首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidant stress has been implicated in a wide variety of disease processes. One method to quantify oxidative injury is to measure lipid peroxidation. Quantification of a group of prostaglandin F(2alpha)-like compounds derived from the nonezymatic oxidation of arachidonic acid, termed the F2-isoprostanes (F2-IsoPs), provides an accurate assessment of oxidative stress both in vitro and in vivo. In fact, in a recent independent study sponsored by the National Institutes of Health (NIH), F2-IsoPs were shown to be the most reliable index of in vivo oxidant stress when compared against other well known biomarkers. This protocol details our laboratory's method to quantify F2-IsoPs in biological fluids and tissues using gas chromatography-mass spectrometry (GC-MS). This procedure can be completed for 12-15 samples in 6-8 h.  相似文献   

2.
Free radicals have been theorized to play a causative role in the normal aging process. To date, methods used to detect oxidative stress in aged experimental animals have only detected 2- to 3-fold differences or less between young and aged animals. Measurement of F(2)-isoprostanes has emerged as probably the most reliable approach to assess oxidative stress status in vivo. Therefore, we measured levels of F(2)-isoprostanes free in plasma and levels esterified in plasma lipids in young rats (3-4 months of age) and aged rats (22-24 months of age). Plasma concentrations of free F(2)-isoprostanes were increased dramatically by a mean of 20.3-fold (range 4.3 to 42.9-fold) and levels esterified in plasma lipids were also strikingly increased by a mean of 29.9-fold (range 15.8 to 50.0-fold). These findings unveil profound oxidative stress in aged rats which adds considerable support for the free radical theory of aging.  相似文献   

3.
Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo   总被引:33,自引:0,他引:33  
In 1990 we discovered the formation of prostaglandin F(2)-like compounds, F(2)-isoprostanes (F(2)-IsoPs), in vivo by nonenzymatic free radical-induced peroxidation of arachidonic acid. F(2)-IsoPs are initially formed esterified to phospholipids and then released in free form. There are several favorable attributes that make measurement of F(2)-IsoPs attractive as a reliable indicator of oxidative stress in vivo: (i) F(2)-IsoPs are specific products of lipid peroxidation; (ii) they are stable compounds; (iii) levels are present in detectable quantities in all normal biological fluids and tissues, allowing the definition of a normal range; (iv) their formation increases dramatically in vivo in a number of animal models of oxidant injury; (v) their formation is modulated by antioxidant status; and (vi) their levels are not effected by lipid content of the diet. Measurement of F(2)-IsoPs in plasma can be utilized to assess total endogenous production of F(2)-IsoPs whereas measurement of levels esterified in phospholipids can be used to determine the extent of lipid peroxidation in target sites of interest. Recently, we developed an assay for a urinary metabolite of F(2)-IsoPs, which should provide a valuable noninvasive integrated approach to assess total endogenous production of F(2)-IsoPs in large clinical studies.  相似文献   

4.
Oxidative damage to DNA in human tissues can be determined by measuring multiple products of oxidative damage to the purine and pyrimidine bases using gas chromatography-mass spectrometry (GC-MS). Oxidative damage to lipids (lipid peroxidation) can be quantitated by the mass spectrometry-based determination of F2-isoprostanes, specific end-products of the peroxidation of arachidonic acid residues in lipids. For both DNA base damage products and 8-epi prostaglandin F2alpha (PGF2alpha), there is a wide variation in levels between different healthy human subjects. We measured multiple products of oxidative damage to DNA bases in white cells, and 8-epi PGF2alpha in plasma, from blood samples obtained from healthy human subjects in the UK and in Portugal. No correlation of 8-epi PGF2alpha levels with levels of any modified DNA base (including 8-hydroxyguanine) was observed. We conclude that no single parameter can be measured as an index of "oxidative stress" or "oxidative damage" in vivo.  相似文献   

5.
Oxidative damage to DNA in human tissues can be determined by measuring multiple products of oxidative damage to the purine and pyrimidine bases using gas chromatography-mass spectrometry (GC-MS). Oxidative damage to lipids (lipid peroxidation) can be quantitated by the mass spectrometry-based determination of F2-isoprostanes, specific end-products of the peroxidation of arachidonic acid residues in lipids. For both DNA base damage products and 8-epi prostaglandin F (PGF), there is a wide variation in levels between different healthy human subjects. We measured multiple products of oxidative damage to DNA bases in white cells, and 8-epi PGF in plasma, from blood samples obtained from healthy human subjects in the UK and in Portugal. No correlation of 8-epi PGF levels with levels of any modified DNA base (including 8-hydroxyguanine) was observed. We conclude that no single parameter can be measured as an index of “oxidative stress” or “oxidative damage” in vivo.  相似文献   

6.
F2-isoprostanes have been associated with various forms of oxidant stress. The levels of F2-isoprostanes in a murine asthma model were studied both in situ and in vivo and further investigated whether the formation of F2-isoprostanes was associated with increased ovalbumin (OVA)-induced airway inflammation after a 17-day (OVA-17) or a 24-day (OVA-24) protocol. Bronchial reactivity was assessed by using a ventilator (FlexiVent). OVA-treated animals had higher lung resistance and lung compliance compared to control groups (P<0.001). 8-Iso-PGF2α levels in bronchoalveolar lavage (BAL) and 8-iso-PGF2α immunoreactivity in lung tissue were analyzed. OVA-17 mice showed a 2.5-fold increased level of 8-iso-PGF2α in BAL compared to PBS-17 mice (P=0.023). Lung tissue from OVA-24 mice had more intense 8-iso-PGF2α staining compared to OVA-17 mice. This study showed an accumulation of F2-isoprostanes in acute airway inflammation and a markedly increased tissue damage caused by oxidative stress in an ongoing inflammation.  相似文献   

7.
8.
Membranes are not just rafts   总被引:1,自引:0,他引:1  
A new definition for lipid rafts was coined at the Keystone Symposium of Lipid Rafts and Cell Function based on recent advances in the field. The revised definition lumps all membrane heterogeneities that are not rafts into a single class of "non-raft". In this commentary, we suggest that "non-raft" domains encompass a variety of membrane heterogeneities and are quite diverse in composition and origin. A good starting point for the study of this diversity would be phospholipids with unsaturated acyl chains, which display little affinity for cholesterol; these lipids are abundant in membranes such as the endoplasmic reticulum and that may form their own macro- or microdomains.  相似文献   

9.
This study was aimed at investigating oxidative stress in thalassemic patients by measurement of the oxidative damage biomarker, F2-isoprostanes (F2-IsoPs), using gas chromatography-mass spectrometry. The results showed that the mean value of urinary F2-IsoPs, normalized with creatinine, in the thalassemic group was significantly higher than that from healthy subjects (3.38 ± 2.15 ng/mg creatinine vs 0.86 ± 0.55 ng/mg creatinine, respectively), and the mean value of plasma total F2-IsoPs in the thalassemic group was also significantly higher than that from healthy subjects (0.39 ± 0.15 ng/ml vs 0.18 ± 0.03 ng/ml, respectively). Serum ferritin, erythrocyte superoxide dismutase (SOD), glutathione peroxidase, glutathione, and TBARS levels after treatment of erythrocytes with H2O2 were also investigated, and serum ferritin and erythrocyte SOD levels were significantly higher in thalassemic patients. Our findings are consistent with oxidative stress in thalassemia patients.  相似文献   

10.
Oxidative stress, which results from an imbalance between the production of potentially damaging reactive oxygen species versus antioxidant defenses and repair mechanisms, has been proposed as an important mediator of life‐history trade‐offs. A plethora of biomarkers associated with oxidative stress exist, but few ecological studies have examined the relationships among different markers in organisms experiencing natural conditions or tested whether those relationships are stable across different environments and demographic groups. It is therefore not clear to what extent studies of different markers can be compared, or whether studies that focus on a single marker can draw general conclusions regarding oxidative stress. We measured widely used markers of oxidative damage (protein carbonyls and malondialdehyde) and antioxidant defense (superoxide dismutase and total antioxidant capacity) from 706 plasma samples collected over a 4‐year period in a wild population of Soay sheep on St Kilda. We quantified the correlation structure among these four markers across the entire sample set and also within separate years, age groups (lambs and adults), and sexes. We found some moderately strong correlations between some pairs of markers when data from all 4 years were pooled. However, these correlations were caused by considerable among‐year variation in mean marker values; correlation coefficients were small and not significantly different from zero after accounting for among‐year variation. Furthermore, within each year, age, and sex subgroup, the pairwise correlation coefficients among the four markers were weak, nonsignificant, and distributed around zero. In addition, principal component analysis confirmed that the four markers represented four independent axes of variation. Our results suggest that plasma markers of oxidative stress may vary dramatically among years, presumably due to environmental conditions, and that this variation can induce population‐level correlations among markers even in the absence of any correlations within contemporaneous subgroups. The absence of any consistent correlations within years or demographic subgroups implies that care must be taken when generalizing from observed relationships with oxidative stress markers, as each marker may reflect different and potentially uncoupled biochemical processes.  相似文献   

11.
F(2)-isoprostanes, prostaglandin F(2)-like compounds formed by free radical-catalyzed lipid peroxidation, are considered the most reliable markers of oxidative stress. It has been repeatedly suggested that newborns are exposed to conditions of oxidative stress resulting from the change from a low oxygen pressure in utero to a high oxygen pressure at birth. We measured the levels of F(2)-isoprostanes in plasma of newborns by gas chromatography/mass spectrometry and we found that F(2)-isoprostanes are significantly higher in term newborns compared to healthy adults. The greatest values were found in preterm newborns in whom F(2)-isoprostanes are even higher than in term babies. Moreover a significant inverse correlation was found between the plasma levels of isoprostanes and the gestational age. A quite normal level of isoprostanes was found in the mothers both at delivery and during pregnancy. Placental total F(2)-isoprostanes (sum of free plus esterified) were significantly higher in preterm compared to term deliveries and such a difference might account for the difference in plasma isoprostanes. Plasma non-protein-bound iron is higher in preterm than in term newborns, even if no correlation was found with plasma F(2)-isoprostanes. Erythrocyte desferrioxamine-chelatable iron content (0 time) and release (24 h of aerobic incubation) are higher in newborns than in adults and in preterm than in term newborns, but again no correlation was found with plasma F(2)-isoprostanes. The marked increase in plasma isoprostanes suggests that oxidative stress is a feature of the physiopathological changes seen in the perinatal period.  相似文献   

12.
We examined whether a systemic marker of oxidative stress, F2‐isoprostanes (F2‐IPs), was associated with total and regional adiposity, adipocytokines, and change in adiposity. Using data from 726 participants enrolled in the Health, Aging, and Body Composition (Health ABC) study, F2‐IPs and adipocytokines were measured from baseline plasma samples. Total adiposity was measured by whole‐body dual‐energy X‐ray absorptiometry and regional adiposity by abdominal and thigh computed tomography scans at baseline and 5‐year follow‐up. ANOVA models were estimated to examine associations between F2‐IP tertiles and baseline adiposity and changes in body composition. Median F2‐IPs was 54.3 pg/ml; women had significantly higher levels than men (61.5 vs. 48.9 pg/ml, P < 0.001). F2‐IPs were associated with higher levels of adiponectin, leptin, and tumor necrosis factor‐α (TNF‐α). Positive associations were found between F2‐IPs and all measures of total and regional adiposity among women. In linear regression models, adipocytokines mediated associations among women. Over 5 years of follow‐up, women in the highest vs. lowest F2‐IP tertile exhibited significant loss of weight (lowest tertile: ?1.1 kg, highest tertile: ?2.7 kg, P < 0.05). In conclusion, F2‐IPs were associated with measures of total and regional adiposity in women alone and these associations were partially explained by adipocytokines. F2‐IPs predicted loss of total adiposity over time among women.  相似文献   

13.
We have introduced two specific techniques for the quantitative measurement of monohydroxyeicosatetraenoic acids (HETEs) and F2-isoprostanes by gas chromatography-mass spectrometry/negative ion chemical ionization (GC-MS/NICI) to study lipid peroxidation in isolated rat brain mitochondria by iron/ascorbate. The analysis of HETEs involved hydrogenation, solid phase extraction on a C18-cartridge, formation of pentafluorobenzyl bromide and trimethylsilyl ether derivatives. In the case of F2-isoprostanes, the analytical procedure was similar to that of HETEs except that the hydrogenation step was omitted. We found that HETE content (sum of 5-, 8-12-, and 15-isomers) in freshly prepared rat brain mitochondria was 220 +/- 40pmol/mg protein. The corresponding content for the F2-isoprostane, 8-iso-PGF2alpha, was 0.21 +/-+/- 0.10 pmol/mg protein. HETEs and 8-iso-PGF2alpha were predominantly present in the esterified form. The content of both HETEs and 8-iso-PGF2alpha were increased in presence of iron/ascorbate as oxidation system. After 30 min incubation with Fe2+ ascorbate, the content of HETE isomers was increased about 6-fold compared with baseline levels whereas that for 8-iso-PGF2alpha was elevated 100-fold. Formation of HETEs and F2-isoprostanes corresponded to the consumption of arachidonic acid (AA) and alpha-tocopherol, respectively. There were almost no changes in the content of free (non-esterified) HETEs and 8-iso-PGF2alpha during the course of iron/ascorbate induced oxidation of the brain mitochondria. Our data provide the first direct evidence for the presence of HETEs and F2-isoprostanes in freshly isolated rat brain mitochondria and that esterified HETEs and 8-iso-PGF2alpha are predominantly generated during iron/ascorbate induced lipid peroxidation. Sensitive quantification of these products of non-enzymatic lipid peroxidation as indicators of oxidant injury opens new areas of investigation regarding the role of free radicals in the pathogenesis of human diseases. In addition, HETEs and F2-isoprostanes may be important mediators for mitochondrial functions.  相似文献   

14.
While studies showed that aging is accompanied by increased exposure of the brain to oxidative stress, others have not detected any age-correlated differences in levels of markers of oxidative stress. Use of conventional markers of oxidative damage in vivo, which may be formed ex vivo and/or eliminated by endogenous metabolism, may explain these conflicting results. Recently, F2-isoprostanes and F4-neuroprostanes, peroxidation products of arachidonic acid and docosahexaenoic acid, respectively, have been identified as sensitive and reliable markers of oxidative injury. Therefore, this study was designed to quantify brain levels of F2-isoprostanes and F4-neuroprostanes and their precursors in 4, 10, 50, and 100 week old male Fischer 344 rats. Data show that levels of F2-isoprostanes and F4-neuroprostanes were comparable in all animal age groups. However, levels of F4-neuroprostanes were approximately 20-fold higher than those of F2-isoprostanes in all age groups, despite the fact that brain levels of docosahexaenoic acid were only twice as high as those of arachidonic acid. Based on our findings, it is concluded that aging is not accompanied by enhanced brain susceptibility to oxidative stress. Furthermore, the metabolically active gray matter of the brain, where docosahexaenoic acid is abundant, appears more susceptible to oxidative stress than the white matter.  相似文献   

15.
Associations between individual foods or nutrients and oxidative markers have been reported. Comprehensive measures of food intake may be uniquely informative, given the complexity of oxidative systems and the possibility of antioxidant synergies. We quantified associations over a 20-year history between three food-based dietary patterns (summary measures of whole diet) and a plasma biomarker of lipid peroxidation, F2-isoprostanes, in a cohort of Americans ages 18–30 at year 0 (1985–1986). We assessed diet at years 0, 7, and 20 through a detailed history of past-month food consumption and supplement use and measured plasma F2-isoprostanes at years 15 and 20. We created three dietary patterns: (1) a priori (“a priori diet quality score”) based on hypothesized healthfulness of foods, (2) an empirical pattern reflecting high fruit and vegetable intake (“fruit–veg”), and (3) an empirical pattern reflecting high meat intake (“meat”). We used linear regression to estimate associations between each dietary pattern and plasma F2-isoprostanes cross-sectionally (at year 20, n=2736) and prospectively (year 0/7 average diet and year 15/20 average F2-isoprostanes, n=2718), adjusting for age, sex, race, total energy intake, education, smoking, body mass index, waist circumference, physical activity, and supplement use. In multivariable-adjusted cross-sectional analysis, the a priori diet quality score and the fruit–veg diet pattern were negatively, and the meat pattern was positively, associated with F2-isoprostanes (all p values <0.001). These associations remained statistically significant in prospective analysis. Our findings suggest that long-term adherence to a diet rich in fruits and vegetables and low in red meat may decrease lipid peroxidation.  相似文献   

16.
17.
Abstract

Interleukin (IL)-10 is an anti-inflammatory cytokine that suppresses pro-inflammatory cytokines. We previously demonstrated that supplementation with vitamins E and C ameliorated the increase in IL-10 immediately following anterior cruciate ligament (ACL) surgery in the absence of other cytokine perturbations. Since both oxidative stress and insulin-like growth factor-1 (IGF-1) can modulate IL-10 concentrations, the mechanisms for these changes warranted further investigation. Our objective was to evaluate the mechanism for the IL-10 decrease following ACL surgery. This study consisted of randomized, double-blind, placebo-controlled experimental design. Subjects were randomly assigned to daily supplementation with either: (i) antioxidants (AO; vitamins E [α-tocopherol] and C [ascorbic acid]; n = 10); or (ii) matching placebos (PL; n = 10). Supplementation started ~2 weeks prior to surgery (baseline) and concluded 3 months after surgery. Subjects provided six fasting blood samples at: (i) baseline; (ii) immediately pre-surgery (Pre); (iii) 90 min; (iv) 72 h; (v) 7 days; and (vi) 3 months post-surgery. α-Tocopherol, ascorbic acid, F2-isoprostane and IGF-1 concentrations were measured in each blood sample. At 90 min relative to other times, plasma F2-isoprostane concentrations were significantly (P < 0.05) elevated in both groups, while at 90 min IGF-1 was significantly (P < 0.05) lower in the AO compared to the PL group. The changes in IGF-1 at 90 min relative to baseline were correlated (P < 0.0001) with the changes in IL-10. The decrease in IL-10 observed in the AO group is likely dependent on the decrease IGF-1 since lipid peroxidation was unchanged between the two groups.  相似文献   

18.
Oxidative stress has been identified as a process which is detrimental to brain health, and associated with age-related cognitive declines. Few studies to-date have examined the relationship between in vivo oxidative stress biomarkers and cognitive performance within healthy elderly populations. The current study investigated the relationship between reaction time and oxidative stress, as measured by blood plasma concentrations of F2-isoprostanes using a sample of 251 healthy, non-demented, elderly volunteers (Male; 111: Female 140) aged 60–75 years from the Australian Research Council Longevity Intervention (ARCLI) study cohort. A Jensen Box was used in conjunction with the Hick paradigm in order to differentiate simple from choice reaction time (two, four and eight-choice conditions) as well as movement (MT) and decision times (DT). MT, but not DT, was found to be significantly slower for participants in the high F2-isoprostane group compared to the low F2-isoprostane group, across all stimulus choices. F2-isoprostanes, age and Wechsler Abbreviated Scale of Intelligence (WASI) full scale intelligence quotient (IQ) were found to be significant predictors of average MT in the sample as a whole. These findings provide preliminary evidence to suggest that higher levels of oxidative stress may be associated with impaired psychomotor speed in the healthy elderly population.  相似文献   

19.
The pathophysiology of reversible cerebral vasoconstriction syndrome (RCVS) is unknown. Oxidative stress is detrimental to endothelial function and vascular reactivity. We hypothesized that the oxidative stress marker 8-iso-prostaglandin F2α, which is also a potent vasoconstrictor, might contribute to the pathogenesis of RCVS. Recruited participants included 103 RCVS patients, 53 patients with primary headache with acute severe attacks, and 54 healthy controls. Subjects recruited prior to 2009 were discovery cohort, whereas those after 2009, replication cohort. Urine samples were obtained from all patients at registration and from 79 patients with RCVS again at remission stage. Urine 8-iso-prostaglandin F2α was analyzed by liquid chromatography-tandem mass spectrometry. Patients with RCVS received magnetic resonance angiography and transcranial color-coded sonography. In RCVS patients, the urine 8-iso-prostaglandin F2α level was higher than that in the other groups in discovery, replication, and combined cohorts (RCVS, 0.29±0.18; primary headache with acute severe attacks, 0.21±0.19; control, 0.18±0.09 ng/mg creatinine; P<0.001), and it was positively correlated with the flow velocities of major intracranial arteries, especially within the first week of disease onset (middle cerebral artery, Spearman's correlation coefficient [rs]=0.580, P=0.002; anterior cerebral artery, rs=0.472, P=0.042; posterior cerebral artery, rs=0.457, P=0.022; basilar artery, rs= 0.530, P=0.002). The 8-iso-prostaglandin F2α level decreased from the ictalto remission stage in RCVS patients (0.31±0.21 vs 0.16±0.10 ng/mg creatinine, P<0.001). 8-Iso-prostaglandin F2α was higher in patients with RCVS and correlated with the severity of vasoconstrictions. Further studies are required to explore its potential pathogenic role.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号