首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Paul PK  Kumar A 《Autophagy》2011,7(5):555-556
Skeletal muscle wasting is a major reason for morbidity and mortality in many chronic disease states, disuse conditions and aging. The ubiquitin-proteasome and autophagy-lysosomal systems are the two major proteolytic pathways involved in regulation of both physiological and pathological muscle wasting. Tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) is an important adaptor protein involved in receptor-mediated activation of various signaling pathways in response to cytokines and bacterial products. TRAF6 also possesses E3 ubiquitin ligase activity causing lysine-63-linked polyubiquitination of target proteins. We have uncovered a novel role of TRAF6 in regulation of skeletal muscle mass. Muscle-wasting stimuli upregulate the expression, as well as the auto-ubiquitination, of TRAF6 leading to downstream activation of major catabolic pathways in skeletal muscle. Muscle-specific depletion of TRAF6 preserves skeletal muscle mass in a mouse model of cancer cachexia or denervation. Inhibition of TRAF6 also blocks the expression of the components of the ubiquitin-proteasome system (UPS) and autophagosome formation in atrophying skeletal muscle. While more investigations are required to understand its mechanisms of action in skeletal muscle, our results indicate that blocking TRAF6 activity can be used as a therapeutic approach to preserve skeletal muscle mass and function in different disease states and conditions.  相似文献   

3.
4.
Skeletal muscle contraction depends on the release of Ca(2+) from the sarcoplasmic reticulum (SR), but the dynamics of the SR free Ca(2+) concentration ([Ca(2+)](SR)), its modulation by physiological stimuli such as catecholamines, and the concomitant changes in cAMP handling have never been directly determined. We used two-photon microscopy imaging of GFP-based probes expressed in mouse skeletal muscles to monitor, for the first time in a live animal, the dynamics of [Ca(2+)](SR) and cAMP. Our data, which were obtained in highly physiological conditions, suggest that free [Ca(2+)](SR) decreases by approximately 50 microM during single twitches elicited through nerve stimulation. We also demonstrate that cAMP levels rise upon beta-adrenergic stimulation, leading to an increased efficacy of the Ca(2+) release/reuptake cycle during motor nerve stimulation.  相似文献   

5.
1. An NADP+-dependent malic enzyme was purified 7940-fold from the cytosolic fraction of human skeletal muscle with a final yield of 55.8% and a specific activity of 38.91 units/mg of protein. 2. The purification to homogeneity was achieved by ammonium sulfate fractionation, DEAE-Sepharose chromatography, affinity chromatography on NADP+-Agarose, gel filtration on Sephacryl S-300 and rechromatography on the affinity column. 3. Either Mn2+ or Mg2+ was required for activity: the pH optima with Mn2+ and Mg2+ were 8.1 and 7.5, respectively. The enzyme showed Michaelis-Menten kinetics. At pH 7.5 the apparent Km values with Mn2+ and Mg2+ for L-malate and NADP+ were 0.246 mM and 5.8 microM, and 0.304 mM and 5.8 microM, respectively. The Km values with Mn2+ for pyruvate, NADPH and bicarbonate were 8.6 mM, 6.1 microM and 22.2 mM, respectively. 4. The enzyme was also able to decarboxylate malate in the presence of NAD+. At pH 7.5 the reaction rate was approximately 10% of the rate in the presence of NADP+, with a Km value for NAD+ of 13.9 mM. 5. The following physical parameters were established: s0(20.w) = 10.48, Stokes' radius = 5.61 nm, pI = 5.72 Mr of the dissociated enzyme = 61,800. The estimates of the native apparent Mr yielded a value of 313,000 upon gel filtration, and 255,400 with f/fo = 1.33 by combining the chromatographic data with the sedimentation measurements. 6. The electron microscopy analysis of the uranyl acetate-stained enzyme revealed a tetrameric structure. 7. Investigations to detect sugar moieties indicated that the enzyme contains carbohydrate side chains, a property not previously reported for any other malic enzyme.  相似文献   

6.
Of the two known vasoactive intestinal peptide receptors (VPAC1R and VPAC2R), the VPAC2R is expressed in skeletal muscle. To evaluate the function of the VPAC2R in the physiological control of skeletal muscle mass, we utilized the VPAC1R selective agonist [K15,R16,L27]VIP(1-7) GRF(8-27)-NH2 and the VPAC2R selective agonist Ro-25-1553 to treat mice and rats undergoing either nerve damage-, corticosteroid-, or disuse-induced skeletal muscle atrophy. These analyses demonstrated that activation of VPAC2R, but not VPAC1R, reduced the loss of skeletal muscle mass and force during conditions of skeletal muscle atrophy resulting from corticosteroid administration, denervation, casting-induced disuse, increased skeletal muscle mass, and force of nonatrophying muscles. These studies indicate that VPAC2R agonists may have utility for the treatment of skeletal muscle-wasting diseases.  相似文献   

7.
Transgenic mice, containing a chimeric gene in which the cDNA for phosphoenolpyruvate carboxykinase (GTP) (PEPCK-C) (EC 4.1.1.32) was linked to the alpha-skeletal actin gene promoter, express PEPCK-C in skeletal muscle (1-3 units/g). Breeding two founder lines together produced mice with an activity of PEPCK-C of 9 units/g of muscle (PEPCK-C(mus) mice). These mice were seven times more active in their cages than controls. On a mouse treadmill, PEPCK-C(mus) mice ran up to 6 km at a speed of 20 m/min, whereas controls stopped at 0.2 km. PEPCK-C(mus) mice had an enhanced exercise capacity, with a VO(2max) of 156 +/- 8.0 ml/kg/min, a maximal respiratory exchange ratio of 0.91 +/- 0.03, and a blood lactate concentration of 3.7 +/- 1.0 mm after running for 32 min at a 25 degrees grade; the values for control animals were 112 +/- 21 ml/kg/min, 0.99 +/- 0.08, and 8.1 +/- 5.0 mm respectively. The PEPCK-C(mus) mice ate 60% more than controls but had half the body weight and 10% the body fat as determined by magnetic resonance imaging. In addition, the number of mitochondria and the content of triglyceride in the skeletal muscle of PEPCK-C(mus) mice were greatly increased as compared with controls. PEPCK-C(mus) mice had an extended life span relative to control animals; mice up to an age of 2.5 years ran twice as fast as 6-12-month-old control animals. We conclude that overexpression of PEPCK-C repatterns energy metabolism and leads to greater longevity.  相似文献   

8.
Rat cytosolic sialidase is expressed at elevated levels in skeletal muscle and is believed to play a role in the myogenic differentiation of muscle cells. Here, we observed varying levels of enhancement of sialidase activity in the presence a range of divalent cations. In particular, a significant enhancement of activity was observed in the presence of Ca2+. Conversely, inhibition of the sialidase activity was found when the enzyme was incubated in the presence of Cu2+, EDTA, and a range of carbohydrate-based inhibitors. Finally, an investigation of the enzymatic hydrolysis of a synthetic substrate, 4-methylumbelliferyl N-acetyl-alpha-D-neuraminide, by 1H NMR spectroscopy revealed that the reaction catalysed by rat skeletal muscle cytosolic sialidase proceeds with overall retention of anomeric configuration. This result further supports the notion that all sialidases appear to be retaining enzymes.  相似文献   

9.
Myeloid sarcomas are extramedullary accumulations of immature myeloid cells that may present with or without evidence of pathologic involvement of the bone marrow or peripheral blood, and often coincide with or precede a diagnosis of acute myeloid leukemia (AML). A dearth of experimental models has hampered the study of myeloid sarcomas and led us to establish a new system in which tumor induction can be evaluated in an easily accessible non-hematopoietic tissue compartment. Using ex-vivo transduction of oncogenic Kras(G12V) into p16/p19(-/-) bone marrow cells, we generated transplantable leukemia-initiating cells that rapidly induced tumor formation in the skeletal muscle of immunocompromised NOD.SCID mice. In this model, murine histiocytic sarcomas, equivalent to human myeloid sarcomas, emerged at the injection site 30-50 days after cell implantation and consisted of tightly packed monotypic cells that were CD48+, CD47+ and Mac1+, with low or absent expression of other hematopoietic lineage markers. Tumor cells also infiltrated the bone marrow, spleen and other non-hematopoietic organs of tumor-bearing animals, leading to systemic illness (leukemia) within two weeks of tumor detection. P16/p19(-/-); Kras(G12V) myeloid sarcomas were multi-clonal, with dominant clones selected during secondary transplantation. The systemic leukemic phenotypes exhibited by histiocytic sarcoma-bearing mice were nearly identical to those of animals in which leukemia was introduced by intravenous transplantation of the same donor cells. Moreover, murine histiocytic sarcoma could be similarly induced by intramuscular injection of MLL-AF9 leukemia cells. This study establishes a novel, transplantable model of murine histiocytic/myeloid sarcoma that recapitulates the natural progression of these malignancies to systemic disease and indicates a cell autonomous leukemogenic mechanism.  相似文献   

10.
11.
The exogenous recombinant human growth hormone (rhGH) administration on gastrocnemius muscle growth performance and its contribution to body growth of male and female BALB/c mice fed a 12 % protein diet from 25 to 50 days of age, as well as the mechanism of utilization of feed intake to the lean muscle deposition were studied. Male and female weaning mice (21 days of age) were injected subcutaneously for 29 days with rhGH (74 ng x g(-1)) or saline vehicle (control). Feed intake and body weight (BW) were measured daily. At 25, 30, 35, 40, 45 and 50 days of age twenty mice were killed by cervical dislocation and the gastrocnemius muscle was isolated, weighed and the protein content was measured. The rhGH administration caused a biphasic response of BW and muscle growth as a consequence of age-specific feed intake changes. The initial feed intake fall induced the allometric proportion decreases in both muscle growth versus body growth and protein muscle versus muscle growth. That effect was due to ineffient utilization of energy and protein intake on protein muscle store. Later on, the self-controlled increase of feed intake leads to the recovery of muscle weight to control values, through nutrient partitioning toward non protein tissue showing a compensatory muscle growth. This suggests that a higher dietary protein level should be necessary for promoting the protein anabolic effect of GH during weaning.  相似文献   

12.
It has been suggested, on the basis of immunolocalization studies in vivo and antibody blocking experiments in vitro, that alpha 4 integrins interacting with vascular cell adhesion molecule 1 (VCAM-1) are involved in myogenesis and skeletal muscle development. To test this proposal, we generated embryonic stem (ES) cells homozygous null for the gene encoding the alpha 4 subunit and used them to generate chimeric mice. These chimeric mice showed high contributions of alpha 4- null cells in many tissues, including skeletal muscle, and muscles lacking any detectable (< 2%) alpha 4-positive cells did not reveal any gross morphological abnormalities. Furthermore, assays for in vitro myogenesis using either pure cultures of alpha 4-null myoblasts derived from the chimeras or alpha 4-null ES cells showed conclusively that alpha 4 integrins are not essential for muscle cell fusion and differentiation. Taking these results together, we conclude that alpha 4 integrins appear not to play essential roles in normal skeletal muscle development.  相似文献   

13.
Short muscle fibers (less than 1.5 mm) from the m. lumbricalis IV digiti of Rana pipiens were voltage-clamped at -100 mV with a two-microelectrode technique, in normal Ringer's solution containing 10(-6) g/ml tetrodotoxin. The activation curve relating peak tension to membrane potential could be shifted toward more negative or less negative potential values by hyperpolarizing or depolarizing the fiber membrane to -130, -120, or -70 mV, respectively, which indicates that contractile threshold depends on the fiber membrane potential. Long (greater than 5 s) depolarizing (90 mV) pulses induce prolonged contractile responses showing a plateau and a rapid relaxation phase similar to K contractures. Conditioning hyperpolarizations prolong the time course of these responses, while conditioning depolarizations shorten it. The shortening of the response time course, which results in a decrease of the area under the response, is dependent on the amplitude and duration of the conditioning depolarization. Depending on the magnitude and duration, a conditioning depolarization may also reduce peak tension. When the area under the response is reduced by 50%, the level of membrane potential also affects the repriming rate. During repriming, peak tension is restored before the contracture area. Thus, when peak tension is reprimed to 80%, the area is reprimed by 50% of its normal value. Repriming has a marked temperature dependency with a Q10 higher than 4. These results are compatible with the idea that an inactivation process, voltage and time dependent, regulates the release of calcium from the sarcoplasmic reticulum during these responses.  相似文献   

14.
15.
Mitochondrial coupling in vivo in mouse skeletal muscle   总被引:3,自引:0,他引:3  
The coupling of mitochondrial ATP synthesis and oxygen consumption (ratio of ATP and oxygen fluxes, P/O) plays a central role in cellular bioenergetics. Reduced P/O values are associated with mitochondrial pathologies that can lead to reduced capacity for ATP synthesis and tissue degeneration. Previous work found a wide range of values for P/O in normal mitochondria. To measure mitochondrial coupling under physiological conditions, we have developed a procedure for determining the P/O of skeletal muscle in vivo. This technique measures ATPase and oxygen consumption rates during ischemia with 31P magnetic resonance and optical spectroscopy, respectively. This novel approach allows the independent quantitative measurement of ATPase and oxygen flux rates in intact tissue. The quantitative measurement of oxygen consumption is made possible by our ability to independently measure the saturations of hemoglobin (Hb) and myoglobin (Mb) from optical spectra. Our results indicate that the P/O in skeletal muscle of the mouse hindlimb measured in vivo is 2.16 ± 0.24. The theoretical P/O for resting muscle is 2.33. Systemic treatment with 2,4-dinitrophenol to partially uncouple mitochondria does not affect the ATPase rate in the mouse hindlimb but nearly doubles the rate of oxygen consumption, reducing in vivo P/O to 1.37 ± 0.22. These results indicate that only a small fraction of the oxygen consumption in resting mouse skeletal muscle is nonphosphorylating under physiological conditions, suggesting that mitochondria are more tightly coupled than previously thought. P/O; oxidative phosphorylation; proton leak; optical spectroscopy  相似文献   

16.
Skeletal muscles produce and contribute to circulating levels of IL-6 during exercise. However, when core temperature is reduced, the response is attenuated. Therefore, we hypothesized that hyperthermia may be an important and independent stimulus for muscle IL-6. In cultured C2C12 myotubes, hyperthermia (42°C) increased IL-6 gene expression 14-fold after 1 h and 35-fold after 5 h of 37°C recovery; whereas exposure to 41°C resulted in a 2.6-fold elevation at 1 h. IL-6 protein was secreted and significantly elevated in the cell supernatant. Similar but reduced responses to heat were seen in C2C12 myoblasts. Isolated soleus muscles from mice, exposed ex vivo to 41°C for 1 h, yielded similar IL-6 gene responses (>3-fold) but without a significant effect on protein release. When whole animals were exposed to passive hyperthermia, such that core temperature increased to 42.4°C, IL-6 mRNA in soleus increased 5.4-fold compared with time matched controls. Interestingly, TNF-α gene expression was routinely suppressed at all levels of hyperthermia (40.5-42°C) in the isolated models, but TNF-α was elevated (4.2-fold) in the soleus taken from intact mice exposed, in vivo, to hyperthermia. Muscle HSP72 mRNA increased as a function of the level of hyperthermia, and IL-6 mRNA responses increased proportionally with HSP72. In cultured C2C12 myotubes, when heat shock factor was pharmacologically blocked with KNK437, both HSP72 and IL-6 mRNA elevations, induced by heat, were suppressed. These findings implicate skeletal muscle as a "heat stress sensor" at physiologically relevant hyperthermia, responding with a programmed cytokine expression pattern characterized by elevated IL-6.  相似文献   

17.
The in vitro phosphorylation of a 40,400-dalton, cytosolic polypeptide from the soleus muscle of the rat is increased twofold within 24 hr after cutting the motor nerve fibers to this muscle. This involves an ATP:phosphotransferase reaction which we have reported to be inhibited by a specific cyclic AMP-dependent protein kinase inhibitor. The phosphorylated polypeptide does not electrophoretically comigrate on SDS-polyacrylamide gels with the 38,000-dalton catalytic subunit of cyclic AMP-dependent protein kinase which is known to undergo a site-specific autophosphorylation in skeletal muscle.  相似文献   

18.
Hederacolchiside A1 was used to progressively permeabilize the membrane of human melanoma MEL-5 cells. Holes formation was followed by Scanning Electron Microscopy and interaction of the saponin with cholesterol and phospholipids by TOF-SIMS. 2D-LC-MS/MS and 2D-SDS-PAGE show that the release of soluble proteins into serum-free culture media increases with time. This can lead to a new rapid and efficient strategy to analyze the cytosolic subproteome and it opens the door to get information from the cytosolic compartment for clinical proteomic studies.  相似文献   

19.
Mitochondrial respiratory chain defects have been associated with various diseases and normal aging, particularly in tissues with high energy demands including skeletal muscle. Muscle-specific mitochondrial DNA (mtDNA) mutations have also been reported to accumulate with aging. Our understanding of the molecular processes mediating altered mitochondrial gene expression to dysfunction associated with mtDNA mutations in muscle would be greatly enhanced by our ability to transfer muscle mtDNA to established cell lines. Here, we report the successful generation of mouse cybrids carrying skeletal muscle mtDNA. Using this novel approach, we performed bioenergetic analysis of cells bearing mtDNA derived from young and old mouse skeletal muscles. A significant decrease in oxidative phosphorylation coupling and regulation capacity has been observed with cybrids carrying mtDNA from skeletal muscle of old mice. Our results also revealed decrease growth capacity and cell viability associated with the mtDNA derived from muscle of old mice. These findings indicate that a decline in mitochondrial function associated with compromised mtDNA quality during aging leads to a decrease in both the capacity and regulation of oxidative phosphorylation.  相似文献   

20.
In skeletal muscle, adenosine monophosphate (AMP) is mainly deaminated by AMP deaminase. However, the C34T mutation in the AMPD1 gene severely reduces AMP deaminase activity. Alternatively, intracellular AMP is dephosphorylated to adenosine via cytosolic AMP 5'-nucleotidase (cN-I). In individuals with a homozygous C34T mutation, cN-I might be a more important pathway for AMP removal. We determined activities of AMP deaminase, cN-I, total cytosolic 5'-nucleotidase (total cN), ecto-5'-nucleotidase (ectoN) and whole homogenate 5'-nucleotidase activity in skeletal muscle biopsies from patients with different AMPD1 genotypes [homozygotes for C34T mutation (TT); heterozygotes for C34T mutation (CT); and homozygotes for wild type (CC): diseased controls CC; and normal controls CC]. AMP deaminase activity showed genotype-dependent differences. Total cN activity in normal controls accounted for 57+/-22% of whole homogenate 5'-nucleotidase activity and was not significantly different from the other groups. A weak inverse correlation was found between AMP deaminase and cN-I activities (r2=0.18, p<0.01). There were no significant differences between different groups in the activities of cN-I, whole homogenate 5'-nucleotidase and ectoN, or in cN-I expression on Western blots. No correlation for age, fibre type distribution and AMPD1 genotype was found for whole homogenate nucleotidase, total cN and cN-I using multiple linear regression analysis. There was no gender-specific difference in the activities of whole homogenate nucleotidase, total cN and cN-I. The results indicate no changes in the relative expression or catalytic behaviour of cN-I in AMP deaminase-deficient human skeletal muscle, but suggest that increased turnover of AMP by cN-I in working skeletal muscle is due to higher substrate availability of AMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号