首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The attraction of the predatory mites, Typhlodromalus manihoti and Typhlodromalus aripo, to the host plant-spider mite complex, Manihot esculentaMononychellus tanajoa, was investigated with a Y-tube olfactometer. Factors examined included predator starvation period, several combinations of cassava leaf biomass and initial M. tanajoa infestations, M. tanajoa-damaged leaves with mites and/or their residues removed, M. tanajoa alone, and mechanically damaged cassava leaves. We found that females of T. manihoti and T. aripo were significantly attracted to M. tanajoa-infested cassava leaves when the predators were starved for 2, 6, or 10 h. Satiated T. aripo was significantly attracted to infested cassava leaves whereas satiated T. manihoti did not discriminate between infested and non-infested leaves. When a choice was given between either two or four leaves infested with 200 female M. tanajoa and an equivalent number of non-infested leaves, 2 h-starved T. manihoti and T. aripo were significantly attracted to each of the infested groups of cassava leaves. At a density of 12 female M. tanajoa per leaf on four leaves, 2 h-starved T. manihoti was still attracted to M. tanajoa-infested leaves whereas 2 h-starved T. aripo was not attracted. When a choice was given between non-infested cassava leaves and either infested leaves from which only M. tanajoa females had been removed, or infested leaves from which all M. tanajoa and their visible products (web, feces) had been wiped off, T. aripo preferred odors from both types of previously infested leaves. Typhlodromalus manihoti was only attracted to infested leaves from which the M. tanajoa females only had been removed. Finally, the two predators were not attracted to 400 female M. tanajoa on clean cotton wool or to mechanically wounded leaves. This supports the hypothesis that M. tanajoa damage induces volatile cues in cassava leaves that attract T. manihoti and T. aripo to M. tanajoa-infested leaves.  相似文献   

2.
Various foods associated with cassava were tested for their effect on the development, fecundity and longevity of Euseius fustis, the most common phytoseiid species found on cassava in Africa. Euseius fustis developed successfully to adulthood on the spider mite prey species Mononychellus tanajoa (Bondar) and Oligonychus gossypii (Zacher) and on pollen from maize, castor bean and cassava. Euseius fustis also completed development on water-diluted phloem exudate from cassava, diluted honeydew from the cassava mealybug and on various pollen and prey combinations. When reared on Tetranychus urticae Koch prey or free water only, E. fustis did not develop past the deutonymphal stage. All larvae held on clean leaf discs on water-soaked cotton died without moulting, suggesting that E. fustis must feed in order to moult to the nymphal stages. Diets of maize plus castor bean pollen and maize pollen plus M. tanajoa resulted in the highest rate of development, the highest fecundity and the greatest longevity. Castor bean pollen alone and maize pollen alone produced a higher fecundity and greater longevity than M. tanajoa tested alone. A colony of E. fustis reared continuously for seven generations on castor bean pollen produced nine times more adult females than a colony of E. fustis reared continuously on M. tanajoa. No negative effects on the development and fecundity of E. fustis were observed after seven generations were reared on pollen.  相似文献   

3.
The cassava green mite (CGM), Mononychellus tanajoa, a native of South America was accidentally introduced into Africa where it causes serious crop losses. The possibility of introducing classical biological agents from the native home of CGM into Africa was investigated. Thus, we conducted a series of laboratory assays of the native fungal pathogens, Neozygites tanajoae from Brazil and Neozygites floridana from Colombia and Brazil, and compared them with N. tanajoae isolates from Benin. Infectivity of both fungal species, was assayed against the twospotted spider mite, Tetranychus urticae, and against the red mite, Oligonychus gossypii. Pathogenicity against CGM and host range studies were conducted by transferring adult females of each mite species to leaf discs containing sporulated cadavers with a halo of conidia of each fungal isolate. All isolates caused some degree of infectivity to CGM. None of the isolates of N. floridana and N. tanajoae tested were pathogenic to O. gossypii, and only two isolates infected T. urticae. Most isolates from Brazil were highly virulent and infected only CGM. Sixteen N. tanajoae isolates caused more than 89% mortality and more than 62% of the CGM became mummified. A mummified CGM is characteristically a swollen, brown fungus-killed mite that has great potential to produce conidia. However, high mortality was not always associated with high mummification. The median mummification time ranged from 4.4 to 6.7 days. Five Brazilian isolates caused >75% mummification with a median mummification time <5 days. Isolates that cause high mummification in a short period of time would be more likely to cause epizootics and to establish in the new environment. Therefore, these isolates would be the best candidates for introduction to Africa.  相似文献   

4.
Diapause behaviou of two strains of Metaseiulus occidentalis (Nesbitt) was compared as part of a project to evaluate this predator as a control agent for Tetranychus urticae Koch on roses in greenhouses in Berkeley, California. One strain had a normal diapause and the other had been genetically selected for non-diapause. Predators in diapause sought shelters on a simple bean plant test system. Females lacking the ability to diapause and the normal strain under long photophases tended to disperse aerially from the bean plant systems, particularly when prey were scarce. M. occidentalis females with the capacity to diapause reared near the critical photophase (11.2h) at fluctuating temperatures of 17.5 to 24.5°C within a 24 h period were influenced by the availability of prey: if prey were lacking, predators were more likely to enter diapause than if prey were abundant.Starved females left the plant system, probably through aerial dispersal, and mated females dispersed more readily than males and virgin females under long daylengths. No differences in aerial dispersal tendency were observed at short photophases. Aerial dispersal of adult females occurred at air speeds of ca. 1.5 m/s.
Comportement lors de la diapause de souches génétiquement sélectionnées du prédateur Metaseiulus occidentalis (Acari; Phytoseiidae)
Résumé Au cours d'un programme destiné à évaluer la valeur du prédateur, Metaseiulus occidentalis Nesbitt pour lutter contre Tetranychus urticae Koch sur roses dans les serres de Berkeley (California) nous avons comparé chez deux souches le comportement lié à la diapause. Une souche a une diapause normale, l'autre a été sélectionnée génétiquement pour son absence de diapause. Les adultes avec diapause normale recherchent des abris sur un dispositif expérimental conçu à partir d'un pied de haricot. Les femelles perdant l'aptitude à la diapause ainsique celles de la souche normale soumise à une longue photophase ont tendance à se disperser par voie aérienne à partir du dispositif expérimental, surtout quand les proies sont rares.Les femelles de M. occidentalis aptes à la diapause élevées aux environs de la photophase critique (11.2h) avec des températures variant entre 17°5 et 24°5 pendant le nyctémère réagissent en fonction de la disponibilité en proies: quand les proies manquent, les prédateurs ont plus tendance à entrer en diapause que quand les proies sont abondantes.Avec une longue photopériode, les femelles à jeûn abandonnent le système expérimental, (probablement par dispersion aérienne) et les femelles fécondées se dispersent plus facilement que les mâles et les femelles vierges. Aucune différence dans la tendance à la dispersion aérienne n'a été observée aux courtes photophases. La dispersion aérienne des femelles adultes s'est produite à des vitesses de 1.5 m/sec.
  相似文献   

5.
Under attack by herbivores, plants produce a blend of “herbivore-induced plant volatiles (HIPV)” that help natural enemies of herbivores locating their prey, thereby helping plants to reduce damage from herbivory. The amount of HIPV emitted by plants increases with herbivore density and is positively correlated with the intensity of the olfactory response of natural enemies. In this study, we determined the effects of density or within-plant distribution of the herbivorous mite Mononychellus tanajoa on movement of the predatory mite Typhlodromalus aripo out of apices of cassava plants. Proportions of T. aripo that migrated out of apex, and distances traveled were significantly higher when M. tanajoa was further away from the apex—i.e. on middle or bottom leaves of cassava plants—than when present on top leaves, or absent from the plant. This supports previous field observations that T. aripo is not a sit-and-wait predator but uses HIPV to search and locate its prey within cassava plant.  相似文献   

6.
Using incorporated devices, Tetranychus urticae spider mites were rinsed from hydroponically-grown lima bean plants, collected, separated and blow-dried. This yielded a reliable and large volume of eggs and larvae, which were fed to Amblyseius womersleyi rearings on 15×5cm2 polyethylene arenas. Of several feeding regimes tested, daily feeding of 10mg T. urticae eggs and larvae resulted in the highest predator population levels. The best harvest period was between 15 and 27 days, when predator density exceeded 600 mites per arena. A preliminary automatic mass-rearing device was tested for A. womersleyi. This incorporated both rearing and harvesting procedures. A micro-feeder was developed to supply the required volume of spider mites and maize pollen (1:1 mixture) to the predators. A Bakelite rearing arena reduced the space requirements of a polyethylene arena, was more durable and an essential component in the automatic mass-rearing and harvesting. Mite harvesting is carried out through the use of a vacuum-head harvester. Supplements of (sterilized) spider mites, pollen, vermiculite and wheat bran are automatically added to the predators. The devices for harvesting, filling and packing are incorporated and synchronized and the entire system is controlled by a single slide-switch. The design and system can be expanded without changing the basic processes and program, for example to adopt it for other species of predaceous mites.  相似文献   

7.
In Africa, Typhlodromalus manihoti and T. aripo, two introduced predators of the cassava green mite Mononychellus tanajoa, occupy different parts of cassava foliage. In the present study, niche use by these two predators, as mediated by prey-induced infochemicals, was investigated. In response to prey feeding damage, cassava plant parts emit volatile blends, that attract phytoseiidae predators. When given a choice between old cassava leaves infested with M. tanajoa and either apices or young cassava leaves infested with M. tanajoa, T. aripo displayed a marked preference for odors emitted from either infested apices or infested young leaves over infested old leaves but showed no preference for odors from apices versus young leaves, all infested with M. tanajoa. Typhlodromalus manihoti did not discriminate between volatiles from the three infested cassava plant parts. Our data show that T. aripo uses differences in volatile blends released by infested cassava plant parts and restricts its fundamental niche to a realized niche, which enables coexistence with its competitor T. manihoti.  相似文献   

8.
Field surveys were conducted from 2004 to 2007 to determine the species composition and relative abundance of natural enemies associated with colonies of either the citrus red mite, Panonychus citri, or the two spotted spider mite, Tetranychus urticae, in Valencian citrus orchards (eastern Spain). Fourteen species were recorded, six phytoseiid mites and eight insect predators. Two of them are reported for the first time on citrus in Spain and two more are first reports as predators associated with T. urticae. The community of predators associated with T. urticae and P. citri was almost identical, and the Morisita–Horn index of similarity between both natural enemy complexes was close to one, suggesting that predators forage on both pest species. Quantifying the presence of many known spider mites predators in Valencian citrus orchards is an important first step towards spider mite control. A challenge for future studies will be to establish conservation and/or augmentation management strategies for these predators, especially to improve T. urticae biological control.  相似文献   

9.
The predatory mite Phytoseiulus macropilis is a potential biological control agent of the two-spotted spider mite (TSSM) Tetranychus urticae on strawberry plants. Its ability to control TSSM was recently assessed under laboratory conditions, but its ability to locate and control TSSM under greenhouse conditions has not been tested so far. We evaluated whether P. macropilis is able to control TSSM on strawberry plants and to locate strawberry plants infested with TSSM under greenhouse conditions. Additionally, we tested, in an olfactometer, whether odours play a role in prey-finding by P. macropilis. The predatory mite P. macropilis required about 20 days to achive reduction of the TSSM population on strawberry plants initially infested with 100 TSSM females per plant. TSSM-infested plants attract an average of 27.5 ± 1.0% of the predators recaptured per plant and uninfested plants attracted only 5.8 ± 1.0% per plant. The predatory mites were able to suppress TSSM populations on a single strawberry plant and were able to use odours from TSSM-infested strawberry plants to locate prey in both olfactometer and arena experiments. Hence, it is concluded that P. macropilis can locate and reduce TSSM population on strawberry plants under greenhouse conditions.  相似文献   

10.
Abstract

Studies on the life history and life table parameters of Neoseiulus cucumeris Oudemans (Acari: Phytoseiidae) were carried out under laboratory conditions of 25?±?1?°C and 65?±?5% RH; 30?±?1?°C and 60?±?5% RH; 35?±?1?°C and 55?±?5% RH. As prey, immature stages of tetranychid spider mite T. urticae Koch (Acari: Tetranychidae) and the moving stages of the Tomato Russet Mite A. lycopersici (Massee) (Acari: Eriophyideae) were selected. The predatory phytoseiid mite, Neoseiulus cucumeris (Oudemans) was able to develop successfully from egg to adult stage through the entire life history on both preys. The higher of different temperatures and relative humidities shortened the development and increased reproduction and prey consumption and vice versa. The maximum reproduction (3.91, and 3.09 eggs/♀/day) was recorded at 35?°C and 65% RH, while the minimum (2.12, and 1.90 eggs/♀/day) was at 25?±?1?°C and 55?±?5% RH. when N. cucumeris fed on A. lycopersici and T. urticae, respectively. The reproductive rate on eriophyid was significantly higher than previously recorded on tetranychid. Life table parameters indicated that feeding of phytoseiid mite N. cucumeris on tomato russet mite A. lycopersici led to the highest reproduction rate (rm?=?0.268, 0.232 and 0.211 females/female/day), while feeding on T.urticae gave the lowest reproduction rate (rm?=?0.159, 0.143 and 0.131) at 35?°C and 55% RH, 30?°C and 60% RH and 25?°C and 65% RH, respectively. The population of N. cucumeris multiplied (36.81, 28.71 and 20.47) and (24.60, 19.58 and 14.62 times) in a generation time of (20.10, 23.20 and 25.14) and (22.35, 25.36 and 27.79 days) when a predator fed on A. lycopersici and T. urticae at the same temperature above mentioned, respectively. These results suggest that the two mites, particularly A. lycopersici, proved to be suitable prey for N.cucumeris, as a facultative predator.  相似文献   

11.
The aims of this study were: (a) determine the prey stage preference of female Euseius hibisci (Chant) (Phytoseiidae) at constant densities of different stages of Tetranychus urticae Koch (Tetranychidae), (b) assess the functional response of the predator females to the varying densities of eggs, larvae, or protonymphs of T. urticae, and (c) estimate the functional response of E. hibisci when pollen of Ligustrum ovalifolium was present as well. We conducted experiments on excised pieces of strawberry leaf arenas (Fragaria ananassa) under laboratory conditions of 25 ± 2 °C, 60 ± 5% RH and 12 h photophase. Our results indicated that the predator consumed significantly more prey eggs than other prey stages. Consumption of prey deutonymphs and adults was so low that they were excluded from the non-choice functional response experiments. The functional response on all food items was of type II. The two parameters of the functional response were estimated for each prey type by means of the adjusted non-linear regression model. The highest estimated value a (instantaneous rate of discovery) and the lowest value of Th (handling time, including digestion) were found for the predator feeding on prey eggs, and a was lowest and Th highest when fed protonymphs. Using the jack-knife method, the values for the functional response parameters were estimated. The values of a and Th produced by the model were similar among all prey types except for the eggs, which were different. Using pollen simultaneously with prey larvae decreased the consumption of the latter over the full range of prey densities The suitability of this predator for biological control of T. urticae on strawberry is discussed.  相似文献   

12.
Microorganisms associated with the predatory mite Metaseiulus (=Typhlodromus or Galendromus) occidentalis (Nesbitt) and its prey, the two-spotted spider mite Tetranychus urticae (Koch), were assessed using a high-fidelity polymerase chain reaction (PCR) protocol and primers designed to identify Eubacteria, Archaeabacteria, iridoviruses, Helicosporidia, Cytophaga-like microorganisms, Wolbachia and its bacteriophage WO, fungi and yeast-like organisms. Sequences from four bacterial species related to Wolbachia (α-Proteobacteria), Cardinium, Bacteroidetes, and Enterobacter (γ-Proteobacteria) were obtained from M. occidentalis, and three sequences related to Wolbachia, Rickettsia, and Caulobacter (α-Proteobacteria) were obtained from T. urticae. No nucleotide differences were detected between the 16S rRNA, wspA or wspB Wolbachia sequences obtained from M. occidentalis and T. urticae, which suggest that horizontal transfer of Wolbachia could have occurred. Southern blot analyses of genomic DNA from both M. occidentalis and T. urticae using wspA probes were negative, indicating that this Wolbachia sequence is not integrated into the nuclear genome of either species. Two of the T. urticae colonies tested contained the WO bacteriophage, but none of the six M. occidentalis populations were infected. New M. occidentalis-specific forward and reverse 16S rRNA primers based on the Wolbachia, Cardinium, Bacteroidetes, and Enterobacter sequences obtained were designed and used to amplify PCR products from each of two laboratory and four field-collected samples of M. occidentalis females and eggs, indicating that these infections are widespread. Likewise, species-specific primers for T. urticae were designed for the Wolbachia, Rickettsia, and Caulobacter sequences obtained and used to evaluate T. urticae from strawberries, wine grapes, hops, almonds, and cherries from California, Washington, and Florida; all were positive for Wolbachia and Caulobacter but two of the six were negative for Rickettsia. None of the M. occidentalis colonies tested were positive for the microsporidium Oligosporidium occidentalis, which previously had been associated with a pathogenic condition in some of our laboratory colonies. The Gainesville colonies of M. occidentalis and T. urticae were negative for iridovirus, Archaeabacteria, fungi, Helicosporidia, and yeast-like organisms. So far, Wolbachia is the only symbiont that is shared by this predator and its prey.  相似文献   

13.
In this study, we present field and laboratory evidence on the preference of Iphiseiodes quadripilis (Banks) for grapefruit (Citrus paradisi Macfadyen) leaves compared with sweet orange (Citrus sinensis (L.) Osbeck) leaves. This preference was confirmed in four orchards whether leaf samples were taken from either border trees of contiguous grapefruit or sweet orange or interior row trees with both citrus species in adjacent rows. Iphiseiodes quadripilis was most abundant in grapefruit trees in spite of the greater abundance of the Texas citrus mite, Eutetranychus banksi (McGregor) (Acari: Tetranychidae) in sweet orange trees. Similar preference responses were observed in laboratory tests using a Y-tube olfactometer whether I. quadripilis were collected from sweet orange or grapefruit. Iphiseiodes quadripilis collected from grapefruit trees showed significant preference for grapefruit over sweet orange leaves in contact choice tests using an arena of alternating leaf strips (12 mm long × 2 mm wide) of sweet orange and grapefruit. However, I.␣quadripilis collected from sweet orange trees did not show preference for either grapefruit or sweet orange leaves. Based on these results, grapefruit leaves foster some unknown factor or factors that retain I. quadripilis in greater numbers compared with sweet orange leaves.  相似文献   

14.
We assessed the reproductive responses of adult female Iphiseius degenerans and Neoseiulus teke to increasing density of three stages of their prey, Mononychellus tanajoa, on cassava leaf discs under laboratory conditions. The oviposition rates increased with number of prey consumed per predator per day with a maximum of approximately two eggs per day for I. degenerans and four eggs per day for N. teke. The oviposition rate of N. teke was higher when consuming eggs than other prey stages. Neoseiulus teke was more efficient than I. degenerans in converting consumed prey into egg production. The data were adequately described by simple mathematical models.  相似文献   

15.
Neoseiulus californicus (McGregor) is a promising agent for successful Tetranychus urticae Koch control through conservation techniques, in strawberry crops in La Plata (Buenos Aires, Argentina). In prey–predator interaction, initial relative densities have an important effect on system dynamics. The economic threshold level (ETL) used for this pest in the present study was 50 active mites per leaflet. In our laboratory experiments, initial T. urticae to N. californicus ratio had a significant effect on the population abundance of T. urticae at a 7-day period. When pest/predator ratio was 5/1 (at initial pest densities from 5 to 15 females/leaflet) the final number of active T. urticae/leaflet was significantly lower than the ETL, while at 20 females/leaflet this number did not differ from the ETL. At 7.5/1 ratio, the final number of active T. urticae/leaflet, at initial pest densities from 5 to 15 females/leaflet, reached the ETL without surpassing it. At 10/1 and 15/1 ratios, pest densities exceeded the ETL only at 15 initial T. urticae/leaflet. Most greenhouse and field observations were consistent with the predictions of a graphical model based on experimental results. This predator was very effective in limiting pest densities at a 7-day period and within the range of pest–predator ratios and absolute densities used in this study. Conservation of N. californicus promoting favorable pest/predator ratios may result in early control of T. urticae.  相似文献   

16.
The functional responses of protonymph and adult female Iphiseius degenerans and Neoseiulus teke to increasing density of three stages of their prey, the cassava green mite (CGM), Mononychellus tanajoa, were studied on excised cassava leaf discs under laboratory conditions. The responses obtained were predominantly sigmoid type III curves with the highest plateau when both stages of I. degenerans and N. teke were preying on CGM eggs. In all cases, the predation rate of the former species exceeded that of the latter. The empirical data were fitted by four different models. From the models, the attack coefficient (a) and handling time (T h) were estimated. For a given predator stage (protonymph or adult female), the predator's attack coefficient declines and handling time increases as the prey gets larger. For a given prey stage, the predator's attack coefficient increases and handling time decreases as the predator stage becomes larger.  相似文献   

17.
Tetranychus urticae Koch (Acari: Tetranychidae) and Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) are major pests in greenhouse crops. Recently, Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) was shown to be an effective biological control agent of both pests. Therefore, the prey preference of A. swirskii was determined using immature stages of T. urticae and B. tabaci in three various treatments based on Manly's β preference index (β). These treatments consisted of immature stages of two prey species (egg, first and second instar nymphs) with densities 12:12, 6:6 and 3:3, respectively, and with 13 replicates. After 24?h starvation, same-aged females of A. swirskii were added to the leaf discs. All experiments were done on bean leaf discs in Petri dishes (8?cm in diameter) in laboratory conditions with 25?±?2°C, 70?±?5% relative humidity and the photoperiod of 16L:8D hours. Comparing the preference indices using t-tests indicates a significant preference of the predator on eggs (t?=?10.80, df?=?24, P?t?=?8.17, df?=?24, P?T. urticae than B. tabaci. Our findings suggest that developmental stages of prey have effect on the prey selection by A. swirskii.  相似文献   

18.
A photographic sampling method for mites on plants was evaluated using Tetranychus urticae and Phytoseiulus persimilis on pepper plants. It was found to be 92% accurate for T. urticae eggs and 98% accurate for P. persimilis eggs at densities up to 45 eggs per cm2 for T. urticae, and up to 3 eggs per cm2 for P. persimilis. The motiles of the two species were not confused, nor were they confused with exuviae or other matter.  相似文献   

19.
20.
Abstract In many areas of the world, spider mites are significant pests of sugarcane. Australia is currently fortunate in lacking the most destructive species, and usually suffers only sporadic damage. Herein, we provide a key to the genera of spider mites associated with sugarcane, review the most significant genus, Oligonychus Berlese, and provide a key to the species of grass-feeding Oligonychus in the Australasian region. The species O. araneum Davis, O. digitatus Davis, O. grypus Baker and Pritchard, O. orthius Rimando, and O. oryzae (Hirst) are redescribed, while the Australian O. zanclopes sp. n. Beard and Walter from sugarcane and rice, O. turbelli sp. n. Beard and Walter, O. ephamnus sp. n. Beard and Walter and O. festucolus sp. n. Beard and Walter from other grasses, are newly described. Previous records of O. grypus in Australia appear to be misidentifications of what is described here as the new species O. zanclopes .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号