首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The zinc enzymes metallo beta-lactamases counteract the beneficial action of beta-lactam antibiotics against bacterial infections, by hydrolyzing their beta-lactam rings. To understand structure/function relationships on a representative member of this class, the B2 M beta L CphA, we have investigated the H-bond pattern at the Zn enzymatic active site and substrate binding mode by molecular simulation methods. Extensive QM calculations at the DFT-BLYP level on eleven models of the protein active site, along with MD simulations of the protein in aqueous solution, allow us to propose two plausible protonation states for the unbound enzyme, which are probably in equilibrium. Docking procedures along with MD simulations and QM calculations suggest that in the complex between the enzyme and its substrate (biapenem), the latter is stable in only one of the two protonation states, in addition it exhibits two different binding modes, of which only one agrees with previous proposals. In both cases, the substrate is polarized as in aqueous solution. We conclude that addressing mechanistic issues on this class of enzymes requires a careful procedure to assign protonation states and substrate docking modes.  相似文献   

2.
The electrochemistry of redox proteins is now well established. Conditions exist which allow electron-transfer reactions of all simple proteins to proceed rapidly and reversibly at electrodes. Coupling of the electrode reaction to enzymes, for which the redox proteins act as cofactors, allows exploitation of this good electrochemistry. This is well illustrated by the enzyme-catalysed electrochemical oxidation of p-cresol to p-hydroxybenzaldehyde, which has been shown to proceed along with coupling to the electrode via the copper protein, azurin, or the organometallic compound ferroceneboronic acid. Ferrocene derivatives, in general, show a degree of versatility, coupling the electron-transfer reactions of many enzymes. Thus derivatives of the ferricinium ion act as excellent electron-transfer reagents from the enzyme glucose oxidase. The system is capable of detecting glucose in blood. Similar procedures, in conjunction with the appropriate enzyme, have yielded assays for, among others, H2O2 and cholesterol.  相似文献   

3.
It was found previously that the enzyme ubiquitin-protein ligase (E3) contains specific protein substrate binding sites that are responsible for the selection of proteins for degradation by the ubiquitin system. In the present study, we have tried to gain more insight into the mode of action of E3 by the characterization of other binding sites of this enzyme. Following the ligation of ubiquitin to 125I-lysozyme, the conjugates produced are very tightly bound to E3, as indicated by size analysis on glycerol density gradient centrifugation. The strong binding of ubiquitin-protein conjugates to the enzyme may account for the apparently processive addition of multiple molecules of ubiquitin to the protein substrate. Both the protein substrate moiety and the ubiquitin moiety participate in the interaction of ubiquitin-protein conjugates with E3, as indicated by competition with specific agents and by the comparison of the binding of ubiquitin-conjugated protein to that of free protein. In addition to the binding of its substrates and products, E3 also appears to interact with some of the enzymes with which it acts in concert. When E3 is incubated with the ubiquitin-carrier protein E2, a complex is formed between the two enzymes as analyzed on glycerol gradients. The formation of an E2.E3 complex may facilitate the transfer of activated ubiquitin from E2 to the protein substrate bound to the ligase.  相似文献   

4.
5.
The initiation of coagulation results from the activation of factor X by an enzyme complex (Xase) composed of the trypsin-like serine proteinase, factor VIIa, bound to tissue factor (TF) on phospholipid membranes. We have investigated the basis for the protein substrate specificity of Xase using TF reconstituted into vesicles of phosphatidylcholine, phosphatidylserine, or pure phosphatidylcholine. We show that occupation of the active site of VIIa within Xase by a reversible inhibitor or an alternate peptidyl substrate is sufficient to exclude substrate interactions at the active site but does not alter the affinity of Xase for factor X. This is evident as classical competitive inhibition of peptidyl substrate cleavage but as classical noncompetitive inhibition of factor X activation by active site-directed ligands. This implies that the productive recognition of factor X by Xase arises from a multistep reaction requiring an initial interaction at sites on the enzyme complex distinct from the active site (exosites), followed by active site interactions and bond cleavage. Exosite interactions determine protein substrate affinity, whereas the second binding step influences the maximum catalytic rate for the reaction. We also show that competitive inhibition can be achieved by interfering with exosite binding using factor X derivatives that are expected to have limited or abrogated interactions with the active site of VIIa within Xase. Thus, substrate interactions at exosites, sites removed from the active site of VIIa within the enzyme complex, determine affinity and binding specificity in the productive recognition of factor X by the VIIa-TF complex. This may represent a prevalent strategy through which distinctive protein substrate specificities are achieved by the homologous enzymes of coagulation.  相似文献   

6.
Histone acetyltranferase (HAT) enzymes are the catalytic subunits of multisubunit protein complexes that acetylate specific lysine residues on the N-terminal regions of the histone components of chromatin to promote gene activation. These enzymes, which now include more than 20 members, fall into distinct families that generally have high sequence similarity and related substrate specificity within families, but have divergent sequence and substrate specificity between families. Significant insights into the mode of catalysis and histone substrate binding have been provided by the structure determination of the divergent HAT enzymes Hat1, Gcn5/PCAF and Esa1. A comparison of these structures reveals a structurally conserved central core domain that mediates extensive interactions with the acetyl-coenzyme A cofactor, and structurally divergent N and C-terminal domains. A correlation of these structures with other studies reveals that the core domain plays a particularly important role in histone substrate catalysis and that the N and C-terminal domains play important roles in histone substrate binding. These correlations imply a related mode of catalysis and histone substrate binding by a diverse group of HAT enzymes.  相似文献   

7.
Microbial biosensors.   总被引:18,自引:0,他引:18  
A microbial biosensor consists of a transducer in conjunction with immobilised viable or non-viable microbial cells. Non-viable cells obtained after permeabilisation or whole cells containing periplasmic enzymes have mostly been used as an economical substitute for enzymes. Viable cells make use of the respiratory and metabolic functions of the cell, the analyte to be monitored being either a substrate or an inhibitor of these processes. Bioluminescence-based microbial biosensors have also been developed using genetically engineered microorganisms constructed by fusing the lux gene with an inducible gene promoter for toxicity and bioavailability testing. In this review, some of the recent trends in microbial biosensors with reference to the advantages and limitations are been discussed. Some of the recent applications of microbial biosensors in environmental monitoring and for use in food, fermentation and allied fields have been reviewed. Prospective future microbial biosensor designs have also been identified.  相似文献   

8.
A rapid colorimetric method for the assay of proteolytic enzymes based on the binding of Coomassie brilliant blue G-250 to unhydrolyzed protein substrate is described. Considerable assay time is saved since the method does not require the separation of the hydrolyzed products from the undergraded protein substrate. The procedure is applicable to crude as well as purified preparations of various proteolytic enzymes and compares well with the procedure of M. L. Anson.  相似文献   

9.
Folding enzymes often use distinct domains for the binding of substrate proteins ("chaperone domains") and for the catalysis of slow folding reactions such as disulfide formation or prolyl isomerization. The human prolyl isomerase FKBP12 is a small single-domain protein without a chaperone domain. Its very low folding activity could previously be increased by inserting the chaperone domain from the homolog SlyD (sensitive-to-lysis protein D) of Escherichia coli. We now inserted three unrelated chaperone domains into human FKBP12: the apical domain of the chaperonin GroEL from E. coli, the chaperone domain of protein disulfide isomerase from yeast, or the chaperone domain of SurA from the periplasm of E. coli. All three conveyed FKBP12 with a high affinity for unfolded proteins and increased its folding activity. Substrate binding and release of the chimeric folding enzymes were found to be very fast. This allows rapid substrate transfer from the chaperone domain to the catalytic domain and ensures efficient rebinding of protein chains that were unable to complete folding. The advantage of having separate sites, first for generic protein binding and then for specific catalysis, explains why our construction of the artificial folding enzymes with foreign chaperone domains was successful.  相似文献   

10.
Since crystallographic studies on Escherichia coli aspartate transcarbamoylase (ATCase) indicate that Gln 231 is in the active site of the enzyme and participates in the binding of the substrate, aspartate, it seemed of interest to examine mutant enzymes in which Gln 231 was replaced by Asn or Ile. The two mutant forms containing amino acid substitutions were characterized by a combination of steady-state kinetics, hydrodynamic measurements, and equilibrium ligand binding techniques. Both mutant forms exhibited a dramatic reduction in the affinity of the protein for substrates and substrate analogues as well as a very large decrease in catalytic activity. Moreover, the amino acid substitutions introduced within the active site of the enzyme led to unusual allosteric properties in the mutant enzymes. Although the bisubstrate analogue N-(phosphonoacetyl)-L-aspartate promotes the characteristic global conformational change in the mutant forms that is observed with the wild-type enzyme, the combination of substrate and substrate analogue does not. Cooperativity with respect to substrate binding is largely reduced compared to wild-type ATCase. Also, the effector molecules ATP and CTP which bind to the regulatory chains have dramatic effects on the activity of the mutant enzymes containing replacements for Gln 231 in the catalytic chains. In stark contrast to the wild-type enzyme, in which effects of nucleotides are manifested primarily by changes in the K0.5 of the enzyme, ATP and CTP have large effects on the Vmax of the mutant enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Enzyme promiscuity is the ability of (some) enzymes to perform alternate reactions or catalyze non-cognate substrate(s). The latter is referred to as substrate promiscuity, widely studied for its biotechnological applications and understanding enzyme evolution. Insights into the structural basis of substrate promiscuity would greatly benefit the design and engineering of enzymes. Previous studies on some enzymes have suggested that flexibility, hydrophobicity, and active site protonation state could play an important role in enzyme promiscuity. However, it is not known yet whether substrate promiscuous enzymes have distinctive structural characteristics compared to specialist enzymes, which are specific for a substrate. In pursuit to address this, we have systematically compared substrate/catalytic binding site structural features of substrate promiscuous with those of specialist enzymes. For this, we have carefully constructed dataset of substrate promiscuous and specialist enzymes. On careful analysis, surprisingly, we found that substrate promiscuous and specialist enzymes are similar in various binding/catalytic site structural features such as flexibility, surface area, hydrophobicity, depth, and secondary structures. Recent studies have also alluded that promiscuity is widespread among enzymes. Based on these observations, we propose that substrate promiscuity could be defined as a continuum feature that varies from narrow (specialist) to broad range of substrate preferences. Moreover, diversity of conformational states of an enzyme accessible for ligand binding may possibly regulate its substrate preferences.  相似文献   

12.
As an aid to understanding the influence of dynamic fluctuations during esterolytic catalysis, we follow protein flexibility at three different steps along the catalytic pathway from substrate binding to product clearance via a covalently attached inhibitor, which represents a transition-state mimic. We have applied a classical approach, using molecular dynamics simulations to monitor protein dynamics in the nanosecond regime. We filter out small amplitude fluctuations and focus on the anharmonic contributions to the overall dynamics. This 'essential dynamics' analysis reveals different modes of response along the pathway suggesting that binding, catalysis and product clearance occur along different energy surfaces. Motions in the enzyme with a covalently attached ligand are more complex and occur along several eigenvectors. The magnitudes of the fluctuations in these individual subspaces are significantly smaller than those observed for the substrate and product molecules, indicating that the energy surface is shallow and that a relatively large number of conformational substates are accessible. On the other hand, substrate binding and product release occur at distinct modes of the protein flexibility suggesting that these processes occur along rough energy surfaces with only a few minima. Detailed energetic analyses along the trajectories indicated that in all cases binding is dominated by van der Waals interactions. The carboxylate form of the product is stabilized by a tight hydrogen bond network involving in particular Ser82, which may be a potential cause of product inhibition. Considerations such as these should aid the understanding of mechanisms of substrate, inhibitor or product recognition and could become of importance in the design of new substrates or inhibitors for enzymes.  相似文献   

13.
Recent advances in protein design have opened avenues for the creation of artificial enzymes needed for biotechnological and pharmaceutical applications. However, designing efficient enzymes remains an unrealized ambition, as the design must incorporate a catalytic apparatus specific for the desired reaction. Here we present a de novo design approach to evolve a minimal carbonic anhydrase mimic. We followed a step-by-step design of first folding the main chain followed by sequence variation for substrate binding and catalysis. To optimize the fold, we designed an αββ protein based on a Zn-finger. We then inverse-designed the sequences to provide stability to the fold along with flexibility of linker regions to optimize Zn binding and substrate hydrolysis. The resultant peptides were synthesized and assessed for Zn and substrate binding affinity by fluorescence and ITC followed by evaluation of catalytic efficiency with UV-based enzyme kinetic assays. We were successful in mimicking carbonic anhydrase activity in a peptide of twenty two residues, using p-nitrophenyl acetate as a CO2 surrogate. Although our design had modest activity, being a simple structure is an advantage for further improvement in efficiency. Our approach opens a way forward to evolving an efficient biocatalyst for any industrial reaction of interest.  相似文献   

14.
15.
Rieske nonheme monooxygenase 3-ketosteroid 9α-hydroxylase (KSH) enzymes play a central role in bacterial steroid catabolism. KSH is a two-component iron-sulfur-containing enzyme, with KshA representing the terminal oxygenase component and KshB the reductase component. We previously reported that the KshA1 and KshA5 homologues of Rhodococcus rhodochrous DSM43269 have clearly different substrate preferences. KshA protein sequence alignments and three-dimensional crystal structure information for KshA(H37Rv) of Mycobacterium tuberculosis H37Rv served to identify a variable region of 58 amino acids organized in a β sheet that is part of the so-called helix-grip fold of the predicted KshA substrate binding pocket. Exchange of the β sheets between KshA1 and KshA5 resulted in active chimeric enzymes with substrate preferences clearly resembling those of the donor enzymes. Exchange of smaller parts of the KshA1 and KshA5 β-sheet regions revealed that a highly variable loop region located at the entrance of the active site strongly contributes to KSH substrate preference. This loop region may be subject to conformational changes, thereby affecting binding of different substrates in the active site. This study provides novel insights into KshA structure-function relationships and shows that KSH monooxygenase enzymes are amenable to protein engineering for the development of biocatalysts with improved substrate specificities.  相似文献   

16.
The phosphoryl transferring enzymes pyruvate kinase, cAMP-dependent protein kinase and the pyrophosphoryl transferring enzyme PP-Rib-P synthetase utilize the beta, gamma bidentate metal--ATP chelate (delta-isomer) as substrate, as determined with substitution-insert CrIIIATP or CoIII(NH3)4ATP complexes. In addition, these enzymes bind a second divalent cation, which is an essential activator for pyruvate kinase and PP-Rib-P synthetase and an inhibitor of protein kinase. The enzyme-bound metal has been used as a paramagnetic reference point in T1 measurements to determine distances to the protons and phosphorus atoms of the bound nucleotide and acceptor substrates. These distances have been used to construct models of the conformations of the bound substrates. The activating metal forms a second sphere complex of the metal-nucleotide substrate on pyruvate kinase and PP-Rib-P synthetase while the inhibitory metal directly coordinates the polyphosphate chain of the metal-nucleotide substrate on protein kinase. Essentially no change is found in the dihedral angle at the glycosidic bond of ATP upon binding to pyruvate kinase (chi = 30 degrees), an enzyme of low base specificity, but significant changes in the torsional angle of ATP occur on binding to protein kinase (chi = 84 degrees) and PP-Rib-P synthetase (chi = 62 degrees), enzymes with high adenine-base specificity. Intersubstrate distances, measured with tridentate CrATP or beta, gamma bidentate CrAMPPCP as paramagnetic reference points, have been used to deduce the distance along the reaction coordinate on each enzyme. The reaction coordinate distances on pyruvate kinase (# +/- 1 A) and PP-Rib-P synthetase (not less than 3.8 A) are consistent with associative mechanisms, while that on protein kinase (5 +/- 0.7 A) allows room for a dissociative mechanism.  相似文献   

17.
Intramembrane proteases execute fundamental biological processes ranging from crucial signaling events to general membrane proteostasis. Despite the availability of structural information on these proteases, it remains unclear how these enzymes bind and recruit substrates, particularly for the Alzheimer's disease‐associated γ‐secretase. Systematically scanning amyloid precursor protein substrates containing a genetically inserted photocrosslinkable amino acid for binding to γ‐secretase allowed us to identify residues contacting the protease. These were primarily found in the transmembrane cleavage domain of the substrate and were also present in the extramembranous domains. The N‐terminal fragment of the catalytic subunit presenilin was determined as principal substrate‐binding site. Clinical presenilin mutations altered substrate binding in the active site region, implying a pathogenic mechanism for familial Alzheimer's disease. Remarkably, PEN‐2 was identified besides nicastrin as additional substrate‐binding subunit. Probing proteolysis of crosslinked substrates revealed a mechanistic model of how these subunits interact to mediate a stepwise transfer of bound substrate to the catalytic site. We propose that sequential binding steps might be common for intramembrane proteases to sample and select cognate substrates for catalysis.  相似文献   

18.
The receptor-associated protein, RAP, is an intracellular protein that may function as a chaperone for the LDL-receptor family receptors. Here we report calmodulin as the first identified RAP binding protein outside of the LDL-receptor family members. We demonstrate that RAP binds calmodulin in a Ca2+- and pH-dependent manner characteristic of calmodulin-dependent enzymes, and present evidence that RAP is a substrate for calmodulin-dependent enzymes. Thus, CaM-kinase II and calcineurin readily phosphorylate and dephosphorylate, respectively, serine residues in RAP, and in the individual RAP domains D2 (amino acids 113-218) and D3 (amino acids 219-323) which both contain sites for CaM-kinase II-mediated phosphorylation and for calmodulin binding. In addition, we provide evidence that RAP is phosphorylated by other kinases such as casein kinase II. Studies of 32[ortho]P-labelled cell cultures demonstrate that RAP is phosphorylated in vivo. Our results suggest that RAP may have hitherto unknown functions implicating phosphorylation and calmodulin-mediated modulation.  相似文献   

19.
The mitogen-activated protein (MAP) kinase ERK2 is an essential signal transduction molecule that mediates extracellular signaling by all polypeptide growth factors. Full activation of ERK2 requires phosphorylation at both a threonine residue (Thr(183)) conserved in most protein kinases as well as a tyrosine residue (Tyr(185)) unique to members of the mitogen-activated protein kinase family. We have characterized the kinetic role of phosphorylation at each site with respect to the overall activation mechanism, providing a complete picture of the reaction steps involved. Phosphorylation at Tyr(185) serves to configure the ATP binding site, while phosphorylation at both residues is required to stabilize binding of the protein substrate, myelin basic protein. Similar control mechanisms are employed to stabilize ATP and myelin basic protein in the phosphoryl group transfer reaction, accounting for the enormous increase in turnover rate. The mechanism of ERK2 activation is kinetically similar to that of the cell cycle control protein, cdk2/cyclinA. Phosphorylation of Tyr(185) in ERK2 and association of cyclinA with cdk2 both serve to stabilize ATP binding. Subsequent phosphorylation of both enzymes on threonine serves to stabilize binding of the phosphoacceptor substrate.  相似文献   

20.
Recent advances in the structural biology of the enzymes involved in fatty acid oxidation have revealed their catalytic mechanisms and modes of substrate binding. Although these enzymes all use coenzyme A (CoA) thioesters as substrates, they share no common polypeptide folding topology or CoA-binding motif. Each family adopts an entirely unique protein fold. Their mode of binding the CoA thioester is similar in that the fatty-acyl moiety is buried inside the protein and the nucleotide portion is mainly exposed to solvent; however, the conformations of the enzyme-bound CoA ligands vary considerably. Furthermore, a comparison of these structures suggests a structural basis for the broad substrate chain length specificity that is a unique feature of these enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号