共查询到20条相似文献,搜索用时 15 毫秒
1.
G.F. de Valdez A. Ragout J.M. Bruno-Barcena H. Diekmann F. Siñeriz 《Biotechnology letters》1997,19(7):645-649
In aerated cultures of Lactobacillus reuteri using maltose/glycerol, lactate was the main product followed by acetate at all pH (4.7, 5.5 and 6.5) tested while anaerobic cultures produced 1,3-propanediol besides lactate, acetate and ethanol. 1,3-Propanediol was the main product at pH 5.5 and 6.5. The high amount of acetate and the low concentration of ethanol found in anaerobic cultures was closely related to the synthesis of 1,3-propanediol. 相似文献
2.
Alicia Ragout Faustino Siñeriz H. Diekmann Graciela Font de Valdez 《Journal of applied microbiology》1994,77(4):388-391
The influence of environmental pH on the regulation of glucose catabolism by Lactobacillus reuteri was examined in anaerobic batch cultures. Under acidic conditions both glucose consumption and end-products formation were low. Maximum biomass was reached at pH 5·0, with a specific growth rate of µ= 0·78 h-1 . The shift in pH values from 4.3 to 6.5 reflected an increase in glucose uptake as well as in the yield ( Y p/x ) of acetate, lactate and ethanol after 12 h of incubation. Ethanol was the major metabolite produced at all pH values assayed. 相似文献
3.
In order to develop a multi-microbe probiotic preparation of Lactobacillus reuteri G8-5 and Bacillus subtilis MA139 in solid-state fermentation, a series of parameters were optimized sequentially in shake flask culture. The effect of supplementation of B. subtilis MA139 as starters on the viability of L. reuteri G8-5 was also explored. The results showed that the optimized process was as follows: water content, 50 %; initial pH of diluted molasses, 6.5; inocula volume, 2 %; flask dry contents, 30~35 g/250 g without sterilization; and fermentation time, 2 days. The multi-microbial preparations finally provided the maximum concentration of Lactobacillus of about 9.01?±?0.15 log CFU/g and spores of Bacillus of about 10.30?±?0.08 log CFU/g. Compared with pure fermentation of L. reuteri G8-5, significantly high viable cells, low value of pH, and reducing sugar in solid substrates were achieved in mixed fermentation in the presence of B. subtilis MA139 (P?<?0.05). Meanwhile, the mixed fermentation showed the significantly higher antimicrobial activity against E. coli K88 (P?<?0.05). Based on the overall results, the optimized process enhanced the production of multi-microbe probiotics in solid-state fermentation with low cost. Moreover, the viability of L. reuteri G8-5 could be significantly enhanced in the presence of B. subtilis MA139 in solid-state fermentation, which favored the production of probiotics for animal use. 相似文献
4.
5.
Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri. 总被引:10,自引:5,他引:10
下载免费PDF全文

Sixteen strains of Lactobacillus reuteri and 20 strains of Lactobacillus acidophilus were tested for resistance to 22 antibiotics by using commercially available sensitivity disks. Evidence suggesting linkage of these resistances to plasmids was obtained by "curing" experiments with acridine dyes and high growth temperatures. Examination of plasmid patterns of agarose gel electrophoresis provided further evidence of loss in plasmid DNA under curing conditions in some of the strains examined. 相似文献
6.
Effect of environmental pH on fermentation balance of Lactobacillus bulgaricus. 总被引:8,自引:3,他引:8
下载免费PDF全文

When Lactobacillus bulgaricus NLS-4 was grown anaerobically in continuous culture with limiting glucose, a shift in the pH of the medium from the acidic to the alkaline range caused this normally homofermentative bacterium to catabolize glucose in a heterofermentative fashion. The change in the nature of the fermentation was accompanied by a decrease in lactate dehydrogenase biosynthesis in alkaline conditions. The lactate dehydrogenase from this organism did not require fructose 1,6-diphosphate or manganese ions (Mn2+) for catalytic activity. Involvement of the phosphoroclastic split in the pyruvate conversion in an alkaline environment was also confirmed. The high lactate dehydrogenase synthesis in acidic medium together with the participation of the phosphoroclastic split under alkaline conditions may explain the shift from homolactic to heterolactic fermentation of L. bulgaricus NLS-4 with the change of environmental pH. 相似文献
7.
8.
Background
The gene encoding an atypical multi-modular glycoside hydrolase family 45 endoglucanase bearing five different family 1 carbohydrate binding modules (CBM1), designated PpCel45A, was identified in the Pichia pastoris GS115 genome.Results
PpCel45A (full-length open reading frame), and three derived constructs comprising (i) the catalytic module with its proximal CBM1, (ii) the catalytic module only, and (iii) the five CBM1 modules without catalytic module, were successfully expressed to high yields (up to 2 grams per litre of culture) in P. pastoris X33. Although the constructs containing the catalytic module displayed similar activities towards a range of glucans, comparison of their biochemical characteristics revealed striking differences. We observed a high thermostability of PpCel45A (Half life time of 6 h at 80°C), which decreased with the removal of CBMs and glycosylated linkers. However, both binding to crystalline cellulose and hydrolysis of crystalline cellulose and cellohexaose were substantially boosted by the presence of one CBM rather than five.Conclusions
The present study has revealed the specific features of the first characterized endo β-1,4 glucanase from yeast, whose thermostability is promising for biotechnological applications related to the saccharification of lignocellulosic biomass such as consolidated bioprocessing. 相似文献9.
10.
Xiaoxi B. Lin Christopher T. Lohans Rebbeca Duar Jinshui Zheng John C. Vederas Jens Walter Michael G?nzle 《Applied and environmental microbiology》2015,81(6):2032-2041
Reutericyclin is a unique antimicrobial tetramic acid produced by some strains of Lactobacillus reuteri. This study aimed to identify the genetic determinants of reutericyclin biosynthesis. Comparisons of the genomes of reutericyclin-producing L. reuteri strains with those of non-reutericyclin-producing strains identified a genomic island of 14 open reading frames (ORFs) including genes coding for a nonribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), homologues of PhlA, PhlB, and PhlC, and putative transport and regulatory proteins. The protein encoded by rtcN is composed of a condensation domain, an adenylation domain likely specific for d-leucine, and a thiolation domain. rtcK codes for a PKS that is composed of a ketosynthase domain, an acyl-carrier protein domain, and a thioesterase domain. The products of rtcA, rtcB, and rtcC are homologous to the diacetylphloroglucinol-biosynthetic proteins PhlABC and may acetylate the tetramic acid moiety produced by RtcN and RtcK, forming reutericyclin. Deletion of rtcN or rtcABC in L. reuteri TMW1.656 abrogated reutericyclin production but did not affect resistance to reutericyclin. Genes coding for transport and regulatory proteins could be deleted only in the reutericyclin-negative L. reuteri strain TMW1.656ΔrtcN, and these deletions eliminated reutericyclin resistance. The genomic analyses suggest that the reutericyclin genomic island was horizontally acquired from an unknown source during a unique event. The combination of PhlABC homologues with both an NRPS and a PKS has also been identified in the lactic acid bacteria Streptococcus mutans and Lactobacillus plantarum, suggesting that the genes in these organisms and those in L. reuteri share an evolutionary origin. 相似文献
11.
Aim: To identify metabolites of α‐ketoglutarate (α‐KG) in Lactobacillus sanfranciscensis and Lactobacillus reuteri in modified MRS and sourdough. Methods and Results: Lactobacillus sanfranciscensis and L. reuteri were grown with additional α‐KG in mMRS and in wheat sourdough. In mMRS, α‐KG was used as an electron acceptor and converted to 2‐hydroxyglutarate (2‐OHG) by both organisms. Production of 2‐OHG was identified by high performance liquid chromatography (HPLC) and confirmed by gas chromatography (GC). Crude cell extracts of L. sanfranciscensis and L. reuteri grown with or without α‐KG exhibited OHG dehydrogenase activity of 6·3 ± 0·3, 2·3 ± 0·9, 1·2 ± 0·2, and 1·1 ± 0·1 mmol l?1 NADH (min x mg protein)?1, respectively. The presence of phenylalanine and citrate in addition to α‐KG partially redirected the use of α‐KG from electron acceptor to amino group acceptor. In wheat sourdoughs, α‐KG was predominantly used as electron acceptor and converted to 2‐OHG. Conclusions: Lactobacillus sanfranciscensis and L. reuteri utilize α‐KG as electron acceptor. Alternative use of α‐KG as amino group acceptor occurs in the presence of abundant amino donors and citrate. Significance and Impact of the Study: The use of α‐KG as electron acceptor in heterofermentative lactobacilli impacts the formation of flavour volatiles through the transamination pathway. 相似文献
12.
Luo LH Seo JW Baek JO Oh BR Heo SY Hong WK Kim DH Kim CH 《Applied microbiology and biotechnology》2011,89(3):697-703
Although the de novo biosynthetic mechanism of 3-hydroxypropionic acid (3-HP) in glycerol-fermenting microorganisms is still
unclear, the propanediol utilization protein (PduP) of Lactobacillus species has been suggested to be a key enzyme in this regard. To verify this hypothesis, a pduP gene from Lactobacillus reuteri was cloned and expressed, and the encoded protein was characterized. Recombinant L. reuteri PduP exhibited broad substrate specificity including 3-hydroxypropionaldehyde and utilized both NAD+ and NADP+ as a cofactor. Among various aldehyde substrates tested, the specific activity was highest for propionaldehyde, at pH 7.8
and 37 °C. The K
m and V
max values for propionaldehyde in the presence of NAD+ were 1.18 mM and 0.35 U mg−1, respectively. When L. reuteri pduP was overexpressed in Klebsiella pneumoniae, 3-HP production remarkably increased as compared to the wild-type strain (from 0.18 g L−1 to 0.72 g L−1) under shake-flask culture conditions, and the highest titer (1.38 g L−1 3-HP) was produced by the recombinant strain under batch fermentation conditions in a bioreactor. This is the first report
stating the enzymatic properties of PduP protein and the probable role in biosynthesis of 3-HP in glycerol fermentation. 相似文献
13.
Trials were conducted to determine the in vivo transferability of plasmid-mediated antibiotic resistance between two strains of enteric Gram-positive bacteria. Germ-free mice were associated with the donor Lactobacillus reuteri DSM 20016 strain, carrying the broad host range pAM beta 1 plasmid, and with the Enterococcus faecalis JH2SS recipient strain. Analysis of faecal content of associated mice demonstrated that the in vivo transfer of this plasmid did occur and that frequencies of conjugation were affected by the presence of subtherapeutic levels of antibiotic in the diet. 相似文献
14.
M.G. El-Ziney N. Arneborg M. Uyttendaele J. Debevere M. Jakobsen 《Biotechnology letters》1998,20(10):913-916
In anaerobic batch cultures of Lactobacillus reuteri, glucose/glycerol cofermentation resulted in production of reuterin (-hydroxypropionaldehyde) and 1,3 propanediol at the expense of ethanol and lactate. In anaerobic chemostat cultures of L. reuteri, glucose/glycerol cofermentation resulted in an increased ethanol production and a decreased lactate production. Moreover, reuterin and 1,3 propanediol were produced in significant amounts. These results demonstrate that growing L. reuteri cells have the ability to produce reuterin. © Rapid Science Ltd. 1998 相似文献
15.
Taurocholic acid transport in Lactobacillus reuteri CRL 1098 was determined. The bile acid is incorporated inside the cells by an active and saturable transport showing a typical
kinetics of Michaelis-Menten with values of K
m
and V
max
of 0.35 mm and 20 mm, respectively.
Received: 30 May 2000/Accepted: 5 July 2000 相似文献
16.
17.
3-hydroxypropionaldehyde (3HPA) is a promising versatile substance derived from the renewable feedstock glycerol. It is a product of glycerol metabolism in Lactobacillus reuteri. Because of toxic effects, the biotechnological production is poor. In this work the biocatalyst lifetime and product formation could be drastically increased. In the established two-step process already applied, cells are grown in the first step under anaerobic conditions, and in the second step the immobilised or suspended biocatalyst is used for 3HPA-production under strict anaerobic conditions. In the first step it was possible to reach a biomass concentration of 5.5g CDW/L (OD(600)≈23.4). In the second step, normally, 3HPA accumulates to a toxic concentration and the reaction stops in less than 60min because of the interaction of 3HPA with cell components. To prevent this, the toxic product is bound to the newly found scavenger carbohydrazide to form the hydrazone. For the first time it was possible to recycle the immobilised biocatalyst for at least ten cycles (overall life time>33hours) in a repeated batch biotransformation with an overall production of 67g 3HPA. The optimal pH-value was between 6.8 and 7.2 at an optimal temperature of 40-45°C. In a single batch biotransformation with suspended resting cells it was possible to produce 150g/L 3HPA as carbohydrazone at an overall productivity of 10.7gL(-1)hours(-1). In a single fed-batch biotransformation at 45°C 138g/L glycerol was converted into 108g/L 3HPA with an overall productivity of 21.6gL(-1)hours(-1). This is the highest 3HPA concentration and productivities reported so far for the microbial production of 3HPA from glycerol. 相似文献
18.
Bioconversion of linoleic acid into conjugated linoleic acid during fermentation and by washed cells of Lactobacillus reuteri 总被引:9,自引:0,他引:9
Conjugated linoleic acid (CLA) was produced at 300 mg l–1 after 24 h culture of Lactobacillus reuteri in de Man–Rogosa–Sharpe medium containing 0.9 g linoleic acid (LA) l–1 and 1.67% (v/v) Tween 80. CLA was mainly located in the extracellular space of the cells. Washed cells previously grown on LA were less active than unadapted washed cells in converting LA into CLA. Most of the CLA transformed by washed L. reuteri cells was located in cells or associated with cells. CLA production by washed L. reuteri cells was most efficient in conversion with 0.45 g LA l–1 at pH 9.5 and 37°C for 1 h. 相似文献
19.
Trials were conducted to determine the in vivo transferability of plasmid-mediated antibiotic resistance between two strains of enteric Gram-positive bacteria. Germfree mice were associated with the donor Lactobacillus reuteri DSM 20016 strain, carrying the broad host range pAMβ1 plasmid, and with the Enterococcus faecalis JH2SS recipient strain.
Analysis of faecal content of associated mice demonstrated that the in vivo transfer of this plasmid did occur and that frequencies of conjugation were affected by the presence of subtherapeutic levels of antibiotic in the diet. 相似文献
Analysis of faecal content of associated mice demonstrated that the in vivo transfer of this plasmid did occur and that frequencies of conjugation were affected by the presence of subtherapeutic levels of antibiotic in the diet. 相似文献
20.
3-Hydroxypropionaldehyde (3-HPA) is considered as a potent antimicrobial substance. Exploration of its application as a food preservative or as a therapeutic auxiliary agent has been documented in the literature. In the present work, factors that may impact on 3-HPA accumulation by Lactobacillus reuteri and on the stability of 3-HPA were investigated. Three media - H(2)O, milk and MRS broth - were chosen as test systems. Data indicated that 3-HPA accumulation in resting cells of L. reuteri in a two-step fermentation is greatly affected by temperature, pH, cell age and biomass as well as components in the test system. Within 2 h of incubation, 170 mM 3-HPA could be produced with a cell dry weight of 30 g/l, representing 85% of the glycerol supplied (200 mM) in H(2)O. The presence of glycerol during cell growth increased the productivity of 3-HPA by resting cells. In general, 3-HPA is much more stable in H(2)O than in milk and MRS. Factors that enhanced accumulation of 3-HPA did not simply show the same positive impact on the stability of 3-HPA. Thus, for defined applications, factors affecting production and stability of 3-HPA should be evaluated separately. 相似文献