首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Translation of T7 RNA in vitro without cleavage by RNase III.   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

3.
4.
Initiation of T7 RNA chains by Escherichia coli RNA polymerase-T7 DNA complexes has been followed using incorporation of λ-32P-labeled ATP and GTP to determine the relation between the enzyme binding sites and RNA chain initiation sites on the T7 genome. If the period of RNA synthesis is limited to less than two minutes, the stoichiometry of RNA chain initiation can be measured in the absence of chain termination and re-initiation. About 70% of the RNA polymerase holoenzyme molecules in current enzyme preparations are able to rapidly initiate a T7 RNA chain. The ratio of ATP- to GTP-initiated T7 RNA chains is not altered by variations in the number of enzyme molecules added per DNA, nor by alterations in the ionic conditions employed for RNA synthesis. This suggests that RNA chain initiation sites are chosen randomly through binding of RNA polymerase to tight (class A) binding sites on T7 DNA.  相似文献   

5.
6.
7.
8.
The T7 RNA polymerase-T7 lysozyme complex regulates phage gene expression during infection of Escherichia coli. The 2.8 A crystal structure of the complex reveals that lysozyme binds at a site remote from the polymerase active site, suggesting an indirect mechanism of inhibition. Comparison of the T7 RNA polymerase structure with that of the homologous pol I family of DNA polymerases reveals identities in the catalytic site but also differences specific to RNA polymerase function. The structure of T7 RNA polymerase presented here differs significantly from a previously published structure. Sequence similarities between phage RNA polymerases and those from mitochondria and chloroplasts, when interpreted in the context of our revised model of T7 RNA polymerase, suggest a conserved fold.  相似文献   

9.
10.
11.
Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system   总被引:73,自引:0,他引:73  
Bacteriophage T7 lysozyme, a natural inhibitor of T7 RNA polymerase, can reduce basal activity from an inducible gene for T7 RNA polymerase and allow relatively toxic genes to be established in the same cell under control of a T7 promoter. Low levels of T7 lysozyme supplied by plasmids pLysS or pLysL, which are compatible with the pET vectors for expressing genes from a T7 promoter, are sufficient to stabilize many target plasmids and yet allow high levels of target protein to be produced upon induction of T7 RNA polymerase. Higher levels of lysozyme supplied by plasmids pLysE or pLysH reduce the fully induced activity of T7 RNA polymerase such that induced cells can continue to grow and produce innocuous target proteins indefinitely. Different configurations of the expression system can maintain several different steady-state levels of target gene expression. The presence of T7 lysozyme has the further advantage of facilitating the lysis of cells in preparing extracts for purification of target gene products.  相似文献   

12.
Overexpression of udk, an Escherichia coli gene encoding a uridine/cytidine kinase, interferes with T7 bacteriophage growth. We show here that inhibition of T7 phage growth by udk overexpression can be overcome by inhibition of host RNA polymerase. Overexpression of gene 2, whose product inhibits host RNA polymerase, restores T7 phage growth on hosts overexpressing udk. In addition, rifampicin, an inhibitor of host RNA polymerase, restores the burst size of T7 phage on udk-overexpressing hosts to normal. In agreement with these findings, suppressor mutants that overcome the inhibition arising from udk overexpression gain the ability to grow on hosts that are resistant to inhibition of RNA polymerase by gene 2 protein, and suppressor mutants that overcome a lack of gene 2 protein gain the ability to grow on hosts that overexpress udk. Mutations that eliminate or weaken strong promoters for host RNA polymerase in T7 DNA, and mutations in T7 gene 3.5 that affect its interaction with T7 RNA polymerase, also reduce the interference with T7 growth by host RNA polymerase. We propose a general model for the requirement of host RNA polymerase inhibition.  相似文献   

13.
Replication of RNA by the DNA-dependent RNA polymerase of phage T7   总被引:11,自引:0,他引:11  
M M Konarska  P A Sharp 《Cell》1989,57(3):423-431
The DNA-dependent RNA polymerase of bacteriophage T7 utilizes a specific RNA as a template and replicates it efficiently and accurately. The RNA product (X RNA), approximately 70 nucleotides long, is initiated with either pppC or pppG and contains an AU-tich sequence. Replication of X RNA involves synthesis of complementary strands. Both strands are also significantly self-complementary, producing RNA with an extensive hairpin secondary structure. Replication of X RNA by T7 RNA polymerase is both template and enzyme specific. No other RNA serves as template for replication; neither do other polymerases, including the closely related T3 RNA polymerase, replicate X RNA. The T7 RNA polymerase-X RNA system provides an interesting model for studying replication of RNA by DNA-dependent RNA polymerases. Such a mechanism has been proposed to propagate viroids and hepatitis delta, pathogenic RNAs whose replication seems to depend on cellular RNA polymerases.  相似文献   

14.
Four T7 RNA polymerase promoters contain an identical 23 bp sequence.   总被引:18,自引:0,他引:18  
M D Rosa 《Cell》1979,16(4):815-825
  相似文献   

15.
16.
In vitro construction of poliovirus defective interfering particles.   总被引:26,自引:21,他引:5       下载免费PDF全文
To construct poliovirus defective interfering (DI) particles in vitro, we synthesized an RNA from a cloned poliovirus cDNA, pSM1(T7)1, which carried a deletion in the genome region corresponding to nucleotide positions 1663 to 2478 encoding viral capsid proteins, by using bacteriophage T7 RNA polymerase. The RNA was designed to retain the correct reading frame in nucleotide sequence downstream of the deletion. HeLa S3 monolayer cells were transfected with the deletion RNA and then superinfected with standard virus as a helper. The DI RNA was observed in the infected cells after three passages at high multiplicity of infection. The sequence analysis of RNA extracted from the purified DI particle clearly showed that this DI RNA had the same deletion in size and location as that in the RNA used for the transfection. Thus, we succeeded in construction of a poliovirus DI particle in vitro. To gain insight into the mechanism for DI generation, we constructed poliovirus cDNAs pSM1(T7)1a and pSM1(T7)1b that, in addition to the same deletion as that in pSM1(T7)1, had insertion sequences of 4 bases and 12 bases, respectively, at the corresponding nucleotide position, 2978. The RNA transcribed from pSM1(T7)1a was not a template for synthesis of poliovirus nonstructural proteins and therefore was inactive as an RNA replicon. On the other hand, the RNA from pSM1(T7)1b replicated properly in the transfected cells. Superinfection of the transfected cells with standard virus resulted in production of DI particles derived from pSM1(T7)1b and not from pSM1(T7)1a. These observations indicate that deletion RNAs that are inactive replicons have little or no possibility of being genomes of DI particles suggesting the existence of a nonstructural protein(s) that has an inclination to function as a cis-acting protein(s). The method described here will provide a useful technique to investigate genetic information essential for poliovirus replication.  相似文献   

17.
18.
T7噬菌体启动子能被T7RNA聚合酶和真核生物RNA聚合酶Ⅱ系统启动转录 ,为研究两个系统转录的关键碱基 ,将合成的T7噬菌体启动子 1 1变异体与报道基因CAT基因连在一起。体内CAT和体外狭缝RNA杂交实验显示 : 1 1碱基是T7RNA聚合酶和真核生物RNA聚合酶Ⅱ系统启动T7启动子的关键碱基之一。  相似文献   

19.
The coding sequence for bacteriophage T7 RNA polymerase has been cloned and expressed under control of a cognate T7 promoter, a configuration referred to as an autogene. Cloning a T7 autogene in a derivative of plasmid pBR322 in Escherichia coli was achieved by a combination of blocking initiation at the T7 promoter with bound lac repressor and inhibiting the polymerase itself by T7 lysozyme. Neither type of inhibition by itself was sufficient to control the autogene. Upon unblocking the T7 promoter with added inducer. T7 RNA polymerase produced its own mRNA, leading to autocatalytic production of polymerase protein. T7 autogenes may be useful for developing high-level gene expression systems in a variety of cell types, with little if any need for the host cell RNA polymerase.  相似文献   

20.
T7 lysozyme inhibits transcription by T7 RNA polymerase   总被引:40,自引:0,他引:40  
B A Moffatt  F W Studier 《Cell》1987,49(2):221-227
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号