首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Hydrophobins are small, amphiphilic proteins secreted by filamentous fungi. Their functionality arises from a patch of hydrophobic residues on the protein surface. Spontaneous self-assembly of hydrophobins leads to the formation of an amphiphilic layer that remarkably reduces the surface tension of water. We have determined by x-ray diffraction two new crystal structures of Trichoderma reesei hydrophobin HFBII in the presence of a detergent. The monoclinic crystal structure (2.2A resolution, R = 22, R(free) = 28) is composed of layers of hydrophobin molecules where the hydrophobic surface areas of the molecules are aligned within the layer. Viewed perpendicular to the aligned hydrophobic surface areas, the molecules in the layer pack together to form six-membered rings, thus leaving small pores in the layer. Similar packing has been observed in the atomic force microscopy images of the self-assembled layers of class II hydrophobin, indicating that the crystal structure resembles that of natural hydrophobin film. The orthorhombic crystal structure (1.0 A resolution, R = 13, R(free) = 15) is composed of fiber-like arrays of protein molecules. Rodlet structures have been observed on amphiphilic layers formed by class I hydrophobins; fibrils of class II hydrophobins appear by vigorous shaking. We propose that the structure of the fibrils and/or rodlets is similar to that observed in the crystal structure.  相似文献   

2.
Filamentous fungi utilize small amphiphilic proteins called hydrophobins in their adaptation to the environment. The hydrophobins are used to form coatings on various fungal structures, lower the surface tension of water, and to mediate surface attachment. Hydrophobins function through self-assembly at interfaces, for example, at the air-water interface, and at fungal cellular structures. Despite their high tendency to self assemble at interfaces, hydrophobins can be very soluble in water. To understand the mechanism of hydrophobin self-assembly, in this work, we have studied the behavior of two Trichoderma reesei hydrophobins, HFBI and HFBII in aqueous solution. The main methods used were F?rster resonance energy transfer (FRET) and size exclusion chromatography. A genetically engineered HFBI variant, NCys-HFBI, was utilized for the site-specific labeling of dyes for the FRET experiments. We observed the multimerization of HFBI in a concentration-dependent manner. A change from monomers to tetramers was seen when the hydrophobin concentration was increased. Interaction studies between HFBI and HFBII suggested that at low concentrations homodimers are preferred, and at higher concentrations, the heterotetramers of HFBI and HFBII are formed. In conclusion, the results support the model where hydrophobins in aqueous solutions form multimers by hydrophobic interactions. In contrast to micelles formed by detergents, the hydrophobin multimers are defined in size and involve specific protein-protein interactions.  相似文献   

3.
Hydrophobins fulfill a wide spectrum of functions in fungal growth and development. These proteins self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes. Hydrophobins are divided into two classes based on their hydropathy patterns and solubility. We show here that the properties of the class II hydrophobins HFBI and HFBII of Trichoderma reesei differ from those of the class I hydrophobin SC3 of Schizophyllum commune. In contrast to SC3, self-assembly of HFBI and HFBII at the water-air interface was neither accompanied by a change in secondary structure nor by a change in ultrastructure. Moreover, maximal lowering of the water surface tension was obtained instantly or took several minutes in the case of HFBII and HFBI, respectively. In contrast, it took several hours in the case of SC3. Oil emulsions prepared with HFBI and SC3 were more stable than those of HFBII, and HFBI and SC3 also interacted more strongly with the hydrophobic Teflon surface making it wettable. Yet, the HFBI coating did not resist treatment with hot detergent, while that of SC3 remained unaffected. Interaction of all the hydrophobins with Teflon was accompanied with a change in the circular dichroism spectra, indicating the formation of an alpha-helical structure. HFBI and HFBII did not affect self-assembly of the class I hydrophobin SC3 of S. commune and vice versa. However, precipitation of SC3 was reduced by the class II hydrophobins, indicating interaction between the assemblies of both classes of hydrophobins.  相似文献   

4.
Hydrophobins are proteins specific to filamentous fungi. Hydrophobins have several important roles in fungal physiology, for example, adhesion, formation of protective surface coatings, and the reduction of the surface tension of water, which allows growth of aerial structures. Hydrophobins show remarkable biophysical properties, for example, they are the most powerful surface-active proteins known. To this point the molecular basis of the function of this group of proteins has been largely unknown. We have now determined the crystal structure of the hydrophobin HFBII from Trichoderma reesei at 1.0 A resolution. HFBII has a novel, compact single domain structure containing one alpha-helix and four antiparallel beta-strands that completely envelop two disulfide bridges. The protein surface is mainly hydrophilic, but two beta-hairpin loops contain several conserved aliphatic side chains that form a flat hydrophobic patch that makes the molecule amphiphilic. The amphiphilicity of the HFBII molecule is expected to be a source for surface activity, and we suggest that the behavior of this surfactant is greatly enhanced by the self-assembly that is favored by the combination of size and rigidity. This mechanism of function is supported by atomic force micrographs that show highly ordered arrays of HFBII at the air water interface. The data presented show that much of the current views on structure function relations in hydrophobins must be re-evaluated.  相似文献   

5.
Hydrophobins are secreted fungal proteins, which have diverse roles in fungal growth and development. They lower the surface tension of water, work as adhesive agents and coatings, and function through self-assembly. One of the characteristic properties of hydrophobins is their tendency to form fibrillar or rod-like aggregates at interfaces. Their structure is still poorly known. In a step to elucidate the structure/function relation of hydrophobin self-assembly, we present the low-resolution structure of self-assembled fibrils of the class II hydrophobin HFBII from Trichoderma reesei based on small and wide-angle x-ray scattering. We first studied the solution state (10 mg/mL) of both HFBI and HFBII and showed that they formed assemblages in aqueous solution, which have a radius of gyration of ~24 A and maximum dimension of ~65 A, corresponding to the size of a tetramer. This result was supported by size-exclusion chromatography. Undried samples of HFBII fibrils had a monoclinic crystalline structure, which changed to hexagonal when the material was dried. A low-resolution structure for the HFBII fibrils is suggested. There are data in the literature based on staining properties suggesting that hydrophobins of class I form assemblies with an amyloid structure. Comparison of the HFBII data (x-ray results, staining with thioflavin T) to published data showed that the HFBII assemblages are not amyloid.  相似文献   

6.
Hydrophobins are amphiphilic proteins produced by filamentous fungi. They function in a variety of roles that involve interfacial interactions, as in growth through the air-water interface, adhesion to surfaces, and formation of coatings on various fungal structures. In this work, we have studied the formation of films of the class II hydrophobin HFBI from Trichoderma reesei at the air-water interface. Analysis of hydrophobin aqueous solution drops showed that a protein film is formed at the air-water interface. This elastic film was clearly visible, and it appeared to cause the drops to take unusual shapes. Because adhesion and formation of coatings are important biological functions for hydrophobins, a closer structural analysis of the film was made. The method involved picking up the surface film onto a solid substrate and imaging the surface by atomic force microscopy. High-resolution images were obtained showing both the hydrophilic and hydrophobic sides of the film at nanometer resolution. It was found that the hydrophobin film had a highly ordered structure. To study the orientation of molecules and to obtain further insight in film formation, we made variants of HFBI that could be site specifically conjugated. We then used the avidin-biotin interaction as a probe. On the basis of this work, we suggest that the unusual interfacial properties of this type of hydrophobins are due to specific molecular interactions which lead to an ordered network of proteins in the surface films that have a thickness of only one molecule. The interactions between the proteins in the network are likely to be responsible for the unusual surface elasticity of the hydrophobin film.  相似文献   

7.
Hydrophobins are highly surface-active proteins that are specific to filamentous fungi. They function as coatings on various fungal structures, enable aerial growth of hyphae, and facilitate attachment to surfaces. Little is known about their structures and structure-function relationships. In this work we show highly organized surface layers of hydrophobins, representing the most detailed structural study of hydrophobin films so far. Langmuir-Blodgett films of class II hydrophobins HFBI and HFBII from Trichoderma reesei were prepared and analyzed by atomic force microscopy. The films showed highly ordered two-dimensional crystalline structures. By combining our recent results on small-angle X-ray scattering of hydrophobin solutions, we found that the unit cells in the films have dimensions similar to those of tetrameric aggregates found in solutions. Further analysis leads to a model in which the building blocks of the two-dimensional crystals are shape-persistent supramolecules consisting of four hydrophobin molecules. The results also indicate functional and structural differences between HFBI and HFBII that help to explain differences in their properties. The possibility that the highly organized surface assemblies of hydrophobins could allow a route for manufacturing functional surfaces is suggested.  相似文献   

8.
Hydrophobins are surface-active proteins produced by filamentous fungi, where they seem to be ubiquitous. They have a variety of roles in fungal physiology related to surface phenomena, such as adhesion, formation of surface layers, and lowering of surface tension. Hydrophobins can be divided into two classes based on the hydropathy profile of their primary sequence. We have studied the adhesion behavior of two Trichoderma reesei class II hydrophobins, HFBI and HFBII, as isolated proteins and as fusion proteins. Both hydrophobins were produced as C-terminal fusions to the core of the hydrolytic enzyme endoglucanase I from the same organism. It was shown that as a fusion partner, HFBI causes the fusion protein to efficiently immobilize to hydrophobic surfaces, such as silanized glass and Teflon. The properties of the surface-bound protein were analyzed by the enzymatic activity of the endoglucanase domain, by surface plasmon resonance (Biacore), and by a quartz crystal microbalance. We found that the HFBI fusion forms a tightly bound, rigid surface layer on a hydrophobic support. The HFBI domain also causes the fusion protein to polymerize in solution, possibly to a decamer. Although isolated HFBII binds efficiently to surfaces, it does not cause immobilization as a fusion partner, nor does it cause polymerization of the fusion protein in solution. The findings give new information on how hydrophobins function and how they can be used to immobilize fusion proteins.  相似文献   

9.
Hydrophobins are fungal proteins that self‐assemble spontaneously to form amphipathic monolayers at hydrophobic:hydrophilic interfaces. Hydrophobin assemblies facilitate fungal transitions between wet and dry environments and interactions with plant and animal hosts. NC2 is a previously uncharacterized hydrophobin from Neurospora crassa. It is a highly surface active protein and is able to form protein layers on a water:air interface that stabilize air bubbles. On a hydrophobic substrate, NC2 forms layers consisting of an ordered network of protein molecules, which dramatically decrease the water contact angle. The solution structure and dynamics of NC2 have been determined using nuclear magnetic resonance spectroscopy. The structure of this protein displays the same core fold as observed in other hydrophobin structures determined to date, including the Class II hydrophobins HFBI and HFBII from Trichoderma reesei, but certain features illuminate the structural differences between Classes I and II hydrophobins and also highlight the variations between structures of Class II hydrophobin family members. The unique properties of hydrophobins have attracted much attention for biotechnology applications. The insights obtained through determining the structure, biophysical properties and assembly characteristics of NC2 will facilitate the development of hydrophobin‐based applications. Proteins 2014; 82:990–1003. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Niu B  Wang D  Yang Y  Xu H  Qiao M 《Amino acids》2012,43(2):763-771
The class II hydrophobin HFBI from Trichoderma reesei was heterologously expressed by Pichia pastoris using pPIC9 vector under the control of the promoter AOX1. The recombinant HFBI (rHFBI) was purified by ultrafiltration and reverse-phase high performance liquid chromatography. Tricine-SDS-PAGE and Western blotting demonstrated that rHFBI with the expected molecular weight of 7.5 kDa was secreted into the culture medium. X-ray photoelectron spectroscopy and water contact angle measurements indicated that rHFBI could lead to the conversion of the wettability of the hydrophobic siliconized glass and hydrophilic mica surfaces relying on the self-assembly membrane on hydrophobic/hydrophilic interfaces. It was demonstrated that rHFBI had the ability to stabilize oil droplets, which was far excess of the class I hydrophobin HGFI heterologously expressed in P. pastoris (rHGFI) and the typical food emulsifier sodium caseinate. In gushing experiments, it was shown that rHFBI was a strong gushing inducer in beer, whereas rHGFI did not display any signs of gushing. This provided the potential of rHFBI to be used as a novel emulsifying agent and a predictor of gushing risk.  相似文献   

11.
Szilvay GR  Kisko K  Serimaa R  Linder MB 《FEBS letters》2007,581(14):2721-2726
Hydrophobins are small fungal surface active proteins that self-assemble at interfaces into films with nanoscale structures. The hydrophobin HFBI from Trichoderma reesei has been shown to associate in solution into tetramers but the role of this association on the function of HFBI has remained unclear. We produced two HFBI variants that showed a significant shift in solution association equilibrium towards the tetramer state. However, this enhanced solution association did not alter the surface properties of the variant HFBIs. The results show that there is not a strong relationship between HFBI solution association state and surface properties such as surface activity.  相似文献   

12.
Hydrophobins are surface active proteins produced by filamentous fungi. They have a role in fungal growth as structural components and in the interaction of fungi with their environment. They have, for example, been found to be important for aerial growth, and for the attachment of fungi to solid supports. Hydrophobins also render fungal structures, such as spores, hydrophobic. The biophysical properties of the isolated proteins are remarkable, such as strong adhesion, high surface activity and the formation of various self-assembled structures. The first high resolution three dimensional structure of a hydrophobin, HFBII from Trichoderma reesei, was recently solved. In this review, the properties of hydrophobins are analyzed in light of these new data. Various application possibilities are also discussed.  相似文献   

13.
Many characteristics of fungal hydrophobins, such as an ability to change hydrophobicity of different surfaces, have potential for several applications. The large-scale processes of production and isolation of these proteins susceptible to aggregation and attachment to interfacial surfaces still needs to be studied. We report for the first time on a method for a gram-scale production and purification of a hydrophobin, HFBI of Trichoderma reesei. A high production level of the class II hydrophobin (0.6 g l(-1)) was obtained by constructing a T. reesei HFBI-overproducing strain containing three copies of the hfb1 gene. The strain was cultivated on glucose-containing medium, which induces expression of hfb1. HFBI hydrophobin was purified from the cell walls of the fungus because most of the HFBI was cell-bound (80%). Purification was carried out with a simple three-step method involving extraction of the mycelium with 1% SDS at pH 9.0, followed by KCl precipitation to remove SDS, and hydrophobic interaction chromatography. The yield was 1.8 g HFBI from mycelium (419 g dw), derived from 15 l of culture. HFBI was shown to be rather unstable to N-terminal asparagine deamidation and also, to some extent, to non-specific proteases although its thermostability was excellent.  相似文献   

14.
Fan H  Wang X  Zhu J  Robillard GT  Mark AE 《Proteins》2006,64(4):863-873
Hydrophobins are small ( approximately 100 aa) proteins that have an important role in the growth and development of mycelial fungi. They are surface active and, after secretion by the fungi, self-assemble into amphipathic membranes at hydrophobic/hydrophilic interfaces, reversing the hydrophobicity of the surface. In this study, molecular dynamics simulation techniques have been used to model the process by which a specific class I hydrophobin, SC3, binds to a range of hydrophobic/hydrophilic interfaces. The structure of SC3 used in this investigation was modeled based on the crystal structure of the class II hydrophobin HFBII using the assumption that the disulfide pairings of the eight conserved cysteine residues are maintained. The proposed model for SC3 in aqueous solution is compact and globular containing primarily beta-strand and coil structures. The behavior of this model of SC3 was investigated at an air/water, an oil/water, and a hydrophobic solid/water interface. It was found that SC3 preferentially binds to the interfaces via the loop region between the third and fourth cysteine residues and that binding is associated with an increase in alpha-helix formation in qualitative agreement with experiment. Based on a combination of the available experiment data and the current simulation studies, we propose a possible model for SC3 self-assembly on a hydrophobic solid/water interface.  相似文献   

15.
Controllable cell growth on poly(dimethylsiloxzne) (PDMS) surface is important for its potential applications in biodevices. Herein, we developed a fully biocompatible approach for patterning of cells on the PDMS surface by hydrophobin (HFBI) and collagen modification. HFBI and collagen were immobilized on the PDMS surface one after another by using copper grids as a mask. HFBI self-assembly on PDMS surface converted the PDMS surface from hydrophobic to hydrophilic, which facilitated the following immobilization of collagen. Collagen had admirable ability to support cell adhesion and growth. Consequently, the HFBI/collagen-modified PDMS surface could promote cell adhesion and growth. What is more, the native PDMS surface did not support cell adhesion and growth. Patterning of cells was achieved by directly culturing 293T cells (the human embryonic kidney cell line) on the PDMS surface patterned with HFBI/collagen. Further studies by means of gene transfection experiment in vitro showed that the patterned cells were of good bioactivities. Herein, the biocompatible preparation of cell patterns on the PDMS surface could be of many applications in biosensor device fabrication.  相似文献   

16.
Hydrophobins are a group of very surface-active, fungal proteins known to self-assemble on various hydrophobic/hydrophilic interfaces. The self-assembled films coat fungal structures and mediate their attachment to surfaces. Hydrophobins are also soluble in water. Here, the association of hydrophobins HFBI and HFBII from Trichoderma reesei in aqueous solution was studied using small-angle x-ray scattering. Both HFBI and HFBII exist mainly as tetramers in solution in the concentration range 0.5-10 mg/ml. The assemblies of HFBII dissociate more easily than those of HFBI, which can tolerate changes of pH from 3 to 9 and temperatures in the range 5°C-60°C. The self-association of HFBI and HFBII is mainly driven by the hydrophobic effect, and addition of salts along the Hofmeister series promotes the formation of larger assemblies, whereas ethanol breaks the tetramers into monomers. The possibility that the oligomers in solution form the building blocks of the self-assembled film at the air/water interface is discussed.  相似文献   

17.
Hydrophobins play an important role in binding and assembly of fungal surface structures as well as in medium-air interactions. These, hydrophobic properties provide interesting possibilities when purification of macromolecules is concerned. In aqueous micellar two-phase systems, based on surfactants, the water soluble hydrophobins are concentrated inside micellar structures and, thus, distributed to defined aqueous phases. This, one-step purification is attractive particularly when large-scale production of recombinant proteins is concerned. In the present study the hydrophobin HFBI of Trichoderma reesei was expressed as an N-terminal fusion with chicken avidin in baculovirus infected insect cells. The intracellular distribution of the recombinant fusion construct was analyzed by confocal microscopy and the protein subsequently purified from cytoplasmic extracts in an aqueous micellar two-phase system by using a non-ionic surfactant. The results show that hydrophobin and an avidin fusion thereof were efficiently expressed in insect cells and that these hydrophobic proteins could be efficiently purified from these cells in one-step by adopting an aqueous micellar two-phase system.  相似文献   

18.
Hydrophobins are amphiphilic proteins secreted by filamentous fungi in a soluble form, which can self-assemble at hydrophilic/hydrophobic or water/air interfaces to form amphiphilic layers that have multiple biological roles. We have investigated the conformational changes that occur upon self-assembly of six hydrophobins that form functional amyloid fibrils with a rodlet morphology. These hydrophobins are present in the cell wall of spores from different fungal species. From available structures and NMR chemical shifts, we established the secondary structures of the monomeric forms of these proteins and monitored their conformational changes upon amyloid rodlet formation or thermal transitions using synchrotron radiation circular dichroism and Fourier-transform infrared spectroscopy (FT-IR). Thermal transitions were followed by synchrotron radiation circular dichroism in quartz cells that allowed for microbubbles and hence water/air interfaces to form and showed irreversible conformations that differed from the rodlet state for most of the proteins. In contrast, thermal transitions on hermetic calcium fluoride cells showed reversible conformational changes. Heating hydrophobin solutions with a water/air interface on a silicon crystal surface in FT-IR experiments resulted in a gain in β-sheet content typical of amyloid fibrils for all except one protein. Rodlet formation was further confirmed by electron microscopy. FT-IR spectra of pre-formed hydrophobin rodlet preparations also showed a gain in β-sheet characteristic of the amyloid cross-β structure. Our results indicate that hydrophobins are capable of significant conformational plasticity and the nature of the assemblies formed by these surface-active proteins is highly dependent on the interface at which self-assembly takes place.  相似文献   

19.
The aim of this work was to modify the cell surface properties of Saccharomyces cerevisiae by expression of the HFBI hydrophobin of the filamentous fungus Trichoderma reesei on the yeast cell surface. The second aim was to study the immobilization capacity of the modified cells. Fusion to the Flo1p flocculin was used to target the HFBI moiety to the cell wall. Determination of cell surface characteristics with contact angle and zeta potential measurements indicated that HFBI-producing cells are more apolar and slightly less negatively charged than the parent cells. Adsorption of the yeast cells to different commercial supports was studied. A twofold increase in the binding affinity of the hydrophobin-producing yeast to hydrophobic silicone-based materials was observed, while no improvement in the interaction with hydrophilic carriers could be seen compared to that of the parent cells. Hydrophobic interactions between the yeast cells and the support are suggested to play a major role in attachment. Also, a slight increase in the initial adsorption rate of the hydrophobin yeast was observed. Furthermore, due to the engineered cell surface, hydrophobin-producing yeast cells were efficiently separated in an aqueous two-phase system by using a nonionic polyoxyethylene detergent, C(12-18)EO(5).  相似文献   

20.
Hydrophobins represent an important group of proteins from both a biological and nanotechnological standpoint. They are the means through which filamentous fungi affect their environment to promote growth, and their properties at interfaces have resulted in numerous applications. In our study we have combined protein docking, molecular dynamics simulation, and electron cryo-microscopy to gain atomistic level insight into the surface structure of films composed of two class II hydrophobins: HFBI and HFBII produced by Trichoderma reesei. Together our results suggest a unit cell composed of six proteins; however, our computational results suggest P6 symmetry, while our experimental results show P3 symmetry with a unit cell size of 56 Å. Our computational results indicate the possibility of an alternate ordering with a three protein unit cell with P3 symmetry and a smaller unit cell size, and we have used a Monte Carlo simulation of a spin model representing the hydrophobin film to show how this alternate metastable structure may play a role in increasing the rate of surface coverage by hydrophobin films, possibly indicating a mechanism of more general significance to both biology and nanotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号