首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halocyanin from the haloalkaliphilic archaean Natronobacterium pharaonis is a peripheral membrane type 1 blue copper protein with a single polypeptide chain of 163 amino acid residues. Halocyanin participates as putative electron carrier protein associated to an electron acceptor role for a terminal oxidase and has the lowest redox potential value reported to date for a BCP. NMR studies and homology modeling calculations were performed to evaluate the electronic properties of Cu(II)-halocyanin from Natronobacterium pharaonis. The copper coordination site properties of Cu(II)-halocyanin are discussed. The 1H NMR spectra, isotropic chemical shifts and relaxation times for halocyanin are compared with those of other BCPs such as azurin, amicyanin, plastocyanin and stellacyanin. The wild-type Cu(II)-halocyanin presents almost the same 1H NMR spectra in comparison with Cu(II)-plastocyanin as expected from a similar coordination symmetry. However, minor differences were found. In order to get some insight on these differences, a computational model for Cu(II)-halocyanin from N. pharaonis was built. Model is based on sequential homology of halocyanin with two different families of proteins: plastocyanins and pseudoazurins. Homology modeling was performed using two different structural templates and copper ion was added for further refinement of the coordination site. Proposed structure was in good agreement with NMR experimental information and is the first three-dimensional model reported to date of an halocyanin. Small differences were found in the copper coordination site with respect to other BCP with known structure. This work is also an interesting example of expertise-driven homology modeling across different protein families.  相似文献   

2.
The copper-binding site of lysyl oxidase remains extremely poorly characterized and although models have been suggested for copper(II) coordination by three histidine ligands, as has been found for other copper-containing amine oxidases, there has been no experimental confirmation of these suggestions. In this work, two synthetic peptides with 24 and 34-amino acid residues, respectively, were chosen from the highly conserved histidine-rich sequence previously suggested as the copper-binding region of lysyl oxidase. These peptides each bind one equivalent of Cu(II), at the same site in the two peptides. Spectroscopic (NMR, electron paramagnetic resonance (EPR), CD, visible absorption and fluorescence) techniques were employed to investigate the nature of the resulting complexes. The results indicate that at neutral pH three histidine ring nitrogen atoms and one carboxylate oxygen atom coordinate as the in-plane ligands of the copper, which is in an approximately tetragonally-distorted octahedral geometry. Modeling of the copper-peptides using the consistent force field (CFF91) produces a minimum energy configuration with three histidines and one water molecule as the copper ligands. CD, EPR and fluorescence results are reported for lysyl oxidase and compared with results for the peptides.  相似文献   

3.
Among the common features shared by neurodegenerative diseases there is the central role played by specific proteins or peptides which accumulate in neurons as insoluble plaques or tangles, containing abnormal amounts of redox-active metal ions, like copper and iron. In the case of transmissible spongiform encephalopathies (TSE), the involved protein is known as "prion protein" (PrP(C)) since "prions" (proteinaceous and infectious) are the agents which make TSE transmissible. It is widely accepted that PrP(C), in its wild-type form, can bind up to six Cu(II) ions, four of them in the so-called "octarepeat domain" and the others in the "fifth (non-octarepeat) binding-site". The latter domain contains two His residues, acting as anchoring sites for Cu(II) ions, and other potential binding residues, such as Lys and Met. While it is widely accepted that Lys residues do not take part in complex-formation, the role of methionines is still debated. In order to shed light on this issue, some peptides have been synthesized, either directly mimicking the sequence of the second half of the fifth binding site of human-PrP(C) (apo-form) or analogues where Met residues have been substituted by n-leucine. In addition, a series of short peptides, containing both His and Met residues in different relative positions, have been investigated, for the sake of comparison. Spectroscopic results, including NMR spectra of systems containing Ni(II) as a probe for the paramagnetic Cu(II) ion, agree on the exclusion of any direct interaction between the sulphur atom of Met residues and the Cu(II) ion already bound to His-imidazole side-chains. However, thermodynamic data show that Met-109 somewhat contributes to stability of complex species and this can be attributed to different electronic and steric effects.  相似文献   

4.
The N-terminal metal binding extension of the Cu,Zn superoxide dismutase from Haemophilus ducreyi is constituted by a histidine-rich region followed by a methione-rich sequence which shows high similarity with protein motifs involved in the binding of Cu(I). X-ray absorption spectroscopy experiments selectively carried out with peptides corresponding to the two metal binding regions indicate that both sequences can bind either Cu(II) or Cu(I). However, competition experiments demonstrate that Cu(II) is preferred by histidine residues belonging to the first half of the motif, while the methionine-rich region preferentially binds Cu(I) via the interaction with three methionine sulfur atoms. Moreover, we have observed that the rate of copper transfer from the peptides to the active site of a copper-free form of the Cu,Zn superoxide dismutase mutant lacking the N-terminal extension depends on the copper oxidation state and on the residues involved in metal binding, histidine residues being critically important for the efficient transfer. Differences in the enzyme reactivation rates in the presence of mixtures of the two peptides when compared to those obtained with the single peptides suggest that the two halves of the N-terminal domain functionally interact during the process of copper transfer, possibly through subtle modifications of the copper coordination environment.  相似文献   

5.
The copH gene is one of the 19 open reading frames (ORFs) found in the cop cluster borne by the large plasmid pMol30 in Cupriavidus metallidurans CH34. The entire cluster is involved in detoxification of copper from the cytoplasm as well as from the periplasm. The function of the corresponding protein, CopH, is not yet clear, but it seems to be involved in the late response phase. We have cloned copH and overproduced and purified the corresponding protein. CopH is rather unique as only one paralog can be found in the databases. It is a dimeric protein with a molecular mass of 13 200 Da per subunit and located in the periplasm. The metal binding properties of CopH were examined by using a series of techniques such as UV-visible spectroscopy, circular dichroism (CD), electron paramagnetic resonance (EPR), surface plasmon resonance (SPR), mass spectrometry, and nuclear magnetic resonance (NMR). All together, the corresponding data are consistent with a dimeric protein containing one metal-binding site per subunit. These sites have a high affinity for Cu(II) but can also bind zinc or nickel. CopH does not contain any cysteines or methionines but contains two histidines. EPR and UV-visible features are consistent with the presence of Cu(II) type 2 centers in a nitrogen ligand field. SPR data confirm the involvement of the histidine residues in copper binding. CD and NMR data reveal that CopH is partially unfolded.  相似文献   

6.
Anions that do not coordinate to the catalytically active copper ion of Cu,Zn superoxide dismutase, but still affect the activity of the enzyme by weaker interactions with the protein moiety surrounding the active site (low affinity anions), uniformly perturbed the 1H NMR line of the NH group of the copper ligand His 46. This effect was detected on the enzyme having Co(II) substituted for the native Zn(II), in which the resonances of residues bound to the copper are detected because of the antiferromagnetic coupling between Cu(II) and Co(II). The interaction with the enzyme of phosphate, a good representative of low-affinity anions, was also studied by 31P NMR of the native enzyme and of enzyme samples covalently modified at all lysines or at the Arg 141, which is 5 A away from the copper. The results obtained indicate that Arg 141 is a likely candidate for binding of low-affinity anions in the vicinity of the copper and that the 1H NMR line of His 46 NH is diagnostic for such an interaction.  相似文献   

7.
Copper, a mediator of redox chemistries in biology, is often found in enzymes that bind and reduce dioxygen. Among these, the copper amine oxidases catalyze the oxidative deamination of primary amines utilizing a type(II) copper center and 2,4,5-trihydroxyphenylalanine quinone (TPQ), a covalent cofactor derived from the post-translational modification of an active site tyrosine. Previous studies established the dependence of TPQ biogenesis on Cu(II); however, the dependence of cofactor formation on the biologically relevant Cu(I) ion has remained untested. In this study, we demonstrate that the apoform of the Hansenula polymorpha amine oxidase readily binds Cu(I) under anaerobic conditions and produces the quinone cofactor at a rate of 0.28 h(-1) upon subsequent aeration to yield a mature enzyme with kinetic properties identical to the protein product of the Cu(II)-dependent reaction. Because of the change in magnetic properties associated with the oxidation of copper, electron paramagnetic resonance spectroscopy was employed to investigate the nature of the rate-limiting step of Cu(I)-dependent cofactor biogenesis. Upon aeration of the unprocessed enzyme prebound with Cu(I), an axial Cu(II) electron paramagnetic resonance signal was found to appear at a rate equivalent to that for the cofactor. These data provide strong evidence for a rate-limiting release of superoxide from a Cu(II)(O(2)(.)) complex as a prerequisite for the activation of the precursor tyrosine and its transformation for TPQ. As copper is trafficked to intracellular protein targets in the reduced, Cu(I) state, these studies offer possible clues as to the physiological significance of the acquisition of Cu(I) by nascent H. polymorpha amine oxidase.  相似文献   

8.
Sinefungin (SFG) is an antifungal and antiparasitic nucleoside antibiotic composed by ornithine and adenosine moieties both having the potential to bind copper(II). NMR studies performed at physiological pH have shown that the alpha-amino and the carboxylate groups in the ornithine unit are the preferred donor sites for Cu(II) binding. On the contrary, at acidic pH, Cu(II) complexation starts from adenosine nitrogen being the alpha-amino group still protonated and not available for metal binding. The proton paramagnetic relaxation enhancements measured at neutral pH allowed to obtain the 3D structure of the 1:2 Cu(II)-SFG complex. Molecular dynamics calculations were revealing for the existence of secondary Cu(II) interaction with the purine nitrogens of the adenosine moiety.  相似文献   

9.
Assignments of resonances in the 1H nmr spectra of Cu(I) azurin to proton groups in the protein are discussed in detail. Comparisons are drawn between Cu(I), Cu(II), apo, Hg(II), and Co(II) azurin samples. Redox titration of Cu(I) azurin with K3Fe(CN)6, is used to correlate Cu(I) and Cu(II) 1H nmr spectral features, and observed line broadenings deriving from Cu(II) paramagnetic effects are used to deduce the distances of assigned proton groups from the copper center. Histidine residues are characterized in terms of pK values, rates of acid-base exchange near the the pK, and rates of C2H exchange with solvent deuterium. The possibility of histidine involvement in the azurincytochrome 551 electron exchange mechanism is discussed. A small number of NH protons observed to be distinctively inert to 2H exchange with solvent 2H2O, in the Cu(I) protein, are found to show increased lability on removal of the metal.  相似文献   

10.
The reconstitution of Cu,Zn-superoxide dismutase from the copper-free protein by the Cu(I).GSH complex was monitored by: (a) EPR and optical spectroscopy upon reoxidation of the enzyme-bound copper; (b) NMR spectroscopy following the broadening of the resonances of the Cu(I).GSH complex after addition of Cu-free,Zn-superoxide dismutase; and (c) NMR spectroscopy of the Cu-free,Co(II) enzyme following the appearance of the isotropically shifted resonances of the Cu(I), Co enzyme, Cu(I).GSH was found to be a very stable complex in the presence of oxygen and a more efficient copper donor to the copper-free enzyme than other low molecular weight Cu(II) complexes. In particular, 100% reconstitution was obtained with stoichiometric copper at any GSH:copper ratio between 2 and 500. Evidence was obtained for the occurrence of a Cu(I).GSH.protein intermediate in the reconstitution process. In view of the inability of copper-thionein to reconstitute Cu,Zn-superoxide dismutase and of the detection of copper.GSH complexes in copper-over-loaded hepatoma cells (Freedman, J.H., Ciriolo, M.R., and Peisach, J. (1989) J. Biol. Chem. 264, 5598-5605), Cu(I).GSH is proposed as a likely candidate for copper donation to Cu-free,Zn-superoxide dismutase in vivo.  相似文献   

11.
Barney BM  LoBrutto R  Francisco WA 《Biochemistry》2004,43(35):11206-11213
A small metal-binding protein (SmbP) with no known similarity to other proteins in current databases was isolated and characterized from the periplasm of Nitrosomonas europaea. The primary structure of this small (9.9 kDa) monomeric protein is characterized by a series of 10 repeats of a seven amino acid motif and an unusually high number of histidine residues. The protein was isolated from N. europaea with Cu(II) bound but was found to be capable of binding multiple equivalents of a variety of divalent and trivalent metals. The protein was overexpressed in Escherichia coli and used for the study of its metal-binding properties by UV/vis, circular dichroism (CD), and electron paramagnetic resonance (EPR) spectroscopy and equilibrium dialysis and isothermal titration calorimetry. The protein was found to bind up to six Cu(II) atoms with dissociation constants of approximately 0.1 microM for the first two metal ions and approximately 10 microM for the next four. Binding of Cu(II) resulted in spectroscopic features illustrating two distinctive geometries, as determined by EPR spectroscopy. The levels of SmbP in the periplasm were found to increase by increasing the levels of copper in the growth media. This protein is proposed to have a role in cellular copper management in the ammonia-oxidizing bacterium N. europaea.  相似文献   

12.
Agarose based immobilized copper (II) affinity chromatography (Cu(II)-IMAC) in tandem with reversed-phase chromatography was applied to a yeast protein extract. Histidine-rich peptides were selected and, in the process, samples were substantially simplified prior to mass spectral analysis. Samples of proteins from the yeast extract at fermentation time periods of 2.5 and 10 h were compared quantitatively used the GIST protocol. Acylation of the N-terminus of tryptic peptides with N-acetoxysuccinamide was used to globally label and quantify relative protein concentration changes. Together with N-terminal acylation, an imidazole elution procedure allowed histidine-rich peptides to be preferentially selected by Cu(II)-IMAC. An inverse labeling strategy was applied to increase reliability in determinations of up- and down-regulation. It was found that the concentration of some histidine-rich proteins changed in excess of 4-fold during fermentation. These proteins covered a wide range of molecular weight and pI values.  相似文献   

13.
Copper is an essential metal in all organisms. Reliably quantifying and identifying the copper content and oxidation state is crucial, since the information is essential to understanding protein structure and function. Chromophoric ligands, such as Bathocuproine (BC) and its water-soluble analog, Bathocuproinedisulfonic acid (BCS), preferentially bind Cu(I) over Cu(II), and therefore have been widely used as optical probes to determine the oxidation state of copper bound by biomolecules. However, the BCS assay is commonly misused, leading to erroneous conclusions regarding the role of copper in biological processes. By measuring the redox potential of Cu(II)-BCS2 and conducting UV–vis absorption measurements in the presence of oxidizable amino acids, the thermodynamic origin of the potential artifacts becomes evident. The BCS assay was improved by introducing a strong Cu(II) chelator EDTA prior to the addition of BCS to prevent interference that might arise from Cu(II) present in the sample. The strong Cu(II) chelator rids of all the potential errors inherent in the conventional BCS assay. Applications of the improved assay to peptides and protein containing oxidizable amino acid residues confirm that free Cu(II) no longer leads to artifacts, thereby resolving issues related to this persistently misused colorimetric assay of Cu(I) in biological systems.  相似文献   

14.
Cobalt(II) amicyanin was prepared by replacing the copper of the type I copper protein amicyanin from Paracoccus denitrificans with cobalt. The structure of the protein and the metal center have been characterized by X-ray crystallography and paramagnetic NMR spectroscopy. The crystal structure indicates that Met98, which provides an axial sulfur ligand in native amicyanin, is no longer bound to the metal in cobalt(II) amicyanin and that a water molecule is recruited from solvent to form the fourth metal ligand. This results in a tetrahedral coordination geometry for the cobalt ion. NMR studies in solution also indicate that the side chain of the methionine residue interacts less strongly with the metal in P. denitrificans amicyanin than in Paracoccus versutus amicyanin. The cobalt(II) amicyanin crystal structure is different from that of cobalt-substituted azurin in which the carbonyl of a glycine residue provides this equivalent ligand. In cobalt(II) amicyanin that residue is a proline, for which the oxygen is structurally inaccessible, so that the water occupies the position held by the glycine carbonyl in cobalt(II) azurin. Such a metal coordination involving water has not previously been reported for a native or metal-substituted type I copper protein.  相似文献   

15.
G Yong  C Leone  K G Strothkamp 《Biochemistry》1990,29(41):9684-9690
The alpha, beta, and gamma isozymes of Agaricus bisporus tyrosinase undergo inactivation in the presence of oxalate. The inactivation rate law is first order in enzyme and second order in oxalate. On a more rapid time scale than inactivation, oxalate acts as a competitive inhibitor of the catecholase reaction of tyrosinase. After removal of oxalate by dialysis, the inactivated enzyme is found to contain 50% of the original copper, all of which is present as paramagnetic, mononuclear copper sites. The ESR parameters of this copper indicate a tetragonal environment with nitrogen and oxygen ligands. The product of oxalate inactivation has lost one copper from each binuclear site and is thus a metapo derivative. Addition of Cu(II) to metapotyrosinase results in complete recovery of copper and catalytic activity. Prolonged storage of metapotyrosinase, in the absence of any additional Cu(II), results in copper migration, producing a 50% recovery of the original specific activity, expressed on a protein basis. Copper migration converts metapo sites into equal numbers of reconstituted, holo sites and fully apo sites. Both copper migration and copper reconstitution follow apparent first-order kinetics and are pH dependent. The involvement of two ionizable groups accounts for the observed pH dependence of each process. For copper migration pKa values of 6.0 and 8.8 were found, while for copper reconstitution the pKa values were 5.4 and 6.9. Addition of either Co(II) or Zn(II) to metapotyrosinase results in the formation of enzymatically inactive, mixed-metal derivatives of the binuclear copper site having one Cu(II) and one Co(II) or Zn(II) ion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Doppel (Dpl) is the first described homologue of the prion protein, the main constituent of the agent responsible for prion diseases. The cellular prion protein (PrP(C)) is predominantly present in the central nervous system. Although its role is not yet completely clarified, PrP(C) seems to be involved in Cu(2+) recycling from synaptic clefts and in preventing neuronal oxidative damage. Conversely, Dpl is expressed in heart and testis and has been shown to regulate male fertility by intervening in gametogenesis and sperm-egg interactions. Therefore, despite a high sequence homology and a similar three-dimensional fold, the functions of PrP(C) and Dpl appear unrelated. Here we show by electron paramagnetic resonance and fluorescence spectroscopy that the in vitro binding of copper(II) to human recombinant Dpl occurs with a different pattern from that observed for recombinant PrP. At physiological pH values, two copper(II)-binding sites with different affinities were found in Dpl. At lower pH values, two additional copper(II)-binding sites can be identified as follows: one complex is present only at pH 4, and the other is observed in the pH range 5-6. As derived from the electron paramagnetic resonance characteristics, all Dpl-copper(II) complexes have a different coordination sphere from those present in PrP. Furthermore, in contrast to the effect shown previously for PrP(C), addition of Cu(2+) to Dpl-expressing cells does not cause Dpl internalization. These results suggest that binding of the ion to PrP(C) and Dpl may contribute to the different functional roles ascribed to these highly homologous proteins.  相似文献   

17.
Complex formation of carnosine (Csn) with Cu(II) is suspected to be of significant biochemical importance and can be detected by NMR via ion-induced paramagnetic relaxation of Csn signals. Here, we present quantification of the sensitivity achieved with localized (1)H NMR spectroscopy at physiological pH and high ligand-to-metal ratios. While characterizing the highly effective relaxation transfer onto a huge Csn pool due to fast ligand exchange, it is demonstrated that a metal-to-ligand ratio of approximately 100 ppm suffices to reduce Csn signals by approximately 50% in vitro, thus making the dipeptide a sensitive probe for such ions. Variation of the donor accessibility reveals that the paramagnetic effect is transferred onto a approximately 1370-fold donor abundance for a given ion concentration. A method is presented to characterize such effective ligand exchange relaxation transfer. These studies focus on the monomer formation since comparison with (1)H NMR data of human calf muscle demonstrates that the dimer complex is insignificant in vivo. Observed line broadening in living tissue yields an upper limit of ca. 195 ppm for the Csn-related copper concentration in human skeletal muscle.  相似文献   

18.
Pseudoazurin is an electron transfer copper protein, a member of the cupredoxin family. The protein is frequently found in denitrifying bacteria, where it is the electron donor of nitrite reductase. The copper at the active site is coordinated to His40, Cys78, His81 and Met86 in a distorted tetragonal geometry. We have recorded and assigned the (1)H NMR spectra of Co(II)-substituted pseudoazurin from Achromobacter cycloclastes. The (1)H NMR spectrum of Co(II)-pseudoazurin closely resembles that of Co(II)-rusticyanin, reflecting an altered conformation for the Met-Co(II)-Cys moiety in both proteins, compared to Co(II)-azurin, amicyanin and stellacyanin. The electron spin density onto the Sgamma(Cys) is larger in Co(II)-pseudoazurin compared to Co(II)-rusticyanin. Instead, the Co(II)-Met interaction is similar in both derivatives. Hence, the different metal-ligand interactions might be independently modulated by the protein structure. The present work also shows that the electron spin density onto the Co(II)-S(cys) bond is sensibly smaller than the Cu(II)-S(cys). Notwithstanding, NMR data on Co(II)-substituted blue copper proteins can be safely extrapolated to native Cu(II) proteins.  相似文献   

19.
The copper(II) complex of 3,5-diisopropylsalicylate is a lipophilic water-insoluble binuclear complex, Cu(II) (3,5-DIPS) , that has attracted interest because of a wide range of pharmacological activities. This study was undertaken to examine bonding interactions between the complex and human serum albumin (HSA) to help elucidate the mode of transport of the complex in vivo. Electron paramagnetic resonance, numerical magnetic resonance and UV-visible absorption spectroscopic studies were performed using 200 M aqueous solutions (pH 7.5) of HSA to which had been added up to three molar equivalents of CuCl , CuSO , or Cu(II) (3,5-DIPS). Both EPR and UV-visible spectra demonstrated the presence of more than one copper bonding site on HSA, and proton NMR spectra showed that the 3,5-DIPS ligand is also bonded to HSA. These results indicate that there is no observable direct coordination of the ligand to copper in the presence of HSA, and that the majority of the copper and 3,5-DIPS bond to HSA at separate sites. Addition of solid Cu(II) (3,5-DIPS) to HSA at pH 7.5 similarly resulted in spectra that suggest that there are no ternary Cu(II)(3,5-DIPS), Cu(II)(3,5-DIPS) , or Cu(II) (3,5-DIPS) complexes formed with HSA. It is concluded that any ternary complexes formed in the presence of HSA are below the spectroscopic detection limits and represent less than 5% of the total copper. © Rapid Science 1998.  相似文献   

20.
Due to conflicting reports on the properties of Rhus laccase depleted in type 2 copper a further investigation of this protein derivative has been undertaken. In contrast to most other reports it is shown that the type 3 copper site retains its absorbance at 330 nm when type 2 copper is removed. The type 3 copper ions are oxidized in the resting protein and part of the type 3 Cu(II) can be made electron paramagnetic resonance (epr) detectable on reduction by ascorbate. This new epr signal is highly rhombic and the epr parameters are comparable to those found in other metalloproteins containing Cu(II) in binuclear sites. Certain preparations of type 2 deficient protein exhibit lower extinction coefficients at 330 nm. Since these protein derivatives have lost some type 3 copper, it is inferred that the absorbance at 330 nm is dependent on a native type 3 copper site. Also in contrast to other reports, it is found that the extinction coefficient at 614 nm of the type 1 Cu(II) decreases from 5700 to 4700 M?1cm?1 when type 2 copper is removed. The oxidized-reduced difference spectrum also shows a substantial decrease in the absorbance between 700 and 800 nm. The changes in absorbance above 600 nm are probably due to a modification of the type 1 Cu(II) site on removal of type 2 copper. The present results also suggest some explanations to the apparent discrepancies among the earlier reports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号