首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The severity of tubulointerstitial fibrosis is regarded as an important determinant of renal prognosis. Therapeutic strategies targeting tubulointerstitial fibrosis have been considered to have potential in the treatment of chronic kidney disease. This study aims to evaluate the protective effects of (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol, against renal interstitial fibrosis in mice. EGCG was administrated intraperitoneally for 14 days in a mouse model of unilateral ureteral obstruction (UUO). The results of our histological examination showed that EGCG alleviated glomerular and tubular injury and attenuated renal interstitial fibrosis in UUO mice. Furthermore, the inflammatory responses induced by UUO were inhibited, as represented by decreased macrophage infiltration and inflammatory cytokine production. Additionally, the expression of type I and III collagen in the kidney were reduced by EGCG, which indicated an inhibition of extracellular matrix accumulation. EGCG also caused an up-regulation in α-smooth muscle actin expression and a down-regulation in E-cadherin expression, indicating the inhibition of epithelial-to-mesenchymal transition. These changes were found to be in parallel with the decreased level of TGF-β1 and phosphorylated Smad. In conclusion, the present study demonstrates that EGCG could attenuate renal interstitial fibrosis in UUO mice, and this renoprotective effect might be associated with its effects of inflammatory responses alleviation and TGF-β/Smad signaling pathway inhibition.  相似文献   

3.
Current evidence supports the use of bone marrow–derived mesenchymal stem cells (MSCs) for a diverse range of clinical applications, and many studies have shown that MSCs have renal-protective effects, but the mechanism is not well understood. Therefore, in this study, we aim to further identify whether MSCs can attenuate renal fibrosis by decreasing tubulointerstitial injury in a unilateral ureteral obstruction (UUO) model. In this study, we cultured MSCs and then transplanted them into a UUO model through the tail vein. Histology, cell proliferation, peritubular capillary (PTC) loss and myofibroblast markers were examined on days 3, 7 and 14 after surgery. We demonstrated that renal interstitial fibrosis in the MSC group was significantly attenuated compared with the UUO and DMEM groups. Moreover, MSC treatment inhibited the loss of PTCs and increased parenchymal cell proliferation. In addition, UUO-induced activation and proliferation of myofibroblasts were suppressed by MSC infusion. Furthermore, MSCs attenuated tubulointerstitial infiltration of macrophages in UUO mice. Tubulointerstitial damage plays a very important role in the progression of chronic kidney disease (CKD). PTC loss, macrophage recruitment, and myofibroblast activation are directly correlated with the development of renal tubulointerstitial fibrosis. Our results suggest that MSC infusion in the UUO model is a promising therapeutic strategy for promoting kidney repair.  相似文献   

4.
We examined the role of matrix metalloproteinase-2 (MMP-2) in renal fibrosis and its effect on interstitial macrophage infiltration in a mouse model of unilateral ureteral obstruction (UUO). TISAM, a selective inhibitor of MMP-2, was administered during early stage (day -2 to 4; protocol A) and late stage (day 7 to 13; protocol B) after UUO. Treatment with TISAM accelerated fibrosis both at day 5 (A) and at day 14 (B). The degree of macrophage infiltration was decreased by the treatment with TISAM at day 14, but not at day 5. In vitro macrophage migration assay showed a greater migration to renal tissue of control UUO kidney (day 14) than to TISAM-treated kidney, which was suppressed by preincubating macrophages with RGDS, a fibronectin degradation peptide. These results suggest that MMP-2 acts to accelerate macrophage infiltration in the late stage of UUO, possibly by degrading extracellular matrix components.  相似文献   

5.

Background

Inflammation has a crucial role in renal interstitial fibrosis, which is the common pathway of chronic kidney diseases. Mefunidone (MFD) is a new compound which could effectively inhibit the proliferation of renal fibroblasts in vitro. However, the overall effect of Mefunidone in renal fibrosis remains unknown.

Methods

Sprague-Dawley rats were randomly divided intro 6 groups: sham operation, unilateral ureteral obstruction (UUO), UUO/Mefunidone (25, 50, 100mg/kg/day) and UUO/PFD (500mg/kg/day). The rats were sacrificed respectively on days 3, 7, and 14 after the operation. Tubulointerstitial injury index, interstitial collagen deposition, expression of fibronectin (FN), α-smooth muscle actin (α-SMA), type I and III collagen and the number of CD3+ and CD68+ cells were determined. The expressions of proinflammatory cytokines, p-ERK, p-IκB, and p-STAT3 were measured in human renal proximal tubular epithelial cells of HK-2 or macrophages.

Results

Mefunidone treatment significantly attenuated tubulointerstitial injury, interstitial collagen deposition, expression of FN, α-SMA, type I and III collagen in the obstructive kidneys, which correlated with significantly reduced the number of T cells and macrophages in the obstructive kidneys. Mechanistically, Mefunidone significantly inhibited tumor necrosis factor-α (TNF-α-) or lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. This effect is possibly due to the inhibition of phosphorylation of ERK, IκB, and STAT3.

Conclusion

Mefunidone treatment attenuated tubulointerstitial fibrosis in a rat model of UUO, at least in part, through inhibition of inflammation.  相似文献   

6.
目的 观察苦参素对肾间质纤维化大鼠单核巨噬细胞(MC/MP)浸润,MCP-1及Ⅰ型胶原表达的影响。方法 大鼠行单侧输尿管结扎(UUO)建立肾小管间质纤维化模型。实验分为3组:假手术组,UUO组,苦参素治疗组。治疗组在UUO的基础上每天以苦参素100mg/Kg腹腔注射。各组于术后第14d分别处死5只大鼠。用PAS及Masson染色法观察肾脏病理改变。用免疫组织化学法观察肾间质ED-1阳性的MC/MP细胞浸润,单核细胞趋化蛋白-1(MCP-1)及Ⅰ型胶原(ColⅠ)的表达。结果 苦参素治疗组肾间质MC/MP细胞浸润数及MCP-1,ColⅠ的表达显著低于UUO组,肾小管变性和肾间质纤维化的程度也明显减轻。结论 苦参素可下调UUO大鼠肾间质MCP-1的表达,减少MC/MP细胞浸润,减轻肾间质纤维化。  相似文献   

7.
为观察化瘀解毒中药对梗阻性肾病巨噬细胞浸润的影响及作用机制。将48只健康雄性Wistar大鼠随机分为假手术组、模型组、依普利酮组、中药组,每组12只。除假手术组外,其余大鼠结扎单侧输尿管(UUO)复制肾间质纤维化动物模型。治疗组分别给以依普利酮(100 mg/kg/d加入饲料喂养)和化瘀解毒中药煎剂(14 g/kg/d灌胃)。10 d后摘取肾脏,观察大鼠肾脏组织病理改变。免疫组化法标记巨噬细胞浸润,免疫组化、Western Blot方法检测血清和糖皮质激素诱导蛋白激酶1(SGK-1)、单核细胞趋化蛋白-1(MCP-1)、白细胞介素-1(IL-1)、肿瘤坏死因子-α(TNF-α)的表达。肾脏病理显示,UUO组大鼠肾脏有明显的肾小管扩张及上皮细胞脱落,间质巨噬细胞浸润增多和细胞外基质(ECM)大量积聚,SGK-1、MCP-1、IL-1、TNF-α表达明显增强。化瘀解毒中药可明显减轻UUO大鼠肾脏巨噬细胞等炎性细胞浸润和ECM沉积,下调SGK-1、MCP-1、IL-1、TNF-α表达。以上结果说明化瘀解毒中药可抑制梗阻性肾病诱导的巨噬细胞浸润,减轻肾脏炎性损伤。  相似文献   

8.
The main hallmark of chronic kidney disease (CKD) is excessive inflammation leading to interstitial tissue fibrosis. It has been recently reported that NOV/CCN3 could be involved in kidney damage but its role in the progression of nephropathies is poorly known. NOV/CCN3 is a secreted multifunctional protein belonging to the CCN family involved in different physiological and pathological processes such as angiogenesis, inflammation and cancers. The purpose of our study was to determine the role of NOV/CCN3 in renal inflammation and fibrosis related to primitive tubulointerstitial injury. After unilateral ureteral obstruction (UUO), renal histology and real-time PCR were performed in NOV/CCN3-/- and wild type mice. NOV/CCN3 mRNA expression was increased in the obstructed kidneys in the early stages of the obstructive nephropathy. Interestingly, plasmatic levels of NOV/CCN3 were strongly induced after 7 days of UUO and the injection of recombinant NOV/CCN3 protein in healthy mice significantly increased CCL2 mRNA levels. Furthermore, after 7 days of UUO NOV/CCN3-/- mice displayed reduced proinflammatory cytokines and adhesion markers expression leading to restricted accumulation of interstitial monocytes, in comparison with their wild type littermates. Consequently, in NOV/CCN3-/- mice interstitial renal fibrosis was blunted after 15 days of UUO. In agreement with our experimental data, NOV/CCN3 expression was highly increased in biopsies of patients with tubulointerstitial nephritis. Thus, the inhibition of NOV/CCN3 may represent a novel target for the progression of renal diseases.  相似文献   

9.
Renal interstitial fibrosis is a common pathological feature in progressive kidney diseases currently lacking effective treatment. Nicotinamide (NAM), a member of water‐soluble vitamin B family, was recently suggested to have a therapeutic potential for acute kidney injury (AKI) in mice and humans. The effect of NAM on chronic kidney pathologies, including renal fibrosis, is unknown. Here we have tested the effects of NAM on renal interstitial fibrosis using in vivo and in vitro models. In vivo, unilateral urethral obstruction (UUO) induced renal interstitial fibrosis as indicated Masson trichrome staining and expression of pro‐fibrotic proteins, which was inhibited by NAM. In UUO, NAM suppressed tubular atrophy and apoptosis. In addition, NAM suppressed UUO‐associated T cell and macrophage infiltration and induction of pro‐inflammatory cytokines, such as TNF‐α and IL‐1β. In cultured mouse proximal tubule cells, NAM blocked TGF–β‐induced expression of fibrotic proteins, while it marginally suppressed the morphological changes induced by TGF‐β. NAM also suppressed the expression of pro‐inflammatory cytokines (eg MCP‐1 and IL‐1β) during TGF‐β treatment of these cells. Collectively, the results demonstrate an anti‐fibrotic effect of NAM in kidneys, which may involve the suppression of tubular injury and inflammation.  相似文献   

10.
11.
目的建立兔慢性肾功能衰竭模型,为干细胞移植治疗和相关研究奠定基础。方法普通级大耳白兔随机分为正常对照组和单侧输尿管结扎(unilateral ureteral obstruction,UUO)组。UUO组于输尿管结扎后2、4、6、8周进行血生化肾功能指标检测,并取肾组织观察肾脏病理学改变,通过SPECT动态观察肾小球滤过率的变化,采用免疫组织化学方法观察肾组织转化生长因子-β1(TGF-β1)的表达情况。结果①UUO组术后第2周,出现明显的血肌酐升高,尿素氮术后第8周开始升高(P〈0.01)。②UUO组术后第4周,肾脏组织出现了早期间质纤维化的病理改变,术后第8周肾小球开始出现硬化,间质纤维化明显,皮质明显变薄。术后第12周,肾小球硬化比例增加,肾小管玻璃样变性,间质纤维化进一步加重(P〈0.05)。③SPECT动态观察肾小球滤过率,UUO组第4周GFR值比正常对照组降低,到第8周时,GFR值进一步下降,结扎侧肾脏功能降低甚至丧失。④免疫组织化学染色显示,TGF-β1在术后第4、8、12周均明显增强,并且各时间点表达均有显著差异(P〈0.05)。结论单侧输尿管结扎法成功制作比较稳定的慢性肾功能不全模型,UUO后第8周符合肾脏间质纤维化模型标准。  相似文献   

12.
Fluorofenidone (FD) is a novel pyridone agent with significant antifibrotic effects in vitro. The purpose of this study is to investigate the effects of FD on renal interstitial fibrosis in rats with obstructive nephropathy caused by unilateral ureteral obstruction (UUO). With pirfenidone (PD, 500 mg/kg/day) and enalapril (10 mg/kg/day) as the positive treatment controls, the rats in different experimental groups were administered with FD (500 mg/kg/day) from day 4 to day 14 after UUO. The tubulointerstitial injury, interstitial collagen deposition, and expression of type I and type III collagen, transforming growth factor-β(1) (TGF-β(1)), connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), α-smooth muscle actin (α-SMA), and tissue inhibitor of metalloproteinase-1 (TIMP-1) were assessed. FD treatment significantly attenuated the prominently increased scores of tubulointerstitial injury, interstitial collagen deposition, and protein expression of type I and type III collagen in ureter-obstructed kidneys, respectively. As compared with untreated rats, FD also significantly reduced the expression of α-SMA, TGF-β(1), CTGF, PDGF, and inhibitor of TIMP-1 in the obstructed kidneys. Fluorofenidone attenuates renal interstitial fibrosis in the rat model of obstructive nephropathy through its regulation on fibrogenic growth factors, tubular cell transdifferentiation, and extracellular matrix.  相似文献   

13.
We performed adoptive transfer of bone marrow-derived (BM) macrophages following pharmacological depletion of leukocytes in a mouse model of unilateral ureteral obstruction (UUO). Treatment with cyclophosphamide (CPM) caused marked decrease in the numbers of F4/80-positive interstitial macrophages as well as in peripheral blood leukocyte counts, and adoptive transfer of BM macrophages to CPM-treated mice resulted in significant increase in the numbers of interstitial macrophages both at day 5 and at day 14 after UUO. At day 5 after UUO, no significant change was observed in the degree of renal interstitial fibrosis either by treatment with CPM or with CPM+macrophage. However, at day 14 after UUO, treatment with CPM caused significant increase in the degree of interstitial fibrosis, and adoptive macrophage transfer to these mice attenuated this enhancement in renal fibrosis. Our result suggests the role of infiltrating macrophages on facilitating tissue repair at late stage of UUO.  相似文献   

14.
Renal fibrosis is the final, common pathway of end-stage renal disease. Whether and how autophagy contributes to renal fibrosis remains unclear. Here we first detected persistent autophagy in kidney proximal tubules in the renal fibrosis model of unilateral ureteral obstruction (UUO) in mice. UUO-associated fibrosis was suppressed by pharmacological inhibitors of autophagy and also by kidney proximal tubule-specific knockout of autophagy-related 7 (PT-Atg7 KO). Consistently, proliferation and activation of fibroblasts, as indicated by the expression of ACTA2/α-smooth muscle actin and VIM (vimentin), was inhibited in PT-Atg7 KO mice, so was the accumulation of extracellular matrix components including FN1 (fibronectin 1) and collagen fibrils. Tubular atrophy, apoptosis, nephron loss, and interstitial macrophage infiltration were all inhibited in these mice. Moreover, these mice showed a specific suppression of the expression of a profibrotic factor FGF2 (fibroblast growth factor 2). In vitro, TGFB1 (transforming growth factor β 1) induced autophagy, apoptosis, and FN1 accumulation in primary proximal tubular cells. Inhibition of autophagy suppressed FN1 accumulation and apoptosis, while enhancement of autophagy increased TGFB1-induced-cell death. These results suggest that persistent activation of autophagy in kidney proximal tubules promotes renal interstitial fibrosis during UUO. The profibrotic function of autophagy is related to the regulation on tubular cell death, interstitial inflammation, and the production of profibrotic factors.  相似文献   

15.
Adenine phosphoribosyltransferase deficiency in mice or an excessive oral intake of adenine leads to the accumulation of 2,8-dihydroxyadenine (DHA) in renal tubules and that causes progressive renal dysfunction accompanied by interstitial fibrosis. However, the precise mechanism responsible for DHA-induced progressive fibrosis is not fully understood. The present study investigates the possible involvement of monocytes/macrophages in the progressive fibrosis induced by feeding adenine to mice. Urinary calculi were deposited in tubules on day 7 after the initiation of adenine feeding. Elevation of the serum creatinine level and loss of body weight were observed in a time-dependent manner, suggesting the development of typical renal dysfunction induced by the adenine feeding. In renal tissue, mRNA expression of MCP-1, MIP-1α, RANTES, IL-1β, CCR2, TGF-β, α-smooth muscle actin (α-SMA) and collagen 1a1 was increased in parallel. Along with the increased expression of these genes, a remarkable infiltration of macrophages into the tubulointerstitial area was observed in a time-dependent manner. In addition, in the tubulointerstitial area, α-SMA positive fibroblasts were increased in parallel with collagen deposition. These results suggest that the excessive consumption of adenine leads to progressive renal dysfunction in mice. We speculate that the accumulation of DHA in tubules might stimulate epithelium to produce MCP-1 and that profibrogenic TGF-β produced by infiltrated macrophages might stimulate interstitial fibroblasts to produce collagen. These results indicate that macrophage infiltration is one of the triggers that initiates interstitial fibroblast activation and collagen deposition followed by renal dysfunction.  相似文献   

16.
Mefunidone is a new pyridone agent that attenuates renal tubulointerstitial fibrosis. However, the signaling pathways involved in the effect of mefunidone on renal tubulointerstitial fibrosis have not been well explained. Inflammatory response initiates and promotes renal tubulointerstitial fibrosis, and the inhibitor of nuclear factor kappa-B kinase beta (IKKβ) is a master regulator of inflammation. This study is determined to clarify the influence of mefunidone on renal inflammation and the phosphorylation of IKKβ. Experimental renal tubulointerstitial fibrosis was induced by unilateral ureteral obstruction (UUO) for 3, 7 and 14 days in sprague dawley rat. Treatment with mefunidone was conducted simultaneously. Obstructed kidneys were harvested for the assessment. Our results showed that treatment with mefunidone ameliorated renal inflammatory injury, renal tubular lesions and interstitial fibrosis. Further studies indicated that treatment with mefunidone mitigated the expressions of tumor necrosis factorα (TNFα) and interleukin-1β (IL-1β) in the kidney. The phosphorylation of IKKβ and inhibitor of kappa-B (IκB) and the expression of NOD-like receptor family, pyrin domain containing 3 (NALP3) were also reduced in vivo after treatment with mefunidone. In vitro, peritoneal macrophages were incubated with necrotic cells or lipopolysaccharide in the presence or absence of mefunidone. Mefunidone markedly decreased necrotic cell or LPS induced IL-1β production and LPS induced TNFα production in primary peritoneal macrophages. Furthermore, mefunidone significantly inhibited the phosphorylation of IKKβ/IκB and nuclear transition of NF-κB p65 in peritoneal macrophages stimulated by necrotic cell or lipopolysaccharide. In conclusion, mefunidone serves as a novel anti-inflammatory agent that attenuates UUO-induced renal interstitial inflammation and fibrosis, possibly through suppressing IKKβ phosphorylation.  相似文献   

17.
Renal fibrosis plays an important role in the onset and progression of chronic kidney diseases. Many studies have demonstrated that heme oxygenase-1 (HO-1) is involved in diverse biological processes as a cytoprotective molecule, including anti-inflammatory, anti-oxidant, anti-apoptotic, antiproliferative, and immunomodulatory effects. However, the mechanisms of HO-1 prevention in renal interstitial fibrosis remain unknown. In this study, HO-1 transgenic (TG) mice were employed to investigate the effect of HO-1 on renal fibrosis using a unilateral ureter obstruction (UUO) model and to explore the potential mechanisms. We found that HO-1 was adaptively upregulated in kidneys of both TG and wild type (WT) mice after UUO. The levels of HO-1 mRNA and protein were increased in TG mice compared with WT mice under normal conditions. HO-1 expression was further enhanced after UUO and remained high during the entire experimental process. Renal interstitial fibrosis in the TG group was significantly attenuated compared with that in the WT group after UUO. Moreover, overexpression of HO-1 inhibited the loss of peritubular capillaries. In addition, UUO-induced activation and proliferation of myofibroblasts were suppressed by HO-1 overexpression. Furthermore, HO-1 restrained tubulointerstitial infiltration of macrophages and regulated the secretion of inflammatory cytokines in UUO mice. We also found that high expression of HO-1 inhibited reactivation of Wnt/β-catenin signaling, which could play a crucial role in attenuating renal fibrosis. In conclusion, these data suggest that HO-1 prevents renal tubulointerstitial fibrosis possibly by regulating the inflammatory response and Wnt/β-catenin signaling. This study provides evidence that augmentation of HO-1 levels may be a therapeutic strategy against renal interstitial fibrosis.  相似文献   

18.
目的:研究羟苯磺酸钙对小鼠肾间质纤维化、Ⅰ型胶原表达的影响。方法:将C57小鼠随机分为假手术组(Sham组,n=4)、肾间质纤维化模型组(UUO组,n=5)及羟苯磺酸钙治疗组(CDT组,n=4);采用单侧输尿管梗阻制备肾间质纤维化模型,CDT组给予羟苯磺酸钙灌胃、Sham组和UUO组给予双蒸水灌胃;采用HE染色、Masson染色、免疫组化、实时定量PCR以及蛋白免疫印迹观察单侧输尿管梗阻术后14 d小鼠术侧肾脏的肾间质纤维化程度和Ⅰ型胶原表达情况。结果:与Sham组比较,UUO组小鼠术后14 d术侧肾脏肾发生显著肾间质纤维化,Ⅰ型胶原表达显著增强(Ⅰ型胶原基因相对表达量:Sham组:1.00000,UUO组:114.92289,P0.0001)。与UUO组比较,CDT组小鼠术后14 d术侧肾间质纤维化程度显著减轻,Ⅰ型胶原表达显著减弱(Ⅰ型胶原基因相对表达量:UUO组:114.92289,CDT组:45.33516,P0.005)。结论:羟苯磺酸钙通过抑制小鼠肾间质Ⅰ型胶原表达从而减轻单侧输尿管结扎小鼠肾间质纤维化。  相似文献   

19.
20.
The ubiquitous vacuolar H(+)-ATPase (V-ATPase), a multisubunit proton pump, is essential for intraorganellar acidification. Here, we hypothesized that V-ATPase is involved in the pathogenesis of kidney tubulointerstitial fibrosis. We first examined its expression in the rat unilateral ureteral obstruction (UUO) model of kidney fibrosis and transforming growth factor (TGF)-β1-mediated epithelial-to-mesenchymal transition (EMT) in rat proximal tubular epithelial cells (NRK52E). Immunofluorescence experiments showed that UUO resulted in significant upregulation of V-ATPase subunits (B2, E, and c) and α-smooth muscle actin (α-SMA) in areas of tubulointerstitial injury. We further observed that TGF-β1 (10 ng/ml) treatment resulted in EMT of NRK52E (upregulation of α-SMA and downregulation of E-cadherin) in a time-dependent manner and significant upregulation of V-ATPase B2 and c subunits after 48 h and the E subunit after 24 h, by real-time PCR and immunoblot analyses. The ATP hydrolysis activity tested by an ATP/NADH-coupled assay was increased after 48-h TGF-β1 treatment. Using intracellular pH measurements with the SNARF-4F indicator, Na(+)-independent pH recovery was significantly faster after an NH(4)Cl pulse in 48-h TGF-β1-treated cells than controls. Furthermore, the V-ATPase inhibitor bafilomycin A1 partially protected the cells from EMT. TGF-β1 induced an increase in the cell surface expression of the B2 subunit, and small interfering RNA-mediated B2 subunit knockdown partially reduced the V-ATPase activity and attenuated EMT induced by TGF-β1. Together, these findings show that V-ATPase may promote EMT and chronic tubulointerstitial fibrosis due to increasing its activity by either overexpression or redistribution of its subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号