首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decomposition of the resin linkers during TFA cleavage of the peptides in the Fmoc strategy leads to alkylation of sensitive amino acids. The C-terminal amide alkylation, reported for the first time, is shown to be a major problem in peptide amides synthesized on the Rink amide resin. This side reaction occurs as a result of the Rink amide linker decomposition under TFA treatment of the peptide resin. The use of 1,3-dimethoxybenzene in a cleavage cocktail prevents almost quantitatively formation of C-terminal N-alkylated peptide amides. Oxidized by-product in the tested Cys- and Met-containing peptides were not observed, even if thiols were not used in the cleavage mixture.  相似文献   

2.
A cleavage cocktail for methionine-containing peptides.   总被引:1,自引:0,他引:1  
A new cocktail has been developed for cleavage and deprotection of methionine-containing peptides synthesized by 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase peptide synthesis methodology. The cocktail (trifluoroacetic acid 81%, phenol 5%, thioanisole 5%, 1,2-ethanedithiol 2.5%, water 3%, dimethylsulphide 2%, ammonium iodide 1.5% w/w) was designed to minimize methionine side-chain oxidation. Application of the new cocktail (Reagent H) is demonstrated with the synthesis of a model pentadecapeptide from the active site of DsbC, a periplasmic protein involved in protein disulphide bond formation. The model peptide, which contains one methionine and two cysteine residues, was cleaved with several cleavage cocktails, including Reagent H. The crude peptides obtained with the widely used cocktails K, R and B were found to be 15% to 55% in the methionine sulphoxide form, whereas no methionine sulphoxide was detected in the crude peptide obtained by cleavage and deprotection with Reagent H. Also, no methionine sulphoxide was detected when 1.5% w/w NH4I was added to cocktails K, R and B; however, the yield of the desired peptide was less than with Reagent H. A second 28 amino acid model peptide of the active site of DsbC was also cleaved and deprotected with Reagent H. The reduced dithiol form of the peptide was found to be the major component (51% yield) of the crude peptide obtained by cleavage for 3 h. When the cleavage time was extended to 10 h, the peptide was converted to the intramolecular disulphide form (35% yield). A proposed mechanism for the in situ oxidation of cysteine with Reagent H is presented.  相似文献   

3.
In this paper, we report the solid-phase synthesis of peptides containing O-phosphonoserine using BOP as coupling reagent. Commercially available Fmoc amino-acids linked to p-alkoxybenzyl resin were used in the first step and Alloc amino acids in the following. Alloc group was removed by catalytic hydrostannolytic cleavage. Acid-labile side-chain protecting groups (including phosphate residue) were used. Thus, both removal of side-chain protecting groups and cleavage of the phosphopeptide from the resin were achieved in one step by treatment with TFA. Alloc serine was phosphorylated by the phosphoramidite method. This strategy enables the preparation of peptides with selectively phosphorylated residue and overcomes problems due to repetitive treatments with TFA and final cleavage with HF.  相似文献   

4.
The nonenzymatic digestion of proteins by microwave D-cleavage is an effective technique for site-specific cleavage at aspartic acid (D). This specific cleavage C-terminal to D residues leads to inherently large peptides (15-25 amino acids) that are usually relatively highly charged (above +3) when ionized by electrospray ionization (ESI) due to the presence of several basic amino acids within their sequences. It is well-documented that highly charged peptide ions generated by ESI are well-suited for electron transfer dissociation (ETD), which produces c- and z-type fragment ions via gas-phase ion/ion reactions. In this paper, we describe the sequence analysis by ETD tandem mass spectrometry (MS/MS) of multiply charged peptides generated by microwave D-cleavage of several standard proteins. Results from ETD measurements are directly compared to CID MS/MS of the same multiply charged precursor ions. Our results demonstrate that the nonenzymatic microwave D-cleavage technique is a rapid (<6 min) and specific alternative to enzymatic cleavage with Lys-C or Asp-N to produce highly charged peptides that are amenable to informative ETD.  相似文献   

5.
A method for specific labeling of cysteine-containing peptides has been developed using Ellman's reagent, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). Prior to cleavage with proteases or chemical reagents, proteins are reacted with DTNB, resulting in the formation of a mixed disulfide between the protein sulfhydryl group and 2-nitro-5-thiobenzoic acid (TNB). The formation of the mixed disulfide introduces a chromophore, with an absorbance peak at 328 nm. By monitoring peptide maps generated by HPLC at 210 and 328 nm, peptides containing cysteine residues are readily identified. The stability of the derivative was tested using glutathione-TNB as a model compound. Glutathione-TNB is stable to conditions used for CNBr cleavage, as well as those for tryptic cleavage. The TNB label may also increase the hydrophobicity of small peptides, which otherwise might not bind to reverse-phase matrices. This was the case for an oxidatively modified tetrapeptide isolated from Escherichia coli glutamine synthetase.  相似文献   

6.
Cellulose was functionalized to incorporate triethylenetetramine group. This was in turn converted into the polymeric analogue of cobalt(III)triene complex. The polymeric complex reacts with peptides resulting in the cleavage of amino end amino acid, thus suggesting the applicability of the polymeric reagent as a solid phase reagent for N-terminal determination.  相似文献   

7.
The in vitro metabolic stability testing on synthetic obestatin peptides from two different species (human hOb and mouse mOb) using HPLC analysis is described. A reversed-phase C(18) column of 300A pore size was used, with a gradient system based on aqueous formic acid and acetonitrile. Electrospray ionization (ESI) ion trap mass spectrometry was used for identification of the chromatographic eluting peptide metabolic products, while UV (DAD) and fluorescence served quantitative purposes. Differences in the metabolic degradation kinetics of hOb and mOb were found in plasma, liver and kidney homogenate, with half-lives ranging between 12.6 and 138.0min. Proteolytic hydrolysis at the N-terminal Phe residue and cleavage at Pro(4)-Phe(5) were found to be two major metabolic pathways, accounting for more than 50% of the metabolic degradation. Several other labile peptide bonds were located. The influence of a standard protease inhibitor cocktail was investigated, as well as the metabolism of iodinated human obestatin in liver homogenate. Our results indicate that the major instability of obestatin peptides, as currently used in biomedical investigations, should be taken into account in the interpretation of the obtained results.  相似文献   

8.
为了评价基于2-甲氧基-4,5-二氢-1氢-咪唑稳定同位素试剂在定量蛋白质组学中的应用价值,合成了轻型(D0)和重型(D4)的2-甲氧基-4,5-二氢-1氢-咪唑,通过对标准蛋白BSA酶解后产物的标记确认标记反应的特异性,并观察了标记物在MALDI-TOF-MS和LC-ESI-MS中定量的准确性,标记肽在串联质谱中的离子特点,以及对反相液相色谱行为的影响。结果表明,2-甲氧基-4,5-二氢-1氢-咪唑只与酶解后的肽段赖氨酸侧链氨基反应,具有良好的标记特异性;差异表达蛋白的定量可以通过MALDI和ESI电离模式实现;标记肽的串联质谱主要产生y离子,测序更为简便;反相液相色谱可以保持较好的分离效果,氘原子的引入不会影响保留时间,侧链修饰可以用于涉及液相色谱分离的蛋白质组学技术。2-甲氧基-4,5-二氢-1氢-咪唑稳定同位素试剂可以用于定量蛋白质组学。  相似文献   

9.
Signal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria and serves as a potential target for the development of novel antibacterial agents due to its unique physiological and biochemical properties. In this paper, we describe a novel fluorogenic substrate, KLTFGTVK(Abz)PVQAIAGY(NO2)EWL, in which 2-aminobenzoic acid (Abz) and 3-nitrotyrosine (Y(NO2)) were used as the fluorescent donor and acceptor, respectively. The substrate can be cleaved by both Streptococcus pneumoniae and Escherichia coli SPase I. Upon cleavage of the fluorogenic substrate by SPase I, the fluorescent intensity increases and can be monitored continuously by spectrofluorometer. Kinetic analysis with S. pneumoniae SPase I demonstrated that the K(m) value for the substrate is 118.1 microM, and the k(cat) value is 0.032 s(-1). Mass spectrometric analysis and peptide sequencing of the two cleaved products confirmed that the cleavage occurs specifically at the predicted site. More interestingly, the positively charged lysine in the N-terminus of the substrate was demonstrated to be important for effective cleavage. Phospholipids were found to stimulate the cleavage reaction. This stimulation by phospholipids is dependent upon the N-terminal charge of the substrate, indicating that the interaction of the positively charged substrate with anionic phospholipids is important for maintaining the substrate in certain conformation for cleavage. The substrate and assay described here can be readily automated and utilized for the identification of potential antibacterial agents.  相似文献   

10.
In this study, several methods for controlled labelling of synthetic peptides by the use of fluorescent compounds (fluorescein isothiocyanate and dimethylaminonaphthalene sulfonyl chloride) were investigated. The first reagent yielded monofluoresceinated, active compounds only when the peptides lacked lysine residues. Monolabelling of peptides in solution with dimethylaminonaphthalenesulphonyl chloride was hindered by the broad reactivity of the reagent, but was achieved by reacting the fluorochrome on protected resin-bound peptides in solid-phase synthesis. The remarkable stability of the linkage allowed the cleavage of the peptide from the resin and deprotection of side-chain functions without hydrolysis of the labelled group. The binding of antipeptide antibodies to the labelled fragments was then estimated using different techniques.  相似文献   

11.
Winkler DF  McGeer PL 《Proteomics》2008,8(5):961-967
Biotin-labeled peptides are used for numerous biochemical and microbiological applications. Due to the strong affinity of biotin to streptavidin, the detection of biotinylated molecules is very sensitive. A powerful technique for parallel synthesis and high-throughput screening of peptides is the spot synthesis. One example for the use of spot synthesis is the screening of biotinylated peptides synthesized on cellulose membranes, which is particularly favorable for the investigation of protease cleavage sites. Additionally, in combination with biotinylated protein samples, the spot technique can be used for investigations of peptide-protein and protein-protein interactions. Here, we present our results of the use biotin p-nitrophenyl ester (biotin-ONp) in spot synthesis and as a reagent for biotin-labeling of protein samples.  相似文献   

12.
The synthesis of Tyr(P)-containing peptides by the use of Fmoc-Tyr(PO3Me2)-OH in Fmoc/solid phase synthesis is complicated since, firstly, piperidine causes cleavage of the methyl group from the -Tyr(PO3Me2)-residue during peptide synthesis and, secondly, harsh conditions are needed for its final cleavage. A very simple method for the synthesis of Tyr(P)-containing peptides using t-butyl phosphate protection is described. The protected phosphotyrosine derivative, Fmoc-Tyr(PO3tBu2)-OH was prepared in high yield from Fmoc-Tyr-OH by a one-step procedure which employed di-t-butyl N,N-diethyl-phosphoramidite as the phosphorylation reagent. The use of this derivative in Fmoc/solid phase peptide synthesis is demonstrated by the preparation of the Tyr(P)-containing peptides, Ala-Glu-Tyr(P)-Ser-Ala and Ser-Ser-Ser-Tyr(P)-Tyr(P).  相似文献   

13.
The filamentous phage coat protein pIII has been used to display a variety of peptides and proteins to allow easy screening for desirable binding properties. We have examined the biological constraints that restrict the expression of short peptides located in the early mature region of pIII, adjacent to the signal sequence cleavage site. Many functionally defective pIII fusion proteins contained several positively charged amino acids in this region. These residues appear to inhibit proper insertion of pIII into the Escherichia coli inner membrane, blocking the assembly and extrusion of phage particles. Suppressor mutations in the prlA (secY) component of the protein export apparatus dramatically alleviate the phage growth defect caused by the positively charged residues. We conclude that insertion of pIII fusion proteins into the inner membrane can occur by a sec gene-dependent mechanism. The suppressor strains should be useful for increasing the diversity of peptides displayed on pIII in phage libraries.  相似文献   

14.
A novel isotopically labeled cysteine-tagging and complexity-reducing reagent, called HysTag, has been synthesized and used for quantitative proteomics of proteins from enriched plasma membrane preparations from mouse fore- and hindbrain. The reagent is a 10-mer derivatized peptide, H(2)N-(His)(6)-Ala-Arg-Ala-Cys(2-thiopyridyl disulfide)-CO(2)H, which consists of four functional elements: i) an affinity ligand (His(6)-tag), ii) a tryptic cleavage site (-Arg-Ala-), iii) Ala-9 residue that contains four (d(4)) or no (d(0)) deuterium atoms, and iv) a thiol-reactive group (2-thiopyridyl disulfide). For differential analysis cysteine residues in the compared samples are modified using either (d(4)) or (d(0)) reagent. The HysTag peptide is preserved in Lys-C digestion of proteins and allows charge-based selection of cysteine-containing peptides, whereas subsequent tryptic digestion reduces the labeling group to a di-peptide, which does not hinder effective fragmentation. Furthermore, we found that tagged peptides containing Ala-d(4) co-elute with their d(0)-labeled counterparts. To demonstrate effectiveness of the reagent, a differential analysis of mouse forebrain versus hindbrain plasma membranes was performed. Enriched plasma membrane fractions were partially denatured, reduced, and reacted with the reagent. Digestion with endoproteinase Lys-C was carried out on nonsolubilized membranes. The membranes were sedimented by ultra centrifugation, and the tagged peptides were isolated by Ni(2+) affinity or cation-exchange chromatography. Finally, the tagged peptides were cleaved with trypsin to release the histidine tag (residues 1-8 of the reagent) followed by liquid chromatography tandem mass spectroscopy for relative protein quantification and identification. A total of 355 unique proteins were identified, among which 281 could be quantified. Among a large majority of proteins with ratios close to one, a few proteins with significant quantitative changes were retrieved. The HysTag offers advantages compared with the isotope-coded affinity tag reagent, because the HysTag reagent is easy to synthesize, economical due to use of deuterium instead of (13)C isotope label, and allows robust purification and flexibility through the affinity tag, which can be extended to different peptide functionalities.  相似文献   

15.
Triply and doubly charged iTRAQ ( isobaric tagging for relative and absolute quantitation) labeled peptide cations from a tryptic peptide mixture of bovine carbonic anhydrase II were subjected to electron transfer ion/ion reactions to investigate the effect of charge bearing modifications associated with iTRAQ on the fragmentation pattern. It was noted that electron transfer dissociation (ETD) of triply charged or activated ETD (ETD and supplemental collisional activation of intact electron transfer species) of doubly charged iTRAQ tagged peptide ions yielded extensive sequence information, in analogy with ETD of unmodified peptide ions. That is, addition of the fixed charge iTRAQ tag showed relatively little deleterious effect on the ETD performance of the modified peptides. ETD of the triply charged iTRAQ labeled peptide ions followed by collision-induced dissociation (CID) of the product ion at m/ z 162 yielded the reporter ion at m/ z 116, which is the reporter ion used for quantitation via CID of the same precursor ions. The reporter ion formed via the two-step activation process is expected to provide quantitative information similar to that directly produced from CID. A 103 Da neutral loss species observed in the ETD spectra of all the triply and doubly charged iTRAQ labeled peptide ions is unique to the 116 Da iTRAQ reagent, which implies that this process also has potential for quantitation of peptides/proteins. Therefore, ETD with or without supplemental collisional activation, depending on the precursor ion charge state, has the potential to directly identify and quantify the peptides/proteins simultaneously using existing iTRAQ reagents.  相似文献   

16.
κ-Casein as purified from bovine milk exhibits a rather unique disulfide bonding pattern as revealed by SDS–PAGE. The disulfide-bonded caseins present range from dimer to octamer and above and preparations contain about 10% monomer. All of these heterogeneous polymers, however, self-associate into nearly spherical particles with an average diameter of 13 nm at pH 8.0, as revealed by negatively stained transmission electron micrographs and dynamic light scattering. The weight-average molecular weight of the aggregates at pH 8.0, as judged by analytical ultracentrifugation, is 648,000. Trypsin digestion at pH 8.0 was used to probe the surface groups of the κ-casein A polymers. The reaction with trypsin was rapid and the peptides liberated were identified by separation with reverse-phase HPLC, amino acid analysis, and protein sequencing. The most rapidly released peptides (t 1/2 < 30 sec) were from cleavage at Arg 97 and Lys residues 111 and 112. These results suggest a surface orientation for these residues, and the data are in accord with earlier proposed 3D predictive models for κ-casein. It is speculated that Arg 97, together with adjacent His residues (98 and 100) and Lys residues 111 and 112, form two positively charged clusters on the surface of the otherwise negatively charged casein. These clusters bracket the neutral chymosin cleavage site (whose hydrolysis triggers a well-known digestive process) and so these clusters may facilitate docking of the substrate caseins with chymosin.  相似文献   

17.
A method for identifying cysteine-containing peptides in proteins is presented using 2-bromoacetamido-4-nitrophenol (BNP) to introduce an easily detectable probe. The formation of a covalent bond between the protein sulfhydryl group and the acetamido moiety of BNP introduces a chromophore with an absorbance maximum at 410 nm. The modified protein can then be cleaved with appropriate proteases and the resulting peptides separated by chromatographic methods. Monitoring the effluent at a single wavelength (405 nm) provides a rapid and simple method of detecting and isolating only those peptides which contain cysteine residue(s). The nitrophenol derivative is stable under conditions required for protease cleavage. The reagent is therefore useful for locating cysteine-containing peptides in protein digests and can be used to explore the accessibility of different cysteines under a variety of conditions. The ease of modification, specificity of reaction, product stability, and simple detection of modified peptides make BNP ideal for investigation of cysteine residues.  相似文献   

18.
The membrane-permeable photoactivatable reagent 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine was used to selectively label the hydrophobic domain of the amphipathic form of gamma-glutamyl transpeptidase reconstituted into phosphatidylcholine vesicles. The reagent labels only a limited segment of the large subunit of the heterodimeric transpeptidase. Treatment of labeled and reconstituted enzyme with papain causes the release of the unlabeled catalytic domain and the cleavage of the membrane binding domain into two discrete 125I-labeled peptides. The hydrophobic peptides which remain associated with the vesicles were isolated by chromatography on Sephadex LH-60. They exhibit apparent molecular weights of 8700 and 3400. Amino acid analysis indicates that they contain 68 and 58% hydrophobic residues, respectively. The procedures developed in this study should make possible the large scale isolation of the unlabeled membrane binding domain of gamma-glutamyl transpeptidase.  相似文献   

19.
Presecretory signal peptides of 39 proteins from diverse prokaryotic and eukaryotic sources have been compared. Although varying in length and amino acid composition, the labile peptides share a hydrophobic core of approximately 12 amino acids. A positively charged residue (Lys or Arg) usually precedes the hydrophobic core. Core termination is defined by the occurrence of a charged residue, a sequence of residues which may induce a beta-turn in a polypeptide, or an interruption in potential alpha-helix or beta-extended strand structure. The hydrophobic cores contain, by weight average, 37% Leu: 15% Ala: 10% Val: 10% Phe: 7% Ile plus 21% other hydrophobic amino acids arranged in a non-random sequence. Following the hydrophobic cores (aligned by their last residue) a highly non-random and localized distribution of Ala is apparent within the initial eight positions following the core: (formula; see text) Coincident with this observation, Ala-X-Ala is the most frequent sequence preceding signal peptidase cleavage. We propose the existence of a signal peptidase recognition sequence A-X-B with the preferred cleavage site located after the sixth amino acid following the core sequence. Twenty-two of the above 27 underlined Ala residues would participate as A or B in peptidase cleavage. Position A includes the larger aliphatic amino acids, Leu, Val and Ile, as well as the residues already found at B (principally Ala, Gly and Ser). Since a preferred cleavage site can be discerned from carboxyl and not amino terminal alignment of the hydrophobic cores it is proposed that the carboxyl ends are oriented inward toward the lumen of the endoplasmic reticulum where cleavage is thought to occur. This orientation coupled with the predicted beta-turn typically found between the core and the cleavage site implies reverse hairpin insertion of the signal sequence. The structural features which we describe should help identify signal peptides and cleavage sites in presumptive amino acid sequences derived from DNA sequences.  相似文献   

20.
A positional proteomics strategy for global N-proteome analysis is presented based on phospho tagging (PTAG) of internal peptides followed by depletion by titanium dioxide (TiO(2)) affinity chromatography. Therefore, N-terminal and lysine amino groups are initially completely dimethylated with formaldehyde at the protein level, after which the proteins are digested and the newly formed internal peptides modified with the PTAG reagent glyceraldhyde-3-phosphate in nearly perfect yields (> 99%). The resulting phosphopeptides are depleted through binding onto TiO(2), keeping exclusively a set of N-acetylated and/or N-dimethylated terminal peptides for analysis by liquid chromatography-tandem MS. Analysis of peptides derivatized with differentially labeled isotopic analogs of the PTAG reagent revealed a high depletion efficiency (> 95%). The method enabled identification of 753 unique N-terminal peptides (428 proteins) in N. meningitidis and 928 unique N-terminal peptides (572 proteins) in S. cerevisiae. These included verified neo-N termini from subcellular-relocalized membrane and mitochondrial proteins. The presented PTAG approach is therefore a novel, versatile, and robust method for mass spectrometry-based N-proteome analysis and identification of protease-generated cleavage products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号