首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six bacterial strains isolated from the underground roots of the terrestrial orchid Calanthe vestita var. rubrooculata were found to belong to the genera Arthrobacter, Bacillus, Mycobacterium, and Pseudomonas. Strains isolated from the aerial roots of the epiphytic orchid Dendrobium moschatum were classified into the genera Bacillus, Curtobacterium, Flavobacterium, Nocardia, Pseudomonas, Rhodococcus, and Xanthomonas. The rhizoplane of the terrestrial orchid was also populated by cyanobacteria of the genera Nostoc and Oscillatoria, whereas that of the epiphytic orchid was populated by one genus, Nostoc. In orchids occupying different econiches the spectra of the bacterial genera revealed differed. The microbial complex of the terrestrial orchid rhizoplane differed from that of the surrounding soil.  相似文献   

2.
Microbiota of the Orchid Rhizoplane   总被引:1,自引:0,他引:1  
Six bacterial strains isolated from the underground roots of the terrestrial orchid Calanthe vestitavar. rubro-oculatawere found to belong to the genera Arthrobacter, Bacillus, Mycobacterium, and Pseudomonas.Strains isolated from the aerial roots of the epiphytic orchid Dendrobium moschatumwere classified into the genera Bacillus, Curtobacterium, Flavobacterium, Nocardia, Pseudomonas, Rhodococcus, and Xanthomonas.The rhizoplane of the terrestrial orchid was also populated by cyanobacteria of the genera Nostocand Oscillatoria, whereas that of the epiphytic orchid was populated by one genus, Nostoc.In orchids occupying different econiches, the spectra of the bacterial genera revealed differed. The microbial complex of the terrestrial orchid rhizoplane differed from that of the surrounding soil.  相似文献   

3.
何小丽  朱义  张群  王斌  崔心红 《生态科学》2011,30(3):309-314
应用稀释平板法对大莲湖池杉林湿地土壤细菌进行分离,采用16S rDNA序列分析法对所分离细菌进行鉴定。结果表明,池杉林不同季节土壤细菌种类和数量有差异。其中夏季土壤细菌数量和种类最多,春、秋季次之,冬季最少。四个季度共分离得到60株菌株,分属15个细菌种属,分别为芽胞杆菌(Bacillus),假单胞菌(Pseudomonas),黄杆菌(Flavobacterium),红球菌(Rhodococcus),北里孢菌(Kitasatosporia),金黄杆菌(Chryseobacterium),不动杆菌(Acinetobacter),鞘氨醇杆菌(Sphingobacterium),丛毛单胞菌(Comamonas),伯克霍尔德氏菌(Burkholderia),链霉菌(Streptomyces),沙雷氏菌(Serratia),肠杆菌(Enterobacter),窄食单胞菌(Stenotrophomonas)和节杆菌(Arthrobacter)。  相似文献   

4.
The Cerrado is the second largest Brazilian biome, yet little is known about its wild fauna, flora and microbiota. This work aimed to identify epiphytic bacteria present in fruits native to three different regions of the Cerrado and to select cellulase-producing bacteria. Culture-dependent and culture-independent (PCR-DGGE) methods were used to characterize the microbiota from 32 native Cerrado fruits, and the selection of cellulase-producing bacteria was performed by a semi-quantitative test on carboxymethylcellulose agar medium. Analysis of the 16S rRNA gene sequences of 69 profile representatives showed that the isolates belonged to 29 bacterial genera (Arthrobacter, Bacillus, Paenibacillus, Pseudomonas, Serratia, Staphylococcus, Streptomyces, Enterobacter, Microbacterium, Aerococcus, Bradyrhizobium, Methylobacterium, Erwinia, Pantoea, Acidithiobacillus, Ochrobactrum, Stenotrophomonas, Curtobacterium, Clostridium, Lactobacillus, Xanthomonas, Delftia, Klebsiella, Enterococcus, Burkholderia, Escherichia, Streptococcus, Citrobacter and Achromobacter). Species in the genera Methylobacterium, Stenotrophomonas, Clostridium, Pantoea and Enterobacter were detected by both culture-dependent and culture-independent methods. The species Lactobacillus fermentum, Acinetobacter sp. and Methylomonas methanica were detected only by PCR-DGGE. Additionally, 30 % (178 isolates) of the bacteria tested were able to produce cellulase. The best producers belonged to the genera Bacillus, Streptomyces, Paenibacillus, Enterobacter and Burkholderia, indicating that this ecosystem could be an attractive source for the study of novel enzymes.  相似文献   

5.
兰科植物内生细菌与菌根真菌的协作对宿主植物的生长、抗病、抗逆及植物修复环境能力等具有重要意义,揭示其内生细菌多样性及与生境之间的关系有助于阐明兰科植物的适应与进化机制。本研究基于16SrDNA序列分析探讨了不同生境下东南亚特有种五唇兰根部可培养内生细菌多样性及其空间异质性。结果表明:从不同生境下五唇兰根部共分离出内生细菌59株,其中从土生型五唇兰根部分离出内生细菌45株(76.27%),从石生型五唇兰根部分离出内生细菌14株(23.73%);基于内生细菌16SrDNA序列同源性分析及构建的系统发育树显示,五唇兰根部内生细菌分属于7属,即芽孢杆菌属(Bacillus)、伯克氏菌属(Burkholderia)、草酸菌属(Pandoraea)、土壤杆菌属(Agrobacterium)、类芽孢杆菌属(Paenibacillus)、泛菌属(Pantoea)、欧文氏菌属(Erwinia),其中优势属为芽孢杆菌属,次优势属为泛菌属和伯克氏菌属;多样性分析显示,土生型五唇兰根部内生细菌群落的Shannon多样性指数大于石生型五唇兰,不同生境下五唇兰根部内生细菌群落结构差异极显著(P0.01)。土生型五唇兰根部内生细菌群落优势属为芽孢杆菌属和泛菌属,石生型五唇兰根部内生细菌群落优势属为芽孢杆菌属和伯克氏菌属。  相似文献   

6.
广西番茄内生细菌的多样性和数量动态   总被引:8,自引:0,他引:8  
为了探明内生细菌在番茄中的分布和数量变化规律,有目的地筛选防治番茄青枯病的内生细菌,我们对广西可培养的番茄内生细菌的类群和数量动态进行了调查。从广西部分县市采集的303个番茄样本中分离到624株内生细菌菌株,初步确定有芽孢杆菌(Bacillus)、假单胞菌(Pseudomonas)、黄单胞菌(Xanthomonas)、棒杆菌(Corynebacterium)、土壤杆菌(Agrobacterium)、微杆菌(Microbacterium)、肠杆菌(Enterobacter)和欧文氏菌(Erwinia)8个属,其中以芽孢杆菌、假单胞菌和土壤杆菌为芽孢杆菌为优势类群。番茄内生细菌在植株器官中的分布以根部数量最多,其次是茎和叶。内生细菌的总量在番茄生育期的变化趋势是从苗期到花期数量上升,而从结果期到成熟期数量逐渐下降。多数内生细菌种群的数量变化动态符合细菌总量的变化趋势,只有微杆菌在番茄植株整个生育期中始终保持下降的趋势。春季种植的番茄植株的内生细菌类群数量比秋季种植的少。  相似文献   

7.
采用牛肉膏蛋白胨培养基培养,从大莲湖池杉林土壤中共分离得到20个菌落形态不同的菌株。通过对这些菌株的形态、培养特征、生理生化特征的研究以及16S rDNA序列分析,初步确定这些菌株分别属于假单胞菌属(Pseudomonas)、芽胞杆菌属(Bacillus)、红球菌属(Rhodococcus)、北里孢菌属(Kitasatosporia)、金黄杆菌属(Chryseobacterium)、不动杆菌属(Acinetobacter)、黄杆菌属(Flavobacterium)、鞘氨醇杆菌属(Sphingobacte-rium)和丛毛单胞菌属(Comamonas)等9个属细菌。其中芽胞杆菌属和不动杆菌属细菌是优势菌,分离到的红球菌属、北里孢菌属、鞘氨醇杆菌属和丛毛单胞菌属细菌在国内湿地土壤中报道较少。  相似文献   

8.
采用稀释分离法和消毒叶片研磨液培养法对温室黄瓜叶围和内生微生物进行了分离,共分离到248个菌株,初步鉴定出13个属的叶围真菌,其中链格孢属(Alternaria)和青霉属(Penicillium)真菌为优势类群;鉴定出4个属的内生真菌,其中曲霉属(Aspergillus)真菌为优势类群;10个属的叶围细菌,其中芽孢杆菌属(Bacillus)和黄单胞菌属(Xanthomonas)细菌为优势类群;6个属的内生细菌,其中芽孢杆菌属和假单胞菌属(Pseudomonas)细菌为优势类群;6个属的叶围酵母菌,其中隐球酵母属(Cryptococcus)为优势类群;已鉴定出2个属的叶围放线菌,分别为链霉菌属(Streptomyces)和小多孢菌属(Micropolpspora).未分离到内生酵母菌和放线菌.  相似文献   

9.
从4个不同棉花品种体内分离到内生菌503株,鉴定了102株,分别属于假单胞杆菌属、黄单胞杆菌属、芽胞杆菌属和欧文氏菌属。分3个不同生长期测定了4个品种的可溶性蛋白含量和超氧化物歧化酶(SOD)、过氧化物酶(POD)活性变化。结果表明,4个品种棉花SOD活性在种期(S1)、芽期(S2)和苗期(S3)呈下降趋势;不同品种、不同生长期的可溶性蛋白含量、POD活性存在极显着差异,品种与生长期还存在显着互作效应。  相似文献   

10.
Endophytic and epiphytic bacteria were isolated from two soybean cultivars (Foscarin and Cristalina). Significant differences were observed in bacterial population densities in relation to season of isolation, soybean growth phase and the tissues from which the isolates were obtained. The isolates were identified by partial 16S rDNA sequence analysis, with most of the isolates belonging to the Pseudomonaceae, Burkholderiacea and Enterobacteriaceae groups. The potential of the isolates for plant growth promotion was evaluated by screening for indoleacetic acid (IAA) production and mineral phosphate solubilization; 34% of endophytic bacteria produced IAA and 49% were able to solubilize mineral phosphate whereas only 21% of epiphytic bacteria produced IAA although 52% were able to solubilize mineral phosphate. A high frequency of IAA producing isolates occurred in the early ripening Foscarin cultivar whereas a high percentage of phosphate solubilizing isolates were obtained from plants in the initial development stage (V6). We also found that 60% of endophytic and 69% of epiphytic isolates that produced IAA and solubilized mineral phosphate were also able to fix nitrogen in vitro. The soybean-associated bacteria showing characteristics related to plant growth promotion were identified as belonging to the genera Pseudomonas, Ralstonia, Enterobacter, Pantoea and Acinetobacter.  相似文献   

11.
黄花蒿内生菌的分离与初步鉴定   总被引:2,自引:1,他引:2  
利用平板分离法从药用植物黄花蒿(Artemisia annua Linn.)的根、茎和叶中共分离内生菌80株,其中内生真菌37株、细菌40株、放线菌3株.经菌种形态观察和染色等,初步鉴定了黄花蒿内生真菌具有5个属,包括囊孢菌(Capsule)、头孢霉(Cephalosporium)、弯孢霉(Curvularia)、曲霉...  相似文献   

12.
Using hydrocultured pea plants, 109 bacterial strains (42 from shoots) were isolated from shoots, roots, and from the hydroculture medium. 58 different strains (26 from shoots) were able to produce IAA from tryptophan, 15 different strains (7 from shoots) were able lo destroy IAA. (Included are 13 strains possessing both properties.) As far as they could be identified, the IAA-producing and -destroying strains belong to Pseudomonas (by far dominating), Achromobacter, Alcaligenses, Bacillus, and Flavobacterium. The IAA-destroying activity strongly depends on the physiological state of the bacteria and the milieu conditions. Bacterial IAA production (but not IAA-degradation) is supposed to be important for the plant.  相似文献   

13.
Survey of indigenous bacterial endophytes from cotton and sweet corn   总被引:35,自引:1,他引:34  
The genotypic diversity of indigenous bacterial endophytes within stems and roots of sweet corn (Zea mays L.) and cotton (Gossypium hirsutum L.) was determined in field trials throughout one growing season. Strains were isolated from surface-disinfested tissues and identified by fatty acid analysis. Gram-negative bacteria comprised 70.5% of the endophytic bacteria and 27 of the 36 genera identified. The most frequently isolated groups from sweet corn roots, were Burkholderia pickettii and Enterobacter spp.; from sweet corn stems, Bacillus megaterium. Bacterial genera present in sweet corn roots were also generally present in sweet corn stems. However, Burkholderia gladioli, Burkholderia solanacearum and Enterobacter cloacae were isolated much more frequently from sweet corn roots than stems, whereas Methylobacterium spp. were found more frequently in sweet corn stems than roots. Agrobacterium radiobacter, Serratia spp. and Burkholderia solanacearum, were the most frequently isolated groups from cotton roots; and Bacillus megaterium and Bacillus pumilus from cotton stems. Acinetobacter baumannii and Arthrobacter spp. were present in cotton stems but not in cotton roots. There were 14 taxonomic groups present in cotton roots that were not in cotton stems; all but one were Gram-negative. These included, Agrobacterium radiobacter, Bacillus megaterium, Bacillus pumilus, Enterobacter asburiae, Pseudomonas chlororaphis, Serratia spp. and Staphylococcus spp. Rhizobium japonicum and Variovorax paradoxus were isolated, almost exclusively, from the roots of both crops. Bacterial taxa present in both sweet corn and cotton early in the season were generally present late in the season. The diversity of bacteria was greater in roots than stems for each crop.  相似文献   

14.
The diversity elucidation by amplified ribosomal DNA restriction analysis and 16S rDNA sequencing of 96 associative diazotrophs, isolated from the feeder roots of tea on enriched nitrogen-free semisolid media, revealed the predominance of Gram-positive over Gram-negative bacteria within the Kangra valley in Himachal Pradesh, India. The Gram-positive bacteria observed belong to two taxonomic groupings; Firmicutes, including the genera Bacillus and Paenibacillus; and Actinobacteria, represented by the genus Microbacterium. The Gram-negative bacteria included alpha-Proteobacteria genera Brevundimonas, Rhizobium, and Mesorhizobium; gamma-Proteobacteria genera Pseudomonas and Stenotrophomonas; and beta-Proteobacteria genera Azospira, Burkholderia, Delftia, Herbaspirillum and Ralstonia. The low level of similarity of two isolates, with the type strains Paenibacillus xinjiangensis and Mesorhizobium albiziae, suggests the possibility of raising species novum. The bacterial strains of different phylogenetic groups exhibited distinct carbon-source utilization patterns and fatty acid methyl ester profiles. The strains differed in their nitrogenase activities with relatively high activity seen in the Gramnegative strains exhibiting the highest similarity to Azospira oryzae, Delftia lacustris and Herbaspirillum huttiense.  相似文献   

15.
【目的】认识药用昆虫九香虫(Aspongopus chinesis Dallas)成虫体内可培养细菌资源多样性。【方法】运用纯培养法、反转录重复因子扩增(BOXA1R-PCR)分析技术、16S r RNA基因测序和系统发育分析对样品中可培养细菌进行多样性研究,测定了分离菌株的抗菌特性、吲哚乙酸(IAA)含量和产淀粉酶活性等指标。【结果】通过6种不同培养基共分离得到52株菌落特征不同的细菌菌株。基于菌落特征和BOXA1R-PCR图谱选取12株代表菌株用于16S r RNA基因序列测定。16S r RNA基因序列系统发育分析显示,52株菌株分属于芽孢杆菌属(Bacillus)、假单胞菌属(Pseudomonas)、寡养单胞菌属(Stenotrophomonas)和伯克霍尔德氏菌属(Burkholderia)4个属,其中芽孢杆菌属(Bacillus)为优势菌属。分离到的52株细菌有44株(占总分离菌株的84.6%)表现出对供试病原菌具有较好的抑制作用,高达94.2%的分离菌株能产IAA,有43株(占总分离菌株的82.7%)表现出淀粉酶活性。【结论】九香虫内细菌种群较为多样,具有潜在应用价值。  相似文献   

16.
蕙兰根内可培养细菌的物种多样性   总被引:1,自引:0,他引:1  
以MS基本培养基添加蕙兰菌根浸出液制成的培养基进行分离培养的方法,从野生蕙兰(Cymbidium faberi)根部首次分离到内生细菌。经过分离纯化培养获得纯菌株27株。经过16S rDNA基因序列测序,并与GenBank数据比对,其相似性均在98%以上,分析鉴定结果表明,存活的22株菌可分为8属14种。分别隶属于伯克氏菌属(Burkholderia)、假单胞菌属(Pseudomonas)、芽胞杆菌属(Bacillus)、Leifsonia属、贪食菌属(Variovorax)、欧文氏菌属(Erwinia)、Duganella属和不动杆菌属(Acinetobacter)。对这些菌株进行分离培养及鉴定有助于理解兰花与微生物之间的相互作用关系,为开发利用这些微生物开辟新的思路。  相似文献   

17.
The 525 strains of heterotrophic bacteria isolated from natural and cultured populations of the mussel Mytilus trossulus and the surrounding seawater were identified to a genus level on the basis of phenotypic analysis and the fatty acid composition of cell lipids. Gram-negative isolates were dominated by six genera of the family Enterobacteriaceae and by the genera Pseudoalteromonas, Vibrio, Photobacterium, Cytophaga/Flavobacterium/Bacteroides, Pseudomonas, and Moraxella, Gram-positive isolates were mainly represented by the genus Streptomyces. The taxonomic compositions of natural and cultured populations of the mussel M. trossulus in Peter the Great Bay were similar.  相似文献   

18.
Mercury resistant soil and intestinal bacteria were isolated from different mercury deposit areas of the USSR. Mercury reductases from all gram negative bacteria studied (Pseudomonas, Acinetobacter and Enterobacterial species) with a single exception (Flavobacterium sp.) were immunologically cross reactive. Two immunological types of mercury reductases were found among gram positive bacteria (Bacillus, Staphylococcus and Coryneform species). Further subdivisions were done by "spur" formation tests. Despite considerable diversity of mercury reductases revealed in this study, we found several strains which belonged to distant genera but contained immunologically indistinguishable enzymes. This suggested that the horizontal spread of the corresponding genes occurred in these genera in relatively recent time.  相似文献   

19.
Endophytic bacterial diversity was estimated in Mexican husk tomato plant roots by amplified rDNA restriction analysis and sequence homology comparison of the 16S rDNA genes. Sixteen operational taxonomic units from the 16S rDNA root library were identified based on sequence analysis, including the classes Gammaproteobacteria, Betaproteobacteria, Actinobacteria, and Bacilli. The predominant genera were Stenotrophomonas (21.9%), Microbacterium (17.1%), Burkholderia (14.3%), Bacillus (14.3%), and Pseudomonas (10.5%). In a 16S rDNA gene library of the same plant species' rhizosphere, only common soil bacteria, including Stenotrophomonas, Burkholderia, Bacillus, and Pseudomonas, were detected. We suggest that the endophytic bacterial diversity within the roots of Mexican husk tomato plants is a subset of the rhizosphere bacterial population, dominated by a few genera.  相似文献   

20.
本溪山樱根际微生物区系   总被引:5,自引:0,他引:5  
利用选择性培养基,对本溪山樱(Cerasus sachalinensis)根际微生物进行了分离、鉴定和分类,分析了不同物候期根际微生物区系的变化.结果表明:从本溪山樱根际分离纯化获得的细菌分别属于15个属,以芽孢杆菌属(Bacillus)、假单胞菌属(Pseudomonas)、黄杆菌属(Flavobacterium)为主;放线菌的7个类群中,以黄色链霉菌属(Flavus)和白色链霉菌属(Al-bosporus)为主;真菌以毛霉属(Mucor)、曲霉属(Aspergillus)和青霉属(Penicillium)为主.本溪山樱不同物候期根际微生物区系不同,落叶期根际微生物区系最丰富,萌芽期较少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号