首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During germination of spores of Bacillus species the degradation of the spore's pool of small, acid-soluble proteins (SASP) is initiated by a protease termed GPR, the product of the gpr gene. Bacillus megaterium and B. subtilis mutants with an inactivated gpr gene grew, sporulated, and triggered spore germination as did gpr+ strains. However, SASP degradation was very slow during germination of gpr mutant spores, and in rich media the time taken for spores to return to vegetative growth (defined as outgrowth) was much longer in gpr than in gpr+ spores. Not surprisingly, gpr spores had much lower rates of RNA and protein synthesis during outgrowth than did gpr+ spores, although both types of spores had similar levels of ATP. The rapid decrease in the number of negative supertwists in plasmid DNA seen during germination of gpr+ spores was also much slower in gpr spores. Additionally, UV irradiation of gpr B. subtilis spores early in germination generated significant amounts of spore photoproduct and only small amounts of thymine dimers (TT); in contrast UV irradiation of germinated gpr+ spores generated almost no spore photoproduct and three to four times more TT. Consequently, germinated gpr spores were more UV resistant than germinated gpr+ spores. Strikingly, the slow outgrowth phenotype of B. subtilis gpr spores was suppressed by the absence of major alpha/beta-type SASP. These data suggest that (i) alpha/beta-type SASP remain bound to much, although not all, of the chromosome in germinated gpr spores; (ii) the alpha/beta-type SASP bound to the chromosome in gpr spores alter this DNA's topology and UV photochemistry; and (iii) the presence of alpha/beta-type SASP on the chromosome is detrimental to normal spore outgrowth.  相似文献   

2.
3.
The chromosomal locations of four genes which code for small, acid-soluble spore proteins (SASP) in Bacillus subtilis have been determined. Although these four genes code for extremely homologous small, acid-soluble spore proteins (greater than 65% sequence identity), the genes are not clustered but are located at 70 degrees (adjacent to glyB [sspB gene]), 115 degrees (between metC and pyr cluster [sspD gene]), 180 degrees (between metB and kauA [sspC gene]), and 260 degrees (between ilvC and aroG [sspA gene]) on the B. subtilis genetic map.  相似文献   

4.
5.
6.
Alpha/beta-type small, acid-soluble proteins (SASP) of dormant spores of Bacillus subtilis bind to DNA and increase its resistance to a variety of damaging agents both in vivo and in vitro. When spores germinate, degradation of alpha/beta-type SASP is rapidly initiated by a sequence-specific protease, which is termed GPR. Three mutations have been introduced into the B. subtilis sspC gene, which codes for the wild-type alpha/beta-type SASP SspCwt; all three mutations change residues in the highly conserved sequence recognized by GPR. In one mutant protein (SspCV), residue 33 (Ser) was changed to Val; in the second (SspCDL), residues 30 and 31 (Glu and Ile) were changed to Asp and Leu, respectively; and in the third mutant protein (SspCDLV), residues 30, 31, and 33 were changed to Asp, Leu, and Val. All three mutant proteins were rapidly degraded by GPR during spore germination, and SspCDL and SspCDLV were degraded by GPR in vitro at rates 8 to 9% of that for SspCwt, although not exclusively at the single site cleaved by GPR in SspCwt. These results indicate (i) that the sequence specificity of GPR is broader than originally imagined and (ii) that GPR can cleave the sequence in SspCDLV. Since the latter sequence is identical to that cleaved during the proteolytic activation of GPR, this result further supports an autoprocessing model for GPR activation during sporulation. The properties of these mutant proteins were also examined, both in vivo in B. subtilis spores and in Escherichia coli and in vitro with purified protein. SspC(v) interacted with DNA similarly to SspC(wt) in vivo, resorting UV and heat resistance to spores lacking major alpha/beta-type SASP to the same extent as SspC(wt). In contrasst, SspC(DL) had much less effect on DNA properties in vivo and bound strongly only to poly(dG) . poly(dC) in vitro; SspC(DLV) exhibited only weak binding to poly(dG).poly(dC) in vitro. These results confirm the importance of the conserved primary sequence of alpha/beta-type SASP in the binding of these proteins to spore DNA and alteration of DNA properties and show further that the GRP recognition region in alpha/beta-type SASP plays some role in DNA binding.  相似文献   

7.
The small acid-soluble spore proteins alpha and beta were not detected during stationary-phase growth of asporogenous Bacillus subtilis mutants blocked in stages 0, II, or III, but mutants blocked in stages IV or V accumulated nearly wild-type levels of these small acid-soluble spore proteins. Similar results were obtained when production of Bacillus megaterium C protein (also a small acid-soluble spore protein), as well as alpha and beta, were monitored in these mutants containing a recombinant plasmid carrying the B. megaterium C protein gene. The only exception was a spo0H mutant which synthesized a small amount of C protein, but no alpha or beta.  相似文献   

8.
The Bacillus megaterium gene coding for small, acid-soluble spore protein (SASP) B was cloned and its nucleotide sequence was determined. The amino acid sequence predicted from the DNA sequence was identical to that determined previously for SASP B, with the exception of the amino-terminal methionine predicted from the gene sequence which is presumably removed posttranslationally and an asparagine residue predicted at position 21 which was originally identified as an aspartate residue. The mRNA encoded by the SASP B gene is synthesized for only a discrete period midway in sporulation, in parallel with mRNAs coding for other SASPs. The small size of the SASP B mRNA (365 nucleotides) indicated that the mRNA is monocistronic. The SASP B gene itself hybridized strongly to only one band in Southern blots of restriction enzyme digests of B. megaterium DNA, suggesting that the SASP B gene is not a member of a highly conserved multigene family, as is the case for other SASP genes.  相似文献   

9.
10.
As found previously with other Bacillus species, spores of B. stearothermophilus and "Thermoactinomyces thalpophilus" contained significant levels of small, acid-soluble spore proteins (SASP) which were rapidly degraded during spore germination and which reacted with antibodies raised against B. megaterium SASP. Genes coding for a B. stearothermophilus and a "T. thalpophilus" SASP as well as for two B. cereus SASP were cloned, their nucleotide sequences were determined, and the amino acid sequences of the SASP coded for were compared. Strikingly, all of the amino acid residues previously found to be conserved in this group of SASP both within and between two other Bacillus species (B. megaterium and B. subtilis) were also conserved in the SASP coded for by the B. cereus genes as well as those coded for by the genes from the more distantly related organisms B. stearothermophilus and "T. thalpophilus." This finding strongly suggests that there is significant selective pressure to conserve SASP primary sequence and thus that these proteins serve some function other than simply amino acid storage.  相似文献   

11.
Synthesis of acid-soluble spore proteins by Bacillus subtilis.   总被引:1,自引:1,他引:1       下载免费PDF全文
The major acid-soluble spore proteins (ASSPs) of Bacillus subtilis were detected by immunoprecipitation of radioactively labeled in vitro- and in vivo-synthesized proteins. ASSP synthesis in vivo began 2 h after the initiation of sporulation (t2) and reached its maximum rate at t7. This corresponded to the time of synthesis of mRNA that stimulated the maximum rate of ASSP synthesis in vitro. Under the set of conditions used in these experiments, protease synthesis began near t0, alkaline phosphatase synthesis began at about t2, and refractile spores were first observed between t7 and t8. In vivo- and in vitro-synthesized ASSPs comigrated in sodium dodecyl sulfate-polyacrylamide gels. Their molecular weights were 4,600 (alpha and beta) and 11,000 (gamma). The average half-life of the ASSP messages was 11 min when either rifampin (10 micrograms/ml) or actinomycin D (1 microgram/ml) was used to inhibit RNA synthesis.  相似文献   

12.
The protease that initiates rapid proteolysis during germination of Bacillus megaterium spores is synthesized during sporulation as a 46,000-molecular-weight polypeptide (P46) and is processed later in sporulation to a 41,000-molecular-weight polypeptide (P41), which is converted to a 40,000-molecular-weight polypeptide (P40) early in spore germination. P40 is known to be both tetrameric and enzymatically active. In this work, we show that P46 and P41 are both tetrameric, but that only P41 is enzymatically active. The identification of a zymogen form (P46) of this protease explains in part the regulation of the activity of this enzyme.  相似文献   

13.
14.
Small, acid-soluble proteins (SASP) of both the alpha/beta- and gamma-type were present in spores of Sporosarcina ureae and S. halophila, and three genes encoding alpha/beta-type SASP in these species have been cloned and sequenced. The amino acid sequences of the Sporosarcina alpha/beta-type SASP are extremely homologous to those of Bacillus SASP, further indicative of the close evolutionary relationship between these genera.  相似文献   

15.
Small, acid-soluble spore proteins SASP-alpha, SASP-beta, and SASP-gamma as well as a SASP-beta-lacZ gene fusion product were found only within the forespore compartment of sporulating Bacillus subtilis cells by using immunoelectron microscopy. The alpha/beta-type SASP were associated almost exclusively with the forespore nucleoid, while SASP-gamma was somewhat excluded from the nucleoid. These different locations of alpha/beta-type and gamma-type small, acid-soluble spore proteins within the forespore are consistent with the different roles for these two types of proteins in spore resistance to UV light.  相似文献   

16.
Degradation of small, acid-soluble spore proteins during germination of Bacillus subtilis spores is initiated by a sequence-specific protease called GPR. Western blot (immunoblot) analysis of either Bacillus megaterium or B. subtilis GPR expressed in B. subtilis showed that GPR is synthesized at about the third hour of sporulation in a precursor form and is processed to an approximately 2- to 5-kDa-smaller species 2 to 3 h later, at or slightly before the time of accumulation of dipicolinic acid by the forespore. This was found with both normal levels of expression of B. subtilis and B. megaterium GPR in B. subtilis, as well as when either protein was overexpressed up to 100-fold. The sporulation-specific processing of GPR was blocked in all spoIII, -IV, and -V mutants tested (none of which accumulated dipicolinic acid), but not in a spoVI mutant which accumulated dipicolinic acid. The amino-terminal sequences of the B. megaterium and B. subtilis GPR initially synthesized in sporulation were identical to those predicted from the coding genes' sequences. However, the processed form generated in sporulation lacked 15 (B. megaterium) or 16 (B. subtilis) amino-terminal residues. The amino acid sequence surrounding this proteolytic cleavage site was very homologous to the consensus sequence recognized and cleaved by GPR in its small, acid-soluble spore protein substrates. This observation, plus the efficient processing of overproduced GPR during sporulation, suggests that the GPR precursor may autoproteolyze itself during sporulation. During spore germination, the GPR from either species expressed in B. subtilis was further processed by removal of one additional amino-terminal amino acid (leucine), generating the mature protease which acts during spore germination.  相似文献   

17.
18.
Deamidation of one specific asparagine residue in an alpha/beta-type small, acid-soluble spore protein (SASP) of Bacillus subtilis took place readily in vitro (time for 50% deamidation [t(1/2)], approximately 1 h at 70 degrees C), and the deamidated SASP no longer bound to DNA effectively. However, DNA binding protected against this deamidation in vitro. A mutant alpha/beta-type SASP in which the reactive asparagine was changed to aspartate also failed to bind to DNA in vitro, and this protein did not restore UV radiation and heat resistance to spores lacking the majority of their alpha/beta-type SASP. When expressed in Escherichia coli, where it is bound to DNA, the alpha/beta-type SASP deamidated with a t(1/2) of 2 to 3 h at 95 degrees C. However, the alpha/beta-type SASP was extremely resistant to deamidation within spores (t(1/2), >50 h at 95 degrees C). A gamma-type SASP of B. subtilis also deamidated readily in vitro (t(1/2) for one net deamidation, approximately 1 h at 70 degrees C), but this protein (which is not associated with DNA) deamidated fairly readily in spores (t(1/2), approximately 1 h at 95 degrees C). Total spore core protein also deamidated in vivo, although the rate was two- to threefold slower than that of deamidation of total protein in heated vegetative cells. These data indicate that protein deamidation is slowed significantly in spores, presumably due to the spore's environment. However, alpha/beta-type SASP are even more strongly protected against deamidation in vivo, presumably by their binding to spore DNA. Thus, not only do alpha/beta-type SASP protect spore DNA from damage; DNA also protects alpha/beta-type SASP.  相似文献   

19.
The Bacillus subtilis gene (sspE) which codes for small acid-soluble spore protein gamma (SASP-gamma) was cloned, and its chromosomal location (65 degrees, linked to glpD) and nucleotide sequence were determined. The amino acid sequence of SASP-gamma is similar to that of SASP-B of Bacillus megaterium, but these sequences are not as highly conserved across species as are those of other SASPs. The SASP-gamma gene is transcribed only in sporulation in parallel with other SASP genes and gives a single mRNA that is approximately 340 nucleotides long. The results of hybridization of an sspE gene probe to Southern blots of B. subtilis DNA suggested that there is only a single gene coding for the SASP-gamma type of protein in B. subtilis. This was confirmed by introducing a deletion mutation into the cloned sspE gene and transferring the deletion into the B. subtilis chromosome, with concomitant loss of the wild-type gene. This sspE deletion strain sporulated well, but lacked the SASP-gamma type of protein.  相似文献   

20.
The nucleotide sequences of the single genes coding for the B-type small, acid-soluble spore proteins (SASP) of Bacillus cereus, B. stearothermophilus, and "Thermoactinomyces thalpophilus" were determined, and the amino acid sequences of all B-type SASP were compared. While this type of SASP showed significant sequence conservation around the two spore protease cleavage sites, alignment of these sequences required the introduction of gaps, and even then only 19 of the residues were conserved exactly in all five proteins. However, all five B-type SASP did contain a large (27 to 35-residue), rather well-conserved amino acid sequence repeat, and four of the five proteins had well-conserved regions of 14 to 17 amino acids which appeared three times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号