-GalpNAc-(1-->3)-alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp. A fingerprinting strategy was employed to establish the structure of LPS from strains mutated in putative glycosyltransferase genes compared to the parent strain. This involved glycose and linkage analysis on intact LPS samples and analysis of O-deacylated LPS samples by electrospray ionization mass spectrometry and 1D (1)H-nuclear magnetic resonance spectroscopy. Four genes, lpsA, lic2A, lgtC, and lgtD, were required for sequential addition of the glycoses to the terminal inner-core heptose to give the globotetraose structure. lgtC and lgtD were shown to encode glycosyltransferases by enzymatic assays with synthetic acceptor molecules. This is the first genetic blueprint determined for H. influenzae LPS oligosaccharide biosynthesis, identifying genes involved in the addition of each glycose residue.  相似文献   

3.
Lipopolysaccharide (LPS) is a major virulence determinant of the human bacterial pathogen Haemophilus influenzae. Structural elucidation of the LPS from H. influenzae type b strain RM7004 was achieved by using electrospray ionization mass spectrometry (ESI-MS) and high-field NMR techniques on delipidated LPS and core oligosaccharide samples of LPS. It was found that the organism elaborates a series of related LPS glycoforms having a common inner-core structure, but differing in the number and position of attached hexose residues. LPS glycoforms containing between four and nine hexose residues were structurally characterized. The inner-core element was determined to be L-alpha-D-Hepp-(1-->2)-[PEA-->6]-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-L-alpha-D-Hepp-(1-->5)-[P-->4]-alpha-KDOp-(2-->, a structural feature which has been identified in every H. influenzae strain investigated to date. Two major groups of isomeric glycoforms were characterized in which the terminal Hepp residue of the inner-core element was either substituted at the O-2 position with a beta-D-Galp residue or not. The structures of the major LPS glycoforms were found to have oligosaccharide chain extensions from O-3 of the middle Hepp residue. Glycoforms containing five and six hexose residues were most abundant and were shown to carry the tetrasaccharide unit alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->4)-alpha-D-Glcp at the O-3 position of the middle heptose. This tetrasaccharide displays the globoside trisaccharide (globotriose) as a terminal epitope, a structure that is found on many human cells (P(k) blood group antigen) and which is thought to be an important virulence determinant for H. influenzae. LPS glycoforms were characterized that had further chain extension from the beta-D-Glcp-(1--> residue of the proximal Hepp. In the fully extended LPS (Hex9/Hex8' glycoforms), both the proximal and middle heptose residues carried tetrasaccharide chains displaying terminal globotriose epitopes. In addition, the LPS was found to carry phosphorylcholine and O-acetyl groups.  相似文献   

4.
A survey of both typeable and nontypeable strains of Haemophilus influenzae indicated that they contain glycine (Gly) in their lipopolysaccharide (LPS). Significant amounts (30-250 pmol Gly/microg LPS) were determined by high-performance anion-exchange chromatography using pulsed amperometric detection after treatment of the LPS with mild alkali. Oligosaccharides obtained from LPS after mild acid hydrolysis and gel filtration chromatography were investigated by electrospray ionization mass spectrometry (ESI-MS) and capillary electrophoresis (CE) ESI-MS. In all cases, molecular ions corresponding to the major glycoforms were identified and were accompanied by ions differing by 57 Da, thus indicating the presence of glycine. The position of glycine in these glycoforms was determined by CE-ESI-MS/MS analyses. It was found that, depending on strain, glycine can substitute each of the heptoses of the inner-core element, L-alpha-D-Hepp-(1-->2)-[PEtn-->6]-L-alpha-D-Hepp-(1-->3)-L-alpha-D-Hepp-(1-->5)-alpha-Kdo of H. influenzae LPS as well as Kdo. In some strains, mixtures of monosubstituted Gly-containing glycoforms having different substitution patterns were identified.  相似文献   

5.
Haemophilus influenzae expresses heterogeneous populations of short-chain lipopolysaccharide (LPS) which exhibit extensive antigenic diversity among multiple oligosaccharide epitopes. These LPS oligosaccharide epitopes can carry phosphocholine (PCho) substituents, the expression of which is subject to high frequency phase variation mediated by genes in the lic1 genetic locus. The location and site of attachment of PCho substituents were determined by structural analysis of LPS from two type b H. influenzae strains, Eagan and RM7004. The lic2 locus is involved in phase variation of oligosaccharide expression. LPS obtained from the parent strains, from mutants generated by insertion of antibiotic resistance cassettes in the lic2 genetic locus, and from phase-variants showing high levels of PCho expression was characterized by electrospray ionization-mass spectrometry (ESI-MS) and 1H NMR spectroscopy of derived O-deacylated samples. ESI-MS of O-deacylated LPS from wild-type strains revealed mixtures of related glycoform structures differing in the number of hexose residues. Analysis of LPS from PCho-expressing phase-variants revealed similar mixtures of glycoforms, each containing a single PCho substituent. O-Deacylated LPS preparations from the lic2 mutants were much less complex than their respective parent strains, consisting only of Hex3 and/or Hex2 glycoforms, were examined in detail by high-field NMR techniques. It was found that the LPS samples contain the phosphoethanolamine (PEtn) substituted inner-core element, L-alpha-D-Hepp-(1-->2)-[PEtn-->6]-L-alpha-D-Hepp-(1--> 3)-L-alpha-D-He pp-(1-->5)-alpha-Kdo in which the major glycoforms carry a beta-D-Glcp or beta-D-Glcp-(1-->4)-beta-D-Glcp at the O-4 position of the 3-substituted heptose (HepI) and a beta-D-Galp at the O-2 position of the terminal heptose (HepIII). LPS from the lic2 mutants of both type b strains were found to carry PCho groups at the O-6 position of the terminal beta-D-Galp residue attached to HepIII. In the parent strains, the central heptose (HepII) of the LPS inner-core element is also substituted by hexose containing oligosaccharides. The expression of the galabiose epitope in LPS of H. influenzae type b strains has previously been linked to genes comprising the lic2 locus. The present study provides definitive evidence for the role of lic2 genes in initiating chain extension from HepII. From the analysis of core oligosaccharide samples, LPS from the lic2 mutant strain of RM7004 was also found to carry O-acetyl substituents. Mono-, di-, and tri-O-acetylated LPS oligosaccharides were identified. The major O-acetylated glycoforms were found to be substituted at the O-3 position of HepIII. A di-O-acetylated species was characterized which was also substituted at the O-6 postion of the terminal beta-D-Glc in the Hex3 glycoform. This is the first report pointing to the occurrence of O-acetyl groups in the inner-core region of H. influenzae LPS. We have previously shown that in H. influenzae strain Rd, a capsule-deficient type d strain, PCho groups are expressed in a different molecular environment, being attached at the O-6 position of a beta-D-Glcp, which is in turn attached to HepI.  相似文献   

6.
The structure of the lipopolysaccharide (LPS) from non-typeable Haemophilus influenzae strain 176 has been investigated. Electrospray ionization-mass spectrometry (ESIMS) on O-deacylated LPS (LPS-OH) and core oligosaccharide (OS) samples obtained after mild-acid hydrolysis of LPS provided information on the composition and relative abundance of the glycoforms. ESIMS tandem-mass spectrometry on LPS-OH confirmed the presence of minor sialylated and disialylated glycoforms. Oligosaccharide samples were studied in detail using high-field NMR techniques. It was found that the LPS contains the common inner-core element of H. influenzae, L-alpha-D-Hepp-(1-->2)-[PEtn-->6]-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-L-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdop-(2-->6)-Lipid A having glycosyl substitution at the O-3 position of the terminal heptose as recently observed for non-typeable H. influenzae strain 486 [M?nsson, M.; Bauer, S. H. J.; Hood, D. W.; Richards, J. C.; Moxon, E. R.; Schweda, E. K. H., Eur. J. Biochem. 2001, 268, 2148--2159]. The following LPS structures were identified as the major glycoforms, the most significant being indicated with an asterisk (*) (glycoforms are partly substituted with Gly at the terminal Hep):  相似文献   

7.
Lipopolysaccharide (LPS) is a major virulence determinant of the human bacterial pathogen Haemophilus influenzae. A characteristic feature of H. influenzae LPS is the extensive intra- and inter-strain heterogeneity of glycoform structure which is key to the role of the molecule in both commensal and disease-causing behaviour of the bacterium. The chemical composition of non-typeable Haemophilus influenzae (NTHi) LPS is highly diverse. It contains a number of different monosaccharides (Neu5Ac, L-glycero-D-manno heptose, D-glycero-D-manno heptose, Kdo, D-Glc, D-Gal, D-GlcNAc, D-GalNAc) and non-carbohydrate substituents. Prominent non-carbohydrate components are O-acetyl groups, glycine and phosphates. We now know that sialic acid (N-acetylneuraminic acid or Neu5Ac) and certain oligosaccharide extensions are important in the pathogenesis of NTHi; however, the biological implications for many of the various features are still unknown. Electrospray ionization mass spectrometry in combination with separation techniques like CE and HPLC is an indispensable tool in profiling glycoform populations in heterogeneous LPS samples. Mass spectrometry is characterized by its extreme sensitivity. Trace amounts of glycoforms expressing important virulence determinants can be detected and characterized on minute amounts of material. The present review focuses on LPS structures and mass spectrometric methods which enable us to profile these in complex mixtures.  相似文献   

8.
The structure of the core region of the lipopolysaccharide (LPS) from the nontypable Haemophilus influenzae strain SB 33 was elucidated. The LPS was subjected to a variety of degradative procedures. The structures of the derived oligosaccharide products were established by monosaccharide and methylation analyses, NMR spectroscopy and mass spectrometry. These analyses revealed a series of related phosphocholine (PCho) containing structures differing in the number of hexose residues. The results pointed to each species containing a conserved phosphoethanolamine (PEtn) substituted heptose-containing trisaccharide inner-core moiety. The major LPS glycoforms were identified as 2-Hex, 3-Hex and 4-Hex species according to the number of hexose residues present.  相似文献   

9.
The availability of the complete 1.83-megabase-pair sequence of the Haemophilus influenzae strain Rd genome has facilitated significant progress in investigating the biology of H. influenzae lipopolysaccharide (LPS), a major virulence determinant of this human pathogen. By searching the H. influenzae genomic database, with sequences of known LPS biosynthetic genes from other organisms, we identified and then cloned 25 candidate LPS genes. Construction of mutant strains and characterization of the LPS by reactivity with monoclonal antibodies, PAGE fractionation patterns and electrospray mass spectrometry comparative analysis have confirmed a potential role in LPS biosynthesis for the majority of these candidate genes. Virulence studies in the infant rat have allowed us to estimate the minimal LPS structure required for intravascular dissemination. This study is one of the first to demonstrate the rapidity, economy and completeness with which novel biological information can be accessed once the complete genome sequence of an organism is available.  相似文献   

10.
毛细管电泳-质谱(CE-MS)联用技术兼具毛细管电泳高效分离能力与质谱高灵敏检测、高真度定性的优势,已成为物质分离分析研究的一种非常重要的工具。本文对近几年来 CE-MS 联用的关键技术及 CE-MS 在中药分析、环境检测等领域的一些应用进展进行综述,对其发展进行了展望。  相似文献   

11.
12.
We have identified a gene for the addition of N-acetylneuraminic acid (Neu5Ac) in an alpha-2,3-linkage to a lactosyl acceptor moiety of the lipopolysaccharide (LPS) of the human pathogen Haemophilus influenzae. The gene is one that was identified previously as a phase-variable gene known as lic3A. Extracts of H. influenzae, as well as recombinant Escherichia coli strains producing Lic3A, demonstrate sialyltransferase activity in assays using synthetic fluorescent acceptors with a terminal galactosyl, lactosyl or N-acetyl-lactosaminyl moiety. In the RM118 strain of H. influenzae, Lic3A activity is modulated by the action of another phase-variable glycosyltransferase, LgtC, which competes for the same lactosyl acceptor moiety. Structural analysis of LPS from a RM118:lgtC mutant and the non-typeable strain 486 using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy confirmed that the major sialylated species has a sialyl-alpha-(2-3)-lactosyl extension off the distal heptose. This sialylated glycoform was absent in strains containing a lic3A gene disruption. Low amounts of sialylated higher molecular mass glycoforms were present in RM118:lgtC lic3A, indicating the presence of a second sialyltransferase. Lic3A mutants of H. influenzae strains show reduced resistance to the killing effects of normal human serum. Lic3A, encoding an alpha-2,3-sialyltransferase activity, is the first reported phase-variable sialyltransferase gene.  相似文献   

13.
We report the novel pattern of lipopolysaccharide (LPS) expressed by two disease-associated nontypeable Haemophilus influenzae strains, 1268 and 1200. The strains express the common structural motifs of H. influenzae; globotetraose [beta-d-GalpNAc-(1-->3)-alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and its truncated versions globoside [alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and lactose [beta-d-Galp-(1-->4)-beta-d-Glcp] linked to the terminal heptose (HepIII) and the corresponding structures with an alpha-d-Glcp as the reducing sugar linked to the middle heptose (HepII) in the same LPS molecule. Previously these motifs had been found linked only to either the proximal heptose (HepI) or HepIII of the triheptosyl inner-core moiety l-alpha-d-Hepp-(1-->2)-[PEtn-->6]-l-alpha-d-Hepp-(1-->3)-l-alpha-d-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-lipid A. This novel finding was obtained by structural studies of LPS using NMR techniques and ESI-MS on O-deacylated LPS and core oligosaccharide material, as well as electrospray ionization-multiple-step tandem mass spectrometry on permethylated dephosphorylated oligosaccharide material. A lpsA mutant of strain 1268 expressed LPS of reduced complexity that facilitated unambiguous structural determination. Using capillary electrophoresis-ESI-MS/MS we identified sialylated glycoforms that included sialyllactose as an extension from HepII, this is a further novel finding for H. influenzae LPS. In addition, each LPS was found to carry phosphocholine and O-linked glycine. Nontypeable H. influenzae strain 1200 expressed identical LPS structures to 1268 with the difference that strain 1200 LPS had acetates substituting HepIII, whereas strain 1268 LPS has glycine at the same position.  相似文献   

14.
A sialylated lacto-N-neotetraose (Sial-lNnT) structural unit was identified and structurally characterized in the lipopolysaccharide (LPS) from the genome-sequenced strain Rd [corrected] (RM118) of the human pathogen Haemophilus influenzae grown in the presence of sialic acid. A combination of molecular genetics, MS and NMR spectroscopy techniques showed that this structural unit extended from the proximal heptose residue of the inner core region of the LPS molecule. The structure of the Sial-lNnT unit was identical to that found in meningococcal LPS, but glycoforms containing truncations of the Sial-lNnT unit, comprising fewer residues than the complete oligosaccharide component, were not detected. The finding of sialylated glycoforms that were either fully extended or absent suggests a novel biosynthetic feature for adding the terminal tetrasaccharide unit of the Sial-lNnT to the glycose acceptor at the proximal inner core heptose.  相似文献   

15.
Sialylation of the lipopolysaccharide (LPS) is an important mechanism used by the human pathogen Haemophilus influenzae to evade the innate immune response of the host. We have demonstrated that N-acetylneuraminic acid (Neu5Ac or sialic acid) uptake in H. influenzae is essential for the subsequent modification of the LPS and that this uptake is mediated through a single transport system which is a member of the tripartite ATP-independent periplasmic (TRAP) transporter family. Disruption of either the siaP (HI0146) or siaQM (HI0147) genes, that encode the two subunits of this transporter, results in a complete loss of uptake of [14C]-Neu5Ac. Mutant strains lack sialylated glycoforms in their LPS and are more sensitive to killing by human serum than the parent strain. The SiaP protein has been purified and demonstrated to bind a stoichiometric amount of Neu5Ac by electrospray mass spectrometry. This binding was of high affinity with a Kd of approximately 0.1 microM as determined by protein fluorescence. The inactivation of the SiaPQM TRAP transporter also results in decreased growth of H. influenzae in a chemically defined medium containing Neu5Ac, supporting an additional nutritional role of sialic acid in H. influenzae physiology.  相似文献   

16.
We have identified a gene for the addition of N- acetylneuraminic acid (Neu5Ac) in an α-2,3-linkage to a lactosyl acceptor moiety of the lipopolysaccharide (LPS) of the human pathogen Haemophilus influenza e. The gene is one that was identified previously as a phase-variable gene known as lic3A . Extracts of H. influenzae , as well as recombinant Escherichia coli strains producing Lic3A, demonstrate sialyltransferase activity in assays using synthetic fluorescent acceptors with a terminal galactosyl, lactosyl or N- acetyl-lactosaminyl moiety. In the RM118 strain of H. influenzae , Lic3A activity is modulated by the action of another phase-variable glycosyltransferase, LgtC, which competes for the same lactosyl acceptor moiety. Structural analysis of LPS from a RM118: lgtC mutant and the non-typeable strain 486 using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy confirmed that the major sialylated species has a sialyl-α-(2–3)-lactosyl extension off the distal heptose. This sialylated glycoform was absent in strains containing a lic3A gene disruption. Low amounts of sialylated higher molecular mass glycoforms were present in RM118: lgtC lic3A , indicating the presence of a second sialyltransferase. Lic3A mutants of H. influenzae strains show reduced resistance to the killing effects of normal human serum. Lic3A , encoding an α-2,3-sialyltransferase activity, is the first reported phase-variable sialyltransferase gene.  相似文献   

17.
Lipooligosaccharide (LOS) glycoforms from Haemophilus influenzae 2019 were profiled using the high-resolution and accurate mass capabilities of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Sequence and linkage for two previously unknown LOS glycoforms were subsequently obtained through MSn analyses on FT-ICR and quadrupole ion trap (qIT) instruments. MSn analysis of negative ion precursors confirmed structural details within the lipid moiety, while CID spectra of sodiated precursor ions provided monosaccharide sequence and linkage for the oligosaccharide portion of the molecule. Results obtained in this study indicate that extensive heterogeneity exists within the oligosaccharide moieties in LOS from H. influenzae 2019. More importantly, the data suggest that additional hexose moieties, which are added onto the LOS, are not simple extensions of one particular core structure but rather that structural isomers with different connectivities are present within the heterogeneous mixture.  相似文献   

18.
Lipopolysaccharide (LPS) oligosaccharide epitopes are major virulence factors of Haemophilus influenzae. The structure of LPS glycoforms of H. influenzae type b strain Eagan containing a mutation in the gene lgtC is investigated. LgtC is involved in the biosynthesis of globoside trisaccharide [alpha-D-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-D-Glcp-(1-->], an LPS epitope implicated in the virulence of this organism. Glycose and methylation analyses provided information on the composition while electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS (LPS-OH) indicated the major glycoform to contain 4 hexoses attached to the common H. influenzae triheptosyl inner-core unit. The structure of the Hex4 glycoform in LPS-OH and core oligosaccharide samples was determined by NMR. It consists of an l-alpha-D-HepIIIp-(1-->2)-[PEtn-->6]-l-alpha-D-HepIIp-(1-->3)-l-alpha-D-HepIp-(1-->5)-[P-->4]-alpha-D-Kdop-(2--> to which a beta-D-Glcp-(1-->4)-alpha-D-Glcp disaccharide unit is extended from HepII at the C-3 position, while HepI and HepIII are substituted at the C-4 and C-2 positions with beta-D-Glcp and beta-D-Galp, respectively. This structure corresponds to that expressed as a subpopulation in the parent strain. 31P NMR studies permitted the identification of subpopulations of LPS containing Kdo substituted at the C-4 position with monophosphate or pyrophosphoethanolamine (PPEtn). HepIII was found to be substituted with either phosphate at the C-4 position or acetate at the C-3 position, but not both of them together in the same subpopulation. The subpopulations containing phosphate and acetate at HepIII and their location have not previously been reported.  相似文献   

19.
Common structural motifs of Haemophilus influenzae lipopolysaccharide (LPS) are globotetraose [beta-d-GalpNAc-(1-->3)-alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and its truncated versions globoside [alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and lactose [beta-d-Galp-(1-->4)-beta-d-Glcp] linked to the terminal heptose (HepIII) of the triheptosyl inner-core moiety l-alpha-d-Hepp-(1-->2)-[PEA-->6]-l-alpha-d-Hepp-(1-->3)-l-alpha-d-Hepp-(1-->5)-[PPEA-->4]-alpha-Kdo-(2-->6)-lipid A. We report here structural studies of LPS from nontypeable H. influenzae strain 1124 expressing these motifs linked to both the proximal heptose (HepI) and HepIII at the same time. This novel finding was obtained by structural studies of LPS using NMR techniques and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS) as well as ESI-MS(n)() on permethylated dephosphorylated OS. The use of defined mutants allowed us to confirm structures unambiguously and understand better the biosynthesis of each of the globotetraose units. We found that lgtC is involved in the expression of alpha-d-Galp-(1-->4)-beta-d-Galp in both extensions, whereas lic2A directs only the expression of beta-d-Galp-(1-->4)-beta-d-Glcp when linked to HepIII. The LPS of NTHi strain 1124 contained sialylated glycoforms that were identified by CE-ESI-MS/MS. A common sialylated structure in H. influenzae LPS is sialyllactose linked to HepIII. This structure exists in strain 1124. However, results for the lpsA mutant indicate that sialyllactose extends from HepI as well, a molecular environment for sialyllactose in H. influenzae that has not been reported previously. In addition, the LPS was found to carry phosphorylcholine, O-linked glycine, and a third PEA group which was linked to O3 of HepIII.  相似文献   

20.
Structural elucidation of the lipopolysaccharide (LPS) of Haemophilus influenzae, strain Rd, a capsule-deficient type d strain, has been achieved by using high-field NMR techniques and electrospray ionization-mass spectrometry (ESI-MS) on delipidated LPS and core oligosaccharide samples. It was found that this organism expresses heterogeneous populations of LPS of which the oligosaccharide (OS) epitopes are subject to phase variation. ESI-MS of O-deacylated LPS revealed a series of related structures differing in the number of hexose residues linked to a conserved inner-core element, L-alpha-D-Hepp-(1-->2)-L-alpha-D-Hepp-(1-->3)-[beta-D-Glcp- (1-->4)-]- L-alpha-D-Hepp-(1-->5)-alpha-Kdo, and the degree of phosphorylation. The structures of the major LPS glycoforms containing three (two Glc and one Gal), four (two Glc and two Gal) and five (two Glc, two Gal and one GalNAc) hexoses were substituted by both phosphocholine (PCho) and phosphoethanolamine (PEtn) and were determined in detail. In the major glycoform, Hex3, a lactose unit, beta-D-Galp-(1-->4)-beta-D-Glcp, is attached at the O-2 position of the terminal heptose of the inner-core element. The Hex4 glycoform contains the PK epitope, alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-beta-D-Glcp while in the Hex5 glycoform, this OS is elongated by the addition of a terminal beta-D-GalpNAc residue, giving the P antigen, beta-D-GalpNAc-(1-->3)-alpha-D-Galp-(1-->4)-beta-D-Galp-(1-->4)-D-Glc p. The fully extended LPS glycoform (Hex5) has the following structure. [see text] The structural data provide the first definitive evidence demonstrating the expression of a globotetraose OS epitope, the P antigen, in LPS of H. influenzae. It is noteworthy that the molecular environment in which PCho units are found differs from that observed in an Rd- derived mutant strain (RM.118-28) [Risberg, A., Schweda, E. K. H. & Jansson, P-E. (1997) Eur. J. Biochem. 243, 701-707].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号