首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid and efficient Agrobacterium rhizogenes mediated transformation system for Ocimum tenuiflorum L., a traditional Indian medicinal plant that occurs in red and green forma, was developed. The plant is a repertoire of several pharmaceutically and nutraceutically important metabolites. Three different types of explants i.e. leaves, hypocotyls and excised shoots, obtained from shoot cultures of in vitro germinated red and green forma plants were transformed using Agrobacterium rhizogenes strain ATCC 15834. The transformation efficiency was equal between similar explants of both forma. Transformation efficiency was best in leaves of 4 days while excised shoots and hypocotyls had 6 and 8 days respectively. Transformation frequency of green forma leaves was the highest (70.6%) among all explants. Excised shoots of green forma plants exhibited better transformation (58.3%) than the red forma excised shoots (42.59%). Red forma hypocotyl explants displayed marginally better (26.27%) transformation frequency than green hypocotyl explants (21.14%). Transformation with hairy root was confirmed by the presence of rolC gene through PCR amplification and Southern hybridization. The development of hairy root-based transgenic system for O. tenuiflorum will pave the way for in vitro production of important secondary metabolites.  相似文献   

2.
以下胚轴,带柄子叶和茎尖为外植体,利用根癌农杆菌和基因枪法将抗虫融合蛋白基因(Bt-CpTI)导入甘蓝品种“中甘8号”,得到了13株卡那霉素抗性植株,经PCR扩增反应和Southern blot分子验证表明;农杆菌介导转化下胚轴和带柄子叶来源的Ⅰ型抗性植株均为转基因植株,而农杆菌介导转化茎尖外植体得到的Ⅱ型抗性植株属“假阳性”植株,基因枪介导转化茎尖的2株Ⅲ型植株中,有1株是非转基因植株,经胰蛋白酶抑制剂活性分析和抗虫测试证明,部分转基因植株有较高的胰蛋白酶抑制剂活性和抗菜青虫能力。  相似文献   

3.
We present evidence that overproduction of endogenous cytokinins (CK) caused stress response in non-rooting Pssu-ipt transgenic tobacco (Nicotiana tabacum L.) grown in vitro. It was demonstrated by overaccumulation of phenolic compounds, synthesis of pathogenesis related proteins (PR proteins), and increase in peroxidase (POD) activities. Immunolocalization of zeatin and also PR-1b protein on leaf cryo-sections proved their accumulation in all mesophyll cells of transgenic tobacco contrary to control non-transgenic plants. Intensive blue autofluorescence of phenolic compounds induced by UV in cross-sections of leaf midrib showed enhanced contents of phenolics in transgenic tobacco compared with controls, nevertheless, no significant difference between both plant types was found in leaf total lignin content. Transgenic plantlets exhibited higher peroxidase activities of both soluble and ionically bound fractions compared with controls. HPLC analysis of phenolic acids confirmed the increase in all phenolic acids in transgenic tobacco except for salicylic acid (SA). The effect of high phenolic content on rooting of transgenic tobacco is discussed.  相似文献   

4.
5.
6.
Two transgenic pepper plants were obtained from 255 seed explants that were infected with Agrobacterium LBA4404 (pGA1209). One of them (PT2) showed morphological change, such as dwarfism and early flowering by the constitutive expression of the rice OsMADS1 gene. The in vitro condition of the plant regeneration has been optimized from hypocotyl explants on a MS medium that was supplemented with zeatin 3 mg/L, IAA 0.3 mg/L for shoot induction. The optimal rooting condition was at NAA 0.3 mg/L. The transformation frequency was 0.8% from the total hypocotyls. DNA and RNA hybridization analyses showed that the introduced gene was integrated and stably expressed in regenerated plants.  相似文献   

7.
Eucalyptus globulus is one of the most economically important plantation hardwoods for paper making. However, its low transformation frequency has prevented genetic engineering of this species with useful genes. We found the hypocotyl section with a shoot apex has the highest regeneration ability among another hypocotyl sections, and have developed an efficient Agrobacterium-mediated transformation method using these materials. We then introduced a salt tolerance gene, namely a bacterial choline oxidase gene (codA) with a GUS reporter gene, into E. globulus. The highest frequency of transgenic shoot regeneration from hypocotyls with shoot apex was 7.4% and the average frequency in four experiments was 4.0%, 12-fold higher than that from hypocotyls without shoot apex. Using about 10,000 explants, over 250 regenerated buds were confirmed as transformants by GUS analysis. Southern blot analysis of 100 elongated shoots confirmed successful generation of stable transformants. Accumulation of glycinebetaine was investigated in 44 selected transgenic lines, which showed 1- to 12-fold higher glycinebetaine levels than non-transgenic controls. Rooting of 16 transgenic lines was successful using a photoautotrophic method under enrichment with 1,000 ppm CO2. The transgenic whole plantlets were transplanted into potting soil and grown normally in a growth room. They showed salt tolerance to 300 mM NaCl. The points of our system are using explants with shoot apex as materials, inhibiting the elongation of the apex on the selection medium, and regenerating transgenic buds from the side opposite to the apex. This approach may also solve transformation problems in other important plants.  相似文献   

8.
9.
A protocol for Agrobacterium-mediated transformation with mannose selection was developed for cotyledon petiole, hypocotyl and leaf explants of tomato (Lycopersicon esculentum L. Mill). More than 400 transgenic plants from three tomato varieties were selected with 1% mannose in combination with 0.1–0.5% glucose. Average transformation frequencies ranged from 2.0 to 15.5% depending on the construct, genotype and type of tissue used for transformation. The highest transformation rate was obtained for hypocotyl explants from tomato variety SG048. The ploidy levels of 264 independent transgenic events and 233 non-transgenic plants regenerated from tissue culture were assessed by flow cytometry. The incidence of polyploids within the total population of transgenic plants varied from 10 to 78% and was not significantly different from the non-transgenic population. The greatest variation in the proportion of polyploids was observed in plants derived from different explant types, both in transgenic and non-transgenic regenerants, across three studied genotypes. Transgenic and non-transgenic plants regenerated from leaves included the highest number of normal diploid plants (82–100%), followed by cotyledon petiole-derived plants (63–78%). Transgenic plants produced from hypocotyls contained 22–58% diploids depending on the genotype used in transformation. Results described in this study demonstrate that, although transformation frequencies for leaf tissue are still lower under current protocols, the high percentage of diploids obtained make leaf tissue an attractive transformation target.Abbreviations BAP Benzylaminopurine - MS Murashige-Skoog - MsCHI Medicago sativa chalcone isomerase - PMI Phosphomannose isomerase  相似文献   

10.
Transgenic rice plants in which the content of dienoic fatty acids was increased as a result of co-suppression of fatty acid desaturase were more tolerant to high temperatures than untransformed wild-type plants, as judged by growth rate and chlorophyll content. When untransformed wild-type and transgenic rice seedlings were incubated at 35 °C, seedlings of the transgenic rice lines showed approximately 1.6 and 2.1 times the growth of untransformed wild-type seedlings, as assayed by shoot and root mass, respectively. The chlorophyll content of the transgenic leaves after 9 d at 35 °C was also higher than that of wild-type rice. The maximum photochemical efficiency of photosystem 2 was also higher in transgenic plants than in wild-type plants upon high temperature stress.  相似文献   

11.
The effects of the auxins 2,4-D, NAA and IAA either alone or in combination with kinetin or BA were investigated to assess the morphogenetic potential of leaf, root and hypocotyl explants of Digitalis thapsi. Calluses were obtained from the three explants in basal medium without the addition of growth regulators and in leaves, the calluses formed roots. Application of 2,4-D, NAA or BA increased callus formation. The presence of NAA induced root formation and that of BA induced shoot formation via callus interphase. Indole-3-acetic acid alone only induced the generation of roots in the hypocotyl callus. Kinetin was ineffective in all the explants tested. Combinations of NAA with kinetin or BA were more effective in inducing organogenesis in leaf explants. Optimum responses were obtained in hypocotyl and root explants by using IAA in combination with BA, the highest rate of shoot regeneration being observed in hypocotyl explants.Rooting of the differentiated shoots was readily achieved in media without growth regulators. Regenerated plantlets were transferred to soil and grew with a survival rate of 70%.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid, Kin-kinetin - NAA naphthaleneacetic acid  相似文献   

12.
以河北杨(Populus hopeiensis)为材料, 研究拟南芥(Arabidopsis thaliana)油菜素内酯(BR)生物合成酶基因DAS5对其生长表型、生物量及抗旱性的影响。结果表明: (1) 转DAS5基因河北杨植株的根长、地径、叶柄及叶片长度均显著大于野生型植株, 且地上、地下部分干重及根冠比显著高于野生型, 其拥有发达的根系; (2) 在干旱胁迫下, 转DAS5基因河北杨植株失水褪绿速度较野生型植株缓慢, 在复水后转基因植株能够较早较好地恢复活力, 萌发较多的新幼芽且长势良好; (3)控水期间, 转基因河北杨的相对生长率显著高于野生型, 且随着干旱胁迫程度的加剧, 其可溶性糖含量、游离脯氨酸含量、过氧化氢酶(CAT)活性、超氧化物歧化酶(SOD)活性均显著高于野生型。实验结果表明, 与野生型相比, 转基因植株具有较高的生长量与较强的抗干旱胁迫能力, 说明来自拟南芥的BR生物合成酶基因DAS5可以显著增加河北杨的生长量并在抵御干旱胁迫机制中发挥重要作用。  相似文献   

13.
The activity of the peroxidase system in Mesembryanthemum crystallinum L. plants in relation to the shift from C3 to CAM photosynthesis was studied. In detached leaves of the fourth and fifth stories treated with NaCl (0.3 M), a rapid (after 30 min) transient induction of the ionically bound peroxidase (the first maximum) was observed followed by a second weak increase in the enzyme activity (90 min after salt treatment). In the leaves of intact plants, which received a longer treatment with NaCl, a two-phase change in the enzyme activity was also observed. It was most pronounced at the early stages of the NaCl-induced plant shift from C3 to CAM photosynthesis. In this case, in both detached and intact leaves of juvenile plants, the activity of soluble peroxidase was at a low steady-state level. The situation changed dramatically when M. crystallinum plants transitioned to the reproductive developmental phase and photosynthesis switched from C3 to CAM. The time dependence of the activities of both peroxidase types, the soluble ones in particular, was characterized by marked diurnal oscillations (light–dark), which coincided with the fluctuations of the total titratable acidity. In this case, the activity of the soluble enzyme was several orders of magnitude higher than the activity of the ionically bound peroxidase, even though the optimum pH for both isoforms was similar (pH 5.0). Three acid isoforms of soluble peroxidases, which operated more actively when the cytoplasm had a higher acidity, were distinguished by isoelectrofocusing. Their activity increased under salinity. Alkaline and neutral components were predominant in more than 30 molecular forms of the soluble peroxidase detected. We concluded that the operation of the peroxidase system changed substantially when plants shifted from the juvenile to the reproductive state and switched from C3 to CAM photosynthesis: the activity of stress-induced ionically bound peroxidase was drastically inhibited with a concurrent increase in the activity of soluble peroxidase and a change in the spectrum of its molecular forms.  相似文献   

14.
A two-step protocol for improving the frequency of shoot regeneration from oilseed rape (Brassica napus L.) hypocotyl explants was established. The protocol consists of a pre-culture on callus induction medium (CIM) and a subsequent shoot regeneration on shoot induction medium (SIM). The SIM was Murashige and Skoog medium supplemented with different concentrations of 6-benzylaminopurine (BA; 2–5 mg dm−3) and naphthaleneacetic acid (NAA; 0.05–0.15 mg dm−3). Maximum frequency of shoot regeneration (13 %) was on the SIM medium containing 4 mg dm−3 BA and 0.1 mg dm−3 NAA, but it increased to 24.45 % when 20 μM silver thiosulphate (STS) was added. Strikingly, an extremely high frequency of shoot regeneration up to 96.67 % was reached by a two-step protocol when hypocotyl explants had been pre-cultured for 7 d on a CIM medium containing 1.5 mg dm−3 2,4-dichlorophenoxyacetic acid. In addition, the shoot emergence was also 7 d earlier than that observed by use of the one-step protocol. The two-step protocol was also applied for regeneration of transgenic plants with cZR-3, a nematode resistance candidate gene. As a result, 43 plants were generated from 270 shoots and from these 6 plants proved to be transgenic.  相似文献   

15.
Previous studies on the tomato ( Lycopersicon esculentum Mill.) peroxidase TPX1, including the development of transgenic tomato over-expressing this gene, supported an involvement of this peroxidase in the synthesis of lignin and suberin. The transgenic plants showed a wilty phenotype at flowering, but the relationship between this role in ligno-suberization and this phenotype was not clear. In the present study a histological approach and the measurement of water-related parameters have been performed in order to obtain an insight into the origin of this phenotype. Clear differences between transgenic and non-transgenic roots were observed in the cross-sections of the basal root zones where secondary growth was evident. The diameter of the xylem vessel was diminished in the transgenic plants. Total area corresponding to xylem in the basal cross-sections decreased 3.9 fold in the transgenic roots. In addition, the radial and outer tangential walls of the exodermis cells were more ligno-suberized in transgenic than in non-transgenic plants. After fruit set, predawn and midday water potentials were lower in transgenic than in-non-transgenic plants. At midday, the stomatal conductance was also lower in the transgenic plants, 494±69 versus 594±60 mmol m−2 s−1. Root hydraulic conductances of the transgenic and non-transgenic plants were 1.4±0.38 and 3.47±0.19 g water min−1 MPa−1, respectively. The results obtained support that the phenotype is caused by the anatomical differences found in the transgenic roots. These differences would be the cause of a increased resistance to water flow in the roots that would negatively affect the water supply to the shoot and, as a consequence, resulted in a decreased water potential in the leaves.  相似文献   

16.
The apoplastic fluid of pine ( Pinus pinaster Aiton) hypocotyls contains ascorbic acid (AA) and dehydroascorbic acid (DHA). The amounts of ascorbic and dehydroascorbic acids were in the nmol (g fresh weight)−1 range and decreased with the hypocotyl age as well as along the hypocotyl axis. The ratio AA/(AA+DHA) also decreased with the hypocotyl age and along the hypocotyl. Both ascorbic oxidase and peroxidase activity against ascorbic acid showed very low activity not only in the apoplastic fluid but also in the fractions ionically and covalently bound to the cell walls. However, the peroxidase activity in the three abovementioned fractions was strongly increased in the presence of ferulic acid. That stimulation effect increased with the hypocotyl age and from the apical towards the basal region of the hypocotyls of 10-day-old seedlings. Furthermore, the oxidation of ferulic acid by apoplastic and ionically- and covalently-bound peroxidases was inhibited by ascorbic acid as long as ascorbate was available. A regulatory role of apoplastic ascorbic acid levels in the formation of dehydrodiferulic bridges between wall polysaccharides catalysed by cell wall peroxidases and thus in the cell wall stiffening during plant growth is proposed.  相似文献   

17.
Summary Hypocotyl explants of melon (Cucumis melo L.) are capable of regenerating multiple shoots on Murashige and Skoog (1962) medium, augmented with 4.4 μM benzylademne. Regeneration from the hypocotyl is much more rapid than the more commonly reported regeneration from cotyledonary explants, producing shoots within 2 wk compared to more than a month required for cotyledon explants. The rapid regeneration response depends on the presence of a fragment of the cotyledon remaining attached to the hypocotyl. Controls were performed to ensure that the regeneration was not due to the presence of the shoot apical bud of the melon seedling after explant production. Scanning electron microscopy revealed that microsurgery to remove the apical bud left no excess bud material. Regeneration from the proximal part of the hypocotyl was due to production of a new shoot apical meristem, observed by histology. The apical meristem can be produced before leaf primordia in regeneration from the hypocotyl, in contrast to the regeneration process from the melon cotyledon.  相似文献   

18.
Regeneration in caraway was obtained via two different routes. Hypocotyls showed delayed shoot formation after a callus phase and at relatively low frequencies. In contrast, high-frequency, direct regeneration occurred when cotyledonary node explants were used. Transient expression of β-glucuronidase was monitored after inoculation of both explant types with Agrobacterium tumefaciens AGL0(pMOG410). Gene transfer was more efficient when using cotyledonary node explants. This explant type also proved to be the best for stable transformation resulting in transgenic plants. Several parameters determining regeneration and transformation efficiency were tested. The percentage of explants giving one to numerous transgenic plants could be as high as 13%. This system for the rapid production of many transgenic caraway plants opens up possibilities for studying metabolic engineering with this crop. Received: 8 October 1996 / Revision received: 2 January 1997 / Accepted: 2 February 1997  相似文献   

19.
In previous research, an in vitro stepwise procedure permitted us to obtain Nicotiana tabacum regenerated plant lines able to grow in the presence of Mn at 2 and 5 mM (Mn-tolerant plants). These plants showed several morpho-physiological and cytological differences in comparison to the Mn-sensitive regenerated plants. In particular, the number of xylem cells and the degree of lignification appeared to be influenced differently by these Mn concentrations. In the present work these Mn-tolerant and Mn-sensitive N. tabacum plants, maintained in the presence of Mn 2 and 5 mM, have been characterized with regards to the uptake of Mn and Fe, the activity of extracellular peroxidases in the stems, and the activity of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in the leaves. The leaf response to an increasing Mn concentration in the medium, corresponded a parallel decrease of Fe content. Plants tolerant of 5 mM Mn showed almost a doubling Mn content over that of the 5 mM Mn-sensitive plants. In the stem, 2 and 5 mM Mn inhibited the extracellular free peroxidases (guaiacol peroxidases) either in the Mn-tolerant plants or in the Mn-sensitive plants. In the Mn-sensitive plants treated with 2 mM Mn the activity of the peroxidases of the ionically and covalently bound wall peroxidases was also depressed. In 5 mM Mn-tolerant plants, an enhanced activity of the covalently bound wall peroxidases was observed. The effect of Mn on the covalently bound wall syringaldazine peroxidases was identical to that observed in the guaiacol peroxidases; the activity was significantly higher in the Mn-tolerant plants grown in the presence of 5 mM Mn. In the leaf, the increase of Mn content inhibited the activity of guaiacol peroxidase, ascorbate peroxidase and superoxide dismutase in the Mn-tolerant as well as in the Mn-sensitive plants. However, the effect was greater in the Mn-sensitive plants. Only glutathione reductase did not show significant variation except for the 2 mM Mn-sensitive plants, where an increased activity was detected.  相似文献   

20.
Activity of a number of enzymes related to lignin formation was measured in a Picea abies (L) Karsten suspension culture that is able to produce native-like lignin into the nutrient medium. This cell culture is an attractive model for studying lignin formation, as the process takes place independently of the complex macromolecular matrix of the native apoplast. Suspension culture proteins were fractionated into soluble cellular proteins, ionically and covalently bound cell wall proteins and nutrient medium proteins. The nutrient medium contained up to 5.3% of total coniferyl alcohol peroxidase (EC 1.11.1.7) activity and a significant NADH oxidase activity that is suggested to be responsible for hydrogen peroxide (H2O2) production. There also existed some malate dehydrogenase (EC 1.1.1.37) activity in the apoplast of suspension culture cells (in ionically and covalently bound cell wall protein fractions), possibly for the regeneration of NADH that is needed for peroxidase-catalysed H2O2 production. However, there is no proof of the existence of NADH in the apoplast. Nutrient medium peroxidases could be classified into acidic, slightly basic and highly basic isoenzyme groups by isoelectric focusing. Only acidic peroxidases were found in the covalently bound cell wall protein fraction. Several peroxidase isoenzymes across the whole pI range were detected in the protein fraction ionically bound to cell walls and in the soluble cellular protein fraction. One laccase-like isoenzyme with pI of approximately 8.5 was found in the nutrient medium that was able to form dehydrogenation polymer from coniferyl alcohol in the absence of H2O2. The total activity of this oxidase towards coniferyl alcohol was, however, several orders of magnitude smaller than that of peroxidases in vitro. According to 2D 1H-13C correlation NMR spectra, most of the abundant structural units of native lignin and released suspension culture lignin are present in the oxidase produced dehydrogenation polymer but in somewhat different amounts compared to peroxidase derived synthetic lignin preparations. A coniferin beta-glucosidase (EC 3.2.1.21) was observed to be secreted into the culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号