首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C D'Silva 《FEBS letters》1986,202(2):240-244
A number of carboxyl-substituted S-blocked glutathiones have been shown to be competitive inhibitors of yeast glyoxalase I at 25 degrees C, pH 6.6. Amidation of the glycyl carboxyl group of S-(p-bromobenzyl)glutathione has no appreciable effect on binding whilst methylation reduces binding by 8.9-fold, indicating a steric constraint and the possible presence of a hydrogen bond in this region of the enzyme. Amidation of both carboxyl groups of S-(p-bromobenzyl)glutathione reduces binding significantly by 237-fold; this result agrees with electrostatic interaction of the Glu COO- group with a group located within the enzyme surface as opposed to the Gly COO- group, previously proposed.  相似文献   

2.
A number of S-substituted glutathiones and the corresponding N-substituted S-substituted analogues have been found to be linear competitive inhibitors of yeast glyoxalase I at 26 degrees C over the pH range 4.6-8.5. N-Acetylation of S-(p-bromobenzyl)glutathione weakens binding by 13.7-fold. N-benzoylation by 25.6-fold, N-trimethylacetylation by 53.3-fold and N-carbobenzoxylation by 7.8-fold, indicating a minor steric component in the binding at the N-site. The Ki-weakening effect of N-substitution of glutathione depends on the chemical nature of the S-substituent, indicating flexibility in the glutathione and/or glyoxalase I contributions to the binding site for glutathione derivatives. The effect of N-acylation on Ki is in accord with a charge interaction of the free enzyme with S-blocked glutathione in a region of reasonably high dielectric constant. There is a slight pH effect on Ki for S-(m-trifluoromethylbenzyl)glutathione but not for S-(p-bromobenzyl)glutathione.  相似文献   

3.
A series of twelve S-blocked and N,S-blocked glutathione derivatives has been studied as inhibitors of glyoxalase I [R)-S-lactoylglutathione methylglyoxal-lyase (isomerising), EC 4.4.1.5) from human erythrocytes. A number of new N,S-blocked glutathiones have been synthesised. Inhibition at pH 7.0, 25 degrees C was linear-competitive in all cases and the Ki values were interpreted in terms of the absence of a specific binding interaction for the N-site of the inhibitor and the absence of coupling between binding processes at N- and S-sites (the regions around the NH2 and HS groups, respectively, of GSH analogues bound to enzyme). These observations are in strong contrast to previous results with the yeast enzyme. Some Ki values were measured for yeast glyoxalase I. A special binding interaction of the phenyl groups with enzyme from both species was found for glutathione derivatives with N-acyl groups of structure -NH X CO X X X Y X Ph but not for -NH X COPh, where X and Y were variously -CH2-, -NH- and -O-. Studies were made of the range of stability of human erythrocyte glyoxalase I to pH. The pH profiles for the Ki values of S-p-bromobenzyl)glutathione and N-acetyl-S-(p-bromobenzyl)glutathione indicated no pH dependence for the latter and little, if any, for the former inhibitor. The mean Ki over the pH range 5-8.5 for S-(p-bromobenzyl)glutathione was 1.21 +/- 0.37 microM and for N-acetyl-S-(p-bromobenzyl)glutathione in the same pH range, Ki decreased from 1.45 +/- 0.26 microM to 0.88 +/- 0.11 M.  相似文献   

4.
Yeast glyoxalase I. Circular dichroic spectra and pH effects   总被引:1,自引:0,他引:1  
Large scale isolation and physicochemical characterisation of yeast glyoxalase I showed that this enzyme contained small amounts of carbohydrates. Circular dichroic spectra of the enzyme measured in the presence and absence of S-(p-bromobenzyl)glutathione indicated perturbation of a tyrosine on binding of this competitive inhibitor. Values of Ki for competitive inhibitors were pH invariant over the accessible pH range.  相似文献   

5.
Zn2+ in native glyoxalase I from human erythrocytes can be replaced by Cu2+, giving an inactive enzyme. Cu2+ was demonstrated to compete with the activating metals Zn2+ and Mn2+, indicating a common binding site on the enzyme for these metal ions. The electron paramagnetic resonance (EPR) spectra of 63Cu(II) glyoxalase I at 77 K and of its complexes with glutathione and some glutathione derivatives are characteristic of Cu2+ in an elongated octahedral coordination (g parallel = 2.34, g perpendicular = 2.09, and A parallel = 14.2 mT). The low-field bands of the free enzyme are asymmetric and become symmetrical upon addition of glutathione or S-(p-bromobenzyl)glutathione but not S-(D-lactoyl)glutathione. The results indicate the existence of two conformations of Cu(II) glyoxalase I, in agreement with the effects caused by these compounds on the protein fluorescence. The copper hyperfine line at low field in the EPR spectrum of the S-(p-bromobenzyl)glutathione complex of 63Cu(II) glyoxalase I shows a triplet structure, indicative of coupling to one nitrogen ligand in the equatorial plane. Similar results were obtained with the glutathione complex. By addition of the spectrum of the S-(p-bromobenzyl)glutathione complex and a spectrum corresponding to two nitrogen ligands with two different coupling constants, a good fit was obtained for the low-field region of the asymmetric spectrum of free 63Cu(II) glyoxalase I. The first two spectra are assumed to correspond to two separate conformational states of the enzyme. The results demonstrate that at least one nitrogen ligand is involved in the binding of Cu2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A number of porphyrin derivatives have been found to inhibit yeast glyoxalase I (EC 4.4.1.5) at 25 degrees C, including haemin, protoporphyrin IX, coproporphyrin III, haematoporphyrin, deuteroporphyrin as well as meso-(tetrasubstituted) porphines. Bilirubin and chlorophyllin were also inhibitory, but not cobalamin, adipic, pimelic or suberic acids. Whilst the Ki value for linear competitive inhibition by meso-tetra(4-methylpyridyl)porphine was pH-dependent, analogous Ki values for meso-tetra(4-carboxyphenyl)- and meso-tetra(4-sulphonatophenyl)porphines followed the Henderson-Hasselbalch equation with pKapp values of 7.10 and 6.50, respectively. Protoporphyrin showed similar behaviour (pKapp 7.06) with a deviation at lower pH. The haemin pH profile for Ki showed a maximum at approx. pH 6.5. The redox reaction between haemin and glutathione did not interfere in the inhibition studies. The Ki value for S-(p-bromobenzyl)glutathione was pH-independent. A detailed analysis of porphyrin binding modes was undertaken.  相似文献   

7.
Properties of native and aldehyde dextran-modified hyaluronidase (with surface amino group modification about 98%) were investigated. Optimal endoglycosidase activity of the native enzyme was observed at 0.15 M NaCl and pH 5.5 and electrostatic interactions influenced the enzyme activity. The inhibitory effect of heparin on hyaluronidase activity slightly differed at pH 5.5 (1.5-fold inhibition) and 7.5 (1.2-fold inhibition). Ionic strength of the reaction medium only slightly influenced the effect of heparin. Modification of hyaluronidase with dextran increased hydrophobic interactions and steric hindrance. Conjugation with dextran increased the resistance of hyaluronidase activity to denaturing agents (urea, guanidinium hydrobromide) and extended the optimal conditions for maximal endoglycosidase activity (pH 4.5-6.5, the range of NaCl concentration from 0.1 to 0.3 M). The conjugation also reduced electrostatic effects on the active site of hyaluronidase and efficacy of heparin inhibition. At pH 7.5 the enzyme was almost insensitive to heparin. The resistance of dextran-modified hyaluronidase to heparin points to approaches for subsequent studies of the heparin binding site of this enzyme and biomedical trial of the stabilized enzyme for the treatment of acute cardiovascular lesions.  相似文献   

8.
The inhibition of glyoxalase I enzyme to increase cellular levels of methylglyoxal has been developed as a rationale for the production of anticancer agents. Synthesis of a peptidomimetic analog of the previously prepared potent glyoxalase inhibitor, S-(p-bromobenzyl)glutathione (PBBG), was accomplished by inserting a urea linkage, NH-CO-NH, to replace the gamma-glutamyl peptide bond. Thus, the target compound, gamma-(L-gamma-azaglutamyl)-S-(p-bromobenzyl)-L-cysteinylglycine 6, was a potent inhibitor of glyoxalase I with almost no loss of activity when compared to PBBG. However, unlike PBBG, 6 was completely resistant to enzymatic degradation by kidney homogenate or by purified gamma-glutamyltranspeptidase enzyme.  相似文献   

9.
R M Katusz  B Bono  R F Colman 《Biochemistry》1992,31(37):8984-8990
Incubation of S-(4-bromo-2,3-dioxobutyl)glutathione (S-BDB-G), a reactive analogue of glutathione, with the 1-1 isoenzyme of rat liver glutathione S-transferase at pH 6.5 and 25 degrees C results in a time-dependent inactivation of the enzyme. k(obs) exhibits a nonlinear dependence on S-BDB-G from 50 to 1200 microM, with a kmax of 0.111 min-1 and KI = 185 microM. The addition of 5 mM S-hexylglutathione, a competitive inhibitor with respect to glutathione, gives almost complete protection against inactivation by S-BDB-G. About 1.2 mol of [3H]S-BDB-G/mol of enzyme subunit is incorporated when the enzyme is 85% inactivated, whereas 0.33 mol of reagent/mol of subunit is incorporated in the presence of S-hexylglutathione when the enzyme has lost only 17% of its original activity. Modified enzyme, prepared by incubating glutathione S-transferase with [3H]S-BDB-G in the absence or in the presence of S-hexylglutathione, was reduced with sodium borohydride, reacted with N-ethylmaleimide, and digested with alpha-chymotrypsin. Analysis of the chymotryptic digests, fractionated by reverse-phase high-performance liquid chromatography, revealed Cys111 as the amino acid whose reaction with S-BDB-G correlates with enzyme inactivation. It is concluded that Cys111 lies within or near the hydrophobic substrate binding site of glutathione S-transferase, isoenzyme 1-1.  相似文献   

10.
On- and off-velocity constants for NADH and NAD+ binding to liver alcohol dehydrogenase in the pH range 10-12 have been determined by stopped-flow kinetic methods. The results are consistent with previously reported equilibrium binding data and proposals attributing the main effects of pH on coenzyme binding to ionization of Lys-228 and zinc-bound water. Deprotonation of the group identified as Lys-228 decreases the NADH and NAD+ association rates by a factor exceeding 20 and has no detectable effect on the coenzyme dissociation rates in the examined pH range. Ionization of the group identified as zinc-bound water causes a 3-fold increase of the rate of NADH dissociation from the enzyme, and decreases the rate of NAD+ dissociation by a factor of 200. The NADH and NAD+ association rates are decreased by a factor of 30 and 5, respectively. The observed effects of pH can be rationalized in terms of electrostatic interactions of the ionizing groups with the charges present on the coenzyme molecules and lend support to the idea that binding of the coenzyme nicotinamide ring occurs subsequent to binding of the AMP portion of the coenzyme.  相似文献   

11.
Tyrosine-175 located in the active site of human glyoxalase II was replaced by phenylalanine in order to study the contribution of this residue to catalysis. The mutation had a marginal effect on the k(cat) value determined using S-D-lactoylglutathione as substrate. However, the Y175F mutant had an 8-fold higher K(m) value than the wild-type enzyme. The competitive inhibitor S-(N-hydroxy-N-bromophenylcarbamoyl)glutathione had a 30-fold higher K(i) value towards the mutant, than that of the wild-type. Pre-equilibrium fluorescence studies with the inhibitor showed that this was due to a significantly increased off-rate for the mutant enzyme. The phenolic hydroxyl group of tyrosine-175 is within hydrogen bonding distance of the amide nitrogen of the glycine in the glutathione moiety and the present study shows that this interaction makes a significant contribution to the binding of the active-site ligand.  相似文献   

12.
The binding of glutathione (GSH) to the tyrosine 7 to phenylalanine mutant of Schistosoma japonicum glutathione S-transferase (SjGST-Y7F) has been studied by isothermal titration calorimetry (ITC). At pH 6.5 and 25 °C this mutant shows a higher affinity for glutathione than wild type enzyme despite an almost complete loss of activity in the presence of 1-chloro-2,4-dinitrobenzene (CDNB) as second substrate. The enthalpy change upon binding of GSH is more negative for the mutant than for the wild type GST (SjGST). Changes in accessible solvent areas (ASA) have been calculated based on enthalpy and heat capacity changes. ASA values indicated the burial of apolar surfaces of protein and ligand upon binding. A more negative ΔCp value has been obtained for the mutant enzyme, suggesting a more hydrophobic interaction, as may be expected from the change of a tyrosine residue to phenylalanine.  相似文献   

13.
Harris BZ  Lau FW  Fujii N  Guy RK  Lim WA 《Biochemistry》2003,42(10):2797-2805
PDZ domains are protein-protein interaction modules that normally recognize short C-terminal peptides. The apparent requirement for a ligand with a free terminal carboxylate group has led to the proposal that electrostatic interactions with the terminus play a significant role in recognition. However, this model has been called into question by the more recent finding that PDZ domains can recognize some internal peptide motifs that occur within a specific secondary structure context. Although these motifs bind at the same interface, they lack a terminal charge. Here we have investigated the role of electrostatics in PDZ-mediated recognition in the mouse alpha1-syntrophin PDZ domain by examining the salt dependence of binding to both terminal and internal ligands and the effects of mutating a conserved basic residue previously proposed to play a role in electrostatic recognition. These studies indicate that direct electrostatic interactions with the peptide terminus do not play a significant energetic role in binding. Additional chemical modification studies of the peptide terminus support a model in which steric and hydrogen bonding complementarity play a primary role in recognition specificity. Peptides with a free carboxy terminus, or presented within a specific structural context, can satisfy these requirements.  相似文献   

14.
The tight binding of Meisenheimer intermediate with octopus digestive gland glutathione transferase was analyzed with 1,3,5-trinitrobenzene, which forms a trapped Meisenheimer complex with glutathione because there is no leaving group at the ipso carbon. By steady-state enzyme kinetic analysis, an inhibition constant of 1.89 ± 0.17 M was found for the transient formed, S-(2,4,6-trinitrophenyl) glutathione. The above inhibition constant is 407-fold smaller than the K m value for the substrate (2,4-dinitrochlorobenzene). Thus, S-(2,4,6-trinitrophenyl) glutathione is considered to be a transition-state analog. The tight binding of this inhibitor to the enzyme provides an explanation for the involvement of the biological binding effect on the rate enhancement in the glutathione transferase-catalyzed SNAr mechanism.  相似文献   

15.
S M Dunn  T M Lanigan  E E Howell 《Biochemistry》1990,29(37):8569-8576
In the absence of ligands, dihydrofolate reductase from Escherichia coli exists in at least two interconvertible conformations, only one of which binds NADPH with high affinity. This equilibrium is pH dependent, involving an ionizable group of the enzyme (pK approximately 5.5), and the proportion of the NADPH-binding conformer increases from 42% at pH 5 to 65% at pH 8. The role of specific amino acids in enzyme conformation has been investigated by studying the kinetics of NADPH binding to three dihydrofolate reductase mutants: (i) a mutant in which Asp-27, a residue that is directly involved in the binding of folates and antifolates but not NADPH, has been replaced by a serine, (ii) a mutant in which Phe-137 on the exterior of the molecule and distant from the binding sites has been replaced by a serine, and (iii) a mutant in which both Asp-27 and Phe-137 have been replaced by serines. Mutation of the Asp-27 residue reduces the affinity for NADPH by approximately 7-fold. Kinetic measurements have suggested that this is due mainly to an increase in the rate of dissociation of the initial complex and a slight shift in the enzyme equilibrium to favor the nonbinding conformation. The pH dependence of the conformer equilibrium is also shifted by approximately one pH unit to higher pH (pK approximately 6.5). In addition, the pH profile suggests the involvement of a second ionizable group having a pK of about 8 since, above pH 7, the proportion of the NADPH-binding form decreases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Summary Endo-xylanase from T. viride has been purified 4.2 fold by precipitation with a commercially available enteric polymer Eudragit S-100. Electrophoretic analysis also indicated removal of contaminant proteins. The enzyme could be recovered in more than 89% yield. The binding of the enzyme to the polymer was predominantly by electrostatic interaction.  相似文献   

17.
Cytosolic protein-O-carboxylmethyltransferase was purified more than 4,000-fold in specific activity and membrane-associated protein-O-carboxylmethyltransferase carboxymethylase about 900-fold from chicken erythrocytes by use of a combination of affinity chromatography on immobilized S-adenosyl-L-homocysteine and gel filtration on Sephacryl S-200 (Pharmacia), together with 3-((3-cholamidopropyl)-dimethylammonio)-1-propane-sulfonate as a detergent to solubilize the membrane-associated enzyme. The two enzymes were characterized by examining the dependence of their activity on pH and on concentration of S-adenosyl-L-methionine using fetuin as an exogenous methyl-acceptor substrate, and were found to differ somewhat. The cytosolic enzyme had a pH optimum of 6.0 with an apparent Km value of 2.1 microM for S-adenosyl-L-methionine, whereas corresponding values for the membrane-associated enzyme were 6.5 and 0.71 microM. This report deals with the biochemical differences between purified cytosolic and membrane-associated protein carboxymethylase from the same cell source.  相似文献   

18.
The effects of pH and temperature on Michaelis constant (Km) and maximum velocity (Vmax.) and of NaCl on the activity of the high-molecular-weight beta-glucosidase (beta-D-glucoside glucohydrolase EC 3.2.1.21) from cultures of Botryodiplodia theobromae Pat. have been studied. 2. Donor binding and inhibition of activity by glucose were dependent on the ionization of a group (pK 6.0) that appeared to be an imidazole group. 3. Catalytic activity and the stimulation of activity by glycerol were dependent on the ionization of two groups, which appeared to be a carboxy group and an imidazole group. 4. The Arrhenius activation energy (Ea) calculated from results obtained at pH 4.0 and 5.0 was about 45--46kJ.mol-1. 5. The enthalpies (delta H0) calculated from results obtained at pH 4.0 and 5.0 were similar (about -4kJ.mol-1), whereas at pH 6.5 the value was about -33kJ.mol-1. 6. The entropies (delta S0) calculated from these results at 37 degrees C were -21, -22 and -118J.K-1.mol-1 at pH 4.0, 5.0 and 6.5 respectively. A low concentration of NaCl (16.6 mM) stimulated enzymic activity and decreased the Km for the donor, whereas high concentrations (up to 500 mM) inhibited enzymic activity, increased the Km and had no effect on Vmax. 8. Plots of initial velocity data obtained in the presence of dioxan as 1/v against the ratio of the molar concentration of dioxan to that of water were linear. 9. The results are discussed in terms of the enzyme mechanism.  相似文献   

19.
Incubation of S-(4-bromo-2,3-dioxobutyl)glutathione (S-BDB-G), a reactive analogue of glutathione, with the 3-3 isoenzyme of rat liver glutathione S-transferase at pH 6.5 and 25 degrees C results in a time-dependent inactivation of the enzyme. The kobs exhibits a nonlinear dependence on S-BDB-G concentration from 50 to 900 microM, with a kmax of 0.073 min-1 and KI = 120 microM. The addition of 5 mM S-hexylglutathione, a competitive inhibitor with respect to glutathione, completely protects against inactivation by S-BDB-G. About 2.0 mol of [3H]S-BDB-G/mol of enzyme subunit is incorporated concomitant with 100% inactivation, whereas only 0.96 mol of reagent/mol subunit is incorporated in the presence of S-hexylglutathione when activity is fully retained. Modified enzyme, prepared by incubating glutathione S-transferase with [3H]S-BDB-G in the absence or in the presence of S-hexylglutathione, was reduced with NaBH4, reacted with N-ethylmaleimide, and digested with trypsin. Analysis of the tryptic digests, fractionated by reverse-phase high-performance liquid chromatography, revealed Tyr115 as the amino acid whose reaction with S-BDB-G correlates with inactivation. Examination of the stability of S-(4-bromo-2,3-dioxobutyl)glutathione and modified enzyme in the absence and presence of dithiothreitol and under acidic conditions suggests that for stable linkage to peptides, the carbonyl moieties of the reagent should be reduced immediately after modification of a protein. Comparison of results from the 4-4 and 3-3 isoenzymes of rat liver glutathione S-transferase (both of the mu gene class) indicates: the 4-4 isoenzyme exhibits a greater affinity for S-BDB-G; Cys86 is labeled by [3H]S-BDB-G in both isoenzymes but is nonessential for activity; in the 3-3 isoenzyme, Cys86 is more accessible to S-BDB-G; and Tyr115 is an important residue in the hydrophobic binding site of both enzymes.  相似文献   

20.
The nature of the binding determinants used in the interaction of glutathione-based derivatives and bovine liver glyoxalase II (S-(2-hydroxyacyl)glutathione hydrolase, EC 3.1.2.6) has been investigated. Linear competitive inhibition was observed for S-blocked and S,N-blocked glutathiones with bovine liver glyoxalase II (molecular weight 22 500 by sodium dodecyl sulphate polyacrylamide gel electrophoresis; pI = 7.48 by analytical isoelectric focussing). There is a significant hydrophobic region on the enzyme to bind substituents around the sulphydryl-derived moiety of the substrate--a hydrophobic S-site. However, there is no evidence for binding of the N-site of the substrate (or inhibitor) to glyoxalase II. In contrast to glyoxalase I, there is no linkage between binding forces used at the S- and N-sites. Binding of S,N-dicarbobenzoxyglutathione is pH-dependent, showing dependence on an ionisation with pKapp approximately equal to 7.2 (binding more tightly at higher pH), as is the kcat value (pKapp approximately equal to 7.8) for S-D-lactoylglutathione.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号