首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in gene/protein expression markedly outlast the transient changes in behavior evoked by a single dose of a psychostimulant. These changes in gene expression are thought to underlie and/or trigger enduring changes in neuroplasticity that lead to drug addiction. We used cDNA arrays to gain a more complete picture of changes in striatal gene expression 1 and 3 h after an acute injection of amphetamine. Consistent, reliable gene expression changes were detected when criteria of at least a 1.5-fold difference and three replicate hybridizations using independent samples were performed. Using these criteria, the mRNA for three immediate early genes (IEGs), coding for activity-regulated cytoskeletal-associated protein (Arc), nerve growth factor-induced protein A (NGFI-A; early growth response protein 1) and nerve growth factor-induced protein B (NGFI-B), were upregulated 1 and 3 h after amphetamine as previously described. Novel genes, RL/IF-1 (coding for I kappa B alpha chain) and serum/glucocorticoid-regulated serine/threonine protein kinase (SGK) also were increased throughout the striatum, at 1 but not 3 h. Conversely, amphetamine increased the mRNA coding for the secretogranin II precursor (chromogranin C) only at the 3 h time point when a specific decrease in regulator of G-protein signaling 4 (RGS4) mRNA was also observed. Gene changes and unique patterns of expression were verified by in situ hybridization, providing valuable information about changes in gene expression in response to acute amphetamine.  相似文献   

2.
3.
Mu opioid receptors are densely expressed in the patch compartment of striatum and contribute to methamphetamine-induced patch-enhanced gene expression and stereotypy. To further elucidate the role of mu opioid receptor activation in these phenomena, we examined whether activation of mu opioid receptors would enhance methamphetamine-induced stereotypy and prodynorphin, c-fos, arc and zif/268 expression in the patch and/or matrix compartments of striatum, as well as the impact of mu opioid receptor activation on the relationship between patch-enhanced gene expression and stereotypy. Male Sprague-Dawley rats were intrastriatally infused with d-Ala(2)-N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO; 1?μg/μL), treated with methamphetamine (0.5?mg/kg) and killed at 45?min or 2?h later. DAMGO augmented methamphetamine-induced zif/268 mRNA expression in the patch and matrix compartments, while prodynorphin expression was increased in the dorsolateral patch compartment. DAMGO pre-treatment did not affect methamphetamine-induced arc and c-fos expression. DAMGO enhanced methamphetamine-induced stereotypy and resulted in greater patch versus matrix expression of prodynorphin in the dorsolateral striatum, leading to a negative correlation between the two. These findings indicate that mu opioid receptors contribute to methamphetamine-induced stereotypy, but can differentially influence the genomic responses to methamphetamine. These data also suggest that prodynorphin may offset the overstimulation of striatal neurons by methamphetamine.  相似文献   

4.
In general, administration of methamphetamine and cocaine alters preprodynorphin and preproenkephalin mRNA levels in striatum. However, no study has directly compared the effects of these stimulants on opioid peptides in striatum. This study used in situ hybridization to compare directly the effects of cocaine and methamphetamine on preprodynorphin and preproenkephalin mRNAs in distinct striatal regions. Male Sprague-Dawley rats received a single administration of 15 mg/kg methamphetamine or 30 mg/kg cocaine and were killed 30 min or 3 h later. Methamphetamine and cocaine differentially affected preprodynorphin mRNA in striatum after 3 h. Densitometric analysis of film autoradiograms revealed that cocaine, but not methamphetamine, significantly increased preprodynorphin. This effect was seen throughout rostral striatum and dorsally in caudal striatum. However, specific analysis of "patches" in which preprodynorphin expression is high revealed a significantly greater effect of methamphetamine versus cocaine. In contrast, both cocaine and methamphetamine had similar effects on preproenkephalin mRNA, decreasing levels after 30 min in rostral striatum and in the core of nucleus accumbens. These data suggest that methamphetamine and cocaine have distinct postsynaptic consequences on striatal neurons.  相似文献   

5.
The role of the GABA(A) receptor beta3 subunit in determining acute cocaine sensitivity and behavioral sensitization to repeated cocaine was measured in mice missing both (-/-), one (+/-), or neither (+/+) allele of the beta3 gene. Locomotor stimulation induced by one cocaine injection (20 mg/kg, i.p.) was found to be greater in -/- mice compared with +/+ mice, whereas cocaine-induced behaviors were intermediate in +/- mice. Amphetamine did not cause greater locomotor responses in -/- mice, suggesting that the increased sensitivity of -/- mice to cocaine does not generalize to other psychomotor stimulants. GABA-stimulated chloride uptake was 51% lower in striatum of -/- mice compared with +/+ mice, but only 27% lower in cortex. After 14 daily cocaine injections, the behavioral response to cocaine was increased in +/+ and +/- mice, but was not increased further in -/- mice. Additionally, repeated cocaine exposure decreased striatal GABA(A) receptor function in +/+ and +/- mice. In -/- mice, GABA(A) receptor function was not decreased any further by repeated cocaine injections. Thus, alterations in the beta3 subunit may be responsible for determining the behavioral responses induced by acute and repeated cocaine treatment, as well as mediating the neurochemical adaptation that occurs during sensitization to repeated cocaine.  相似文献   

6.
Glutamate receptor activation participates in mediation of neurotoxic effects in the striatum induced by the psychomotor stimulant amphetamine. The effects of the non-competitive NMDA receptor antagonist dizocilpine (MK-801) on amphetamine-induced toxicity and formation of nitric oxide (NO) in both striatum and cortex and on induced transmitter release in the nucleus accumbens were investigated. Repeated, systemic application of amphetamine elevated striatal and cortical lipid peroxidation and NO production. Moreover, amphetamine caused an immediate release of acetylcholine and aspartate and a delayed release of GABA in the nucleus accumbens. Surprisingly, glutamate release was not affected. Dizocilpine abolished the amphetamine-induced lipid peroxidation and NO production in striatum and cortex and diminished the elevation of neurotransmitter release. These findings suggest that amphetamine evokes neurotoxic effects in both striatal and cortical brain areas that are prevented by inhibiting NMDA receptor activation. The amphetamine-induced acetylcholine, aspartate and GABA release in the nucleus accumbens is also mediated through NMDA receptor-dependent mechanisms. Interestingly, the enhanced aspartate release might contribute to NMDA receptor activation in the nucleus accumbens, while glutamate does not seem to mediate amphetamine-evoked transmitter release in this striatal brain area.  相似文献   

7.
The behavioral effects of psychomotor stimulants such as amphetamine (AMPH) arise from their ability to elicit increases in extracellular dopamine (DA). These AMPH-induced increases are achieved by DA transporter (DAT)-mediated transmitter efflux. Recently, we have shown that AMPH self-administration is reduced in rats that have been depleted of insulin with the diabetogenic agent streptozotocin (STZ). In vitro studies suggest that hypoinsulinemia may regulate the actions of AMPH by inhibiting the insulin downstream effectors phosphotidylinositol 3-kinase (PI3K) and protein kinase B (PKB, or Akt), which we have previously shown are able to fine-tune DAT cell-surface expression. Here, we demonstrate that striatal Akt function, as well as DAT cell-surface expression, are significantly reduced by STZ. In addition, our data show that the release of DA, determined by high-speed chronoamperometry (HSCA) in the striatum, in response to AMPH, is severely impaired in these insulin-deficient rats. Importantly, selective inhibition of PI3K with LY294002 within the striatum results in a profound reduction in the subsequent potential for AMPH to evoke DA efflux. Consistent with our biochemical and in vivo electrochemical data, findings from functional magnetic resonance imaging experiments reveal that the ability of AMPH to elicit positive blood oxygen level–dependent signal changes in the striatum is significantly blunted in STZ-treated rats. Finally, local infusion of insulin into the striatum of STZ-treated animals significantly recovers the ability of AMPH to stimulate DA release as measured by high-speed chronoamperometry. The present studies establish that PI3K signaling regulates the neurochemical actions of AMPH-like psychomotor stimulants. These data suggest that insulin signaling pathways may represent a novel mechanism for regulating DA transmission, one which may be targeted for the treatment of AMPH abuse and potentially other dopaminergic disorders.  相似文献   

8.
1. With respect to the mesostriatal projection, the mesencephalon is composed of two dopaminergic (DA) cell populations, called dorsal tier and ventral tier. Strong evidence suggests differences in both the spatial and the temporal sequence of the innervation of the striatum between the two groups, with the ventral tier neurons innervating striatal patches prenatally and dorsal tier cells innervating striatal matrix postnatally. 2. Using in situ hybridization, we have examined the expression of the gene coding for tyrosine hydroxylase (TH) in mesencephalic DA neurons with respect to their postnatal development. Two ontogenic patterns of expression were observed: (a) dorsal tier neurons of the medial mesencephalon exhibited a sharp increase in expression beginning after birth, peaking on day 14, then decreasing and, finally, stabilizing; and (b) ventral tier neurons and dorsal tier cells from the lateral and the medial-dorsal mesencephalon showed only a slight increase in TH mRNA, reaching a plateau at P10. 3. The time course of the observed increase in TH gene expression in the first group, generally parallels the innervation of their target cells in the striatal matrix, suggesting that TH gene expression in these cells may be influenced by their postsynaptic cells or by the innervation process.  相似文献   

9.
Non-contingent experimenter-applied stimulation (nEAS) to the ventral mesencephalon, unlike contingent intracranial self-stimulation (ICSS), elicits high rates of general locomotion. This locomotion may be due to the nature of the presentation of stimulation, in that nEAS is non-contingent, while ICSS depends on a specific and focused response (e.g., bar pressing). Psychomotor stimulants also elicit high amounts of general locomotion, with the locomotion attributed to increased dopamine release. Interestingly, dopamine release decreases or is absent with repeated ICSS, but not nEAS. This suggests that the locomotion elicited by nEAS may be the result of DA release similar to that observed with psychomotor stimulants. To determine the relationship between locomotion induced by nEAS and psychomotor stimulants, locomotion elicited by nEAS was directly compared to that produced by cocaine, a psychomotor stimulant and indirect DA agonist. Six groups of rats were examined: (1) DA+ group: rats were implanted with a stimulating electrode in the ventral mesencephalon and activation of DA neurons was verified during surgery by monitoring DA release in the striatum; (2) DA- group: rats were also implanted with stimulating electrodes, but the location in the ventral mesencephalon did not elicit DA release; (3) 10-mg/kg cocaine group: rats were exposed to a low dose (10 mg/kg) of cocaine; (4) 40-mg/kg cocaine group: rats were exposed to a high dose (40 mg/kg) of cocaine; (5) saline group: rats were injected with saline; and (6) naive group: rats received no treatment. The topography of behavior was assessed in all rats during four periods: a pre-treatment baseline, treatment, early post-treatment, and a late post-treatment end point. The results suggest that locomotion elicited by nEAS was stereotypic, dependent upon DA release and similar, but not identical, to psychomotor stimulant-induced locomotion.  相似文献   

10.
Amphetamine (AMPH) and cocaine are indirect dopamine agonists that activate multiple signaling cascades in the striatum. Each cascade has a different subcellular location and duration of action that depend on the strength of the drug stimulus. In addition to activating D1 dopamine-Gs-coupled-protein kinase A signaling, acute psychostimulant administration activates extracellular-regulated kinase transiently in striatal cells; conversely, inhibition of extracellular-regulated kinase phosphorylation decreases the ability of psychostimulants to elevate locomotor behavior and opioid peptide gene expression. Moreover, a drug challenge in rats with a drug history augments and prolongs striatal extracellular-regulated kinase phosphorylation, possibly contributing to behavioral sensitization. In contrast, AMPH activates phosphoinositide-3 kinase substrates, like protein kinase B/Akt, only in the nuclei of striatal cells but this transient increase induced by AMPH is followed by a delayed decrease in protein kinase B/Akt phosphorylation whether or not the rats have a drug history, suggesting that the phosphoinositide-3 kinase pathway is not essential for AMPH-induced behavioral sensitization. Chronic AMPH or cocaine also alters the regulation of inhibitory G protein-coupled receptors in the striatum, as evident by a prolonged decrease in the level of regulator of G protein signaling 4 after non-contingent or contingent (self-administered) drug exposure. This decrease is exacerbated in behaviorally sensitized rats and reversed by re-exposure to a cocaine-paired environment. A decrease in regulator of G protein signaling 4 levels may weaken its interactions with metabotropic glutamate receptor 5, Galphaq, and phospholipase C beta that may enhance drug-induced signaling. Alteration of these protein-protein interactions suggests that the striatum responds to psychostimulants with a complex molecular repertoire that both modulates psychomotor effects and leads to long-term neuroadaptations.  相似文献   

11.
D K Pitts  J Marwah 《Life sciences》1988,42(9):949-968
Psychomotor stimulants (e.g. cocaine and amphetamine) and many antidepressants are believed to elicit their psychotropic actions by interacting primarily with central monoaminergic neurons. The acute central neuronal effects of amphetamine and antidepressants have been extensively investigated in rats utilizing extracellular single unit electrophysiological and microiontophoretic techniques in vivo. In recent years the chronic effects of these compounds on the above neuronal systems have also been reported. Such investigations have proliferated because of the realization that the mechanisms underlying the psychotomimetic effects (e.g. amphetamine and cocaine) and mood elevation (i.e. antidepressants) observed with the administration of these drugs are more accurately reflected in chronic studies. For many years it has been assumed that cocaine and amphetamine produce very similar if not identical psychotropic effects through their actions on central monoaminergic neurotransmission. In terms of effects on single monoaminergic neurons, this assumption had gone by untested until two years ago, when the first report of the electrophysiological effects of cocaine on central monoaminergic (locus ceruleus) neurons appeared in the literature (61). This review discusses recent electrophysiological studies with cocaine at the level of single identified monoaminergic neurons and compares such data with that previously reported for amphetamine and antidepressants. In addition to identifying some of the similarities and differences between these compounds, this review also highlights some of the gaps in our knowledge regarding the effects of these drugs on central monoaminergic neurotransmission.  相似文献   

12.
One month (but not 1–3 days) after intermittent morphine administration, the hyperresponsiveness of rats toward the locomotor effects of morphine and amphetamine was associated with an increase in dopamine (DA) D-1 receptor-stimulated adenylyl cyclase activity and enhanced steady state levels of preprodynorphin gene expression in slices of the caudate/putamen and nucleus accumbens. Such an enduring increase in postsynaptic D-1 receptor efficacy also occurred in cultured γ-aminobutyric acid (GABA) neurons of the striatum obtained from rats prenatally treated with morphine. Interestingly, in vitro glucocorticoid receptor activation in these cultured striatal neurons by corticosterone potentiated this neuroadaptive effect of prior in vivo morphine exposure. Since activation of glucocorticoid receptors by corticosterone did not affect D-1 receptor functioning in cultured neurons of saline-pretreated rats, prior intermittent exposure to morphine (somehow) appears to induce a long-lasting state of corticosterone hyperresponsiveness in striatal neurons. Therefore, DA-sensitive striatal GABA neurons may represent common neuronal substrates acted upon by morphine and corticosterone. We hypothesize that the delayed occurrence of these long-lasting morphine-induced neuroadaptive effects in GABA/dynorphin neurons of the striatum is involved in the enduring nature of behavioral sensitization to drugs of abuse and cross-sensitization to stressors. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

13.
Administration of amphetamine overstimulates medium spiny neurons (MSNs) by releasing dopamine and glutamate from afferents in the striatum. However, these afferents also release brain-derived neurotrophic factor (BDNF) that protects striatal MSNs from overstimulation. Intriguingly, all three neurochemicals increase opioid gene expression in MSNs. In contrast, striatal opioid expression is less in naive BDNF heterozygous (BDNF(+/-)) vs. wild-type (WT) mice. This study was designed to determine whether partial genetic depletion of BDNF influences the behavioral and molecular response to an acute amphetamine injection. An acute injection of amphetamine [5 mg/kg, intraperitoneal (i.p.)] or saline was administered to WT and BDNF(+/-) mice. WT and BDNF(+/-) mice exhibited similar locomotor activity during habituation, whereas BDNF(+/-) mice exhibited more prolonged locomotor activation during the third hour after injection of amphetamine. Three hours after amphetamine injection, there was an increase of preprodynorphin mRNA in the caudate putamen and nucleus accumbens (Acb) and dopamine D(3) receptor mRNA levels were increased in the Acb of BDNF(+/-) and WT mice. Striatal/cortical trkB and BDNF, and mesencephalic tyrosine hydroxylase mRNA levels were only increased in WT mice. These results indicate that BDNF modifies the locomotor responses of mice to acute amphetamine and differentially regulates amphetamine-induced gene expression.  相似文献   

14.
Mines MA  Jope RS 《Cellular signalling》2012,24(7):1398-1405
Acute amphetamine administration activates glycogen synthase kinase-3 (GSK3) by reducing its inhibitory serine-phosphorylation in mouse striatum and cerebral cortex. This results from Akt inactivation and is required for certain behavioral effects of amphetamine, such as increased locomotor activity. Here we tested if regulation of Akt and GSK3 was similarly affected by longer-term administration of amphetamine, as well as of methylphenidate, since each of these is administered chronically in patients with attention deficit hyperactivity disorder (ADHD). Akt is activated by post-translational phosphorylation on Thr308, and modulated by Ser473 phosphorylation, whereas phosphorylation on Ser21/9 inhibits the two GSK3 isoforms, GSK3α and GSK3β. After eight days of amphetamine or methylphenidate treatment, striatal Akt and GSK3 were dephosphorylated similar to reported changes after acute amphetamine treatment. Oppositely, in the cerebral cortex and hippocampus Akt and GSK3 phosphorylation increased after eight days of amphetamine or methylphenidate treatment. These opposite brain region changes in Akt and GSK3 phosphorylation matched opposite changes in the association of Akt with β-arrestin and GSK3, which after eight days of amphetamine treatment were increased in the striatum and decreased in the cerebral cortex. Thus, whereas the acute dephosphorylating effect of stimulants on Akt and GSK3 in the striatum was maintained, the response switched in the cerebral cortex after eight days of amphetamine or methylphenidate treatment to cause increased phosphorylation of Akt and GSK3. These results demonstrate that prolonged administration of stimulants causes brain region-selective differences in the regulation of Akt and GSK3.  相似文献   

15.
16.

Background

Administration of psychomotor stimulants like amphetamine facilitates behavior in the presence of incentive distal stimuli, which have acquired the motivational properties of primary rewards through associative learning. This facilitation appears to be mediated by the mesolimbic dopamine system, which may also be involved in facilitating behavior in the presence of distal stimuli that have not been previously paired with primary rewards. However, it is unclear whether psychomotor stimulants facilitate behavioral interaction with unconditioned distal stimuli.

Principal Findings

We found that noncontingent administration of amphetamine into subregions of the rat ventral striatum, particularly in the vicinity of the medial olfactory tubercle, facilitates lever pressing followed by visual signals that had not been paired with primary rewards. Noncontingent administration of amphetamine failed to facilitate lever pressing when it was followed by either tones or delayed presentation or absence of visual signals, suggesting that visual signals are key for enhanced behavioral interaction. Systemic administration of amphetamine markedly increased locomotor activity, but did not necessarily increase lever pressing rewarded by visual signals, suggesting that lever pressing is not a byproduct of heightened locomotor activity. Lever pressing facilitated by amphetamine was reduced by co-administration of the dopamine receptor antagonists SCH 23390 (D1 selective) or sulpiride (D2 selective).

Conclusions

Our results suggest that amphetamine administration into the ventral striatum, particularly in the vicinity of the medial olfactory tubercle, activates dopaminergic mechanisms that strongly enhance behavioral interaction with unconditioned visual stimuli.  相似文献   

17.
18.
Glycogen synthase kinase 3β (GSK3β), which is abundantly present in the brain, is known to contribute to psychomotor stimulant‐induced locomotor behaviors. However, most studies have been focused in showing that GSK3β is able to attenuate psychomotor stimulants‐induced hyperactivity by increasing its phosphorylation levels in the nucleus accumbens (NAcc). So, here we examined in the opposite direction about the effects of decreased phosphorylation of GSK3β in the NAcc core on both basal and cocaine‐induced locomotor activity by a bilateral microinjection into this site of an artificially synthesized peptide, S9 (0.5 or 5.0 μg/μL), which contains sequences around N‐terminal serine 9 residue of GSK3β. We found that decreased levels of GSK3β phosphorylation in the NAcc core enhance cocaine‐induced hyper‐locomotor activity, while leaving basal locomotor activity unchanged. This is the first demonstration, to our knowledge, that the selective decrease of GSK3β phosphorylation levels in the NAcc core may contribute positively to cocaine‐induced locomotor activity, while this is not sufficient for the generation of locomotor behavior by itself without cocaine. Taken together, these findings importantly suggest that GSK3β may need other molecular targets which are co‐activated (or deactivated) by psychomotor stimulants like cocaine to contribute to generation of locomotor behaviors.  相似文献   

19.
20.
A high affinity (KD 35 nM) binding site for [3H]cocaine is detected in rat brain striatum present at 2-3 pmol/mg protein of synaptic membranes. This binding is displaced by cocaine analogues with the same rank order as their inhibition of [3H]dopamine ([3H]DA) uptake into striatal synaptosomes (r = 0.99), paralleling the order of their central stimulant activity. The potent DA uptake inhibitors nomifensine, mazindol, and benztropine are more potent inhibitors of this high affinity [3H]cocaine binding than desipramine and imipramine. Cathinone and amphetamine, which are more potent central stimulants than cocaine, displace the high affinity [3H]cocaine binding stereospecifically, but with lower potency (IC50 approximately equal to 1 microM) than does cocaine. It is suggested that the DA transporter in striatum is the putative "cocaine receptor." Binding of [3H]cocaine, measured in 10 mM Na2HPO4-0.32 M sucrose, pH 7.4 buffer, is inhibited by physiologic concentrations of Na+ and K+ and by biogenic amines. DA and Na+ reduce the affinity of the putative "cocaine receptor" for [3H]cocaine without changing the Bmax, suggesting that inhibition may be competitive. However, TRIS reduces [3H]cocaine binding noncompetitively while Na+ potentiates it in TRIS buffer. Binding of [3H]mazindol is inhibited competitively by cocaine. In phosphate-sucrose buffer, cocaine and mazindol are equally potent in inhibiting [3H]mazindol binding, but in TRIS-NaCl buffer cocaine has 10 times lower potency. It is suggested that the cocaine receptor in the striatum may be an allosteric protein with mazindol and cocaine binding to overlapping sites, while Na+ and DA are allosteric modulators, which stabilize a lower affinity state for cocaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号