首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We examined the effect of exercise intensity and endurance training on plasma free fatty acid (FFA) kinetics and lipid metabolism in swimming muscles of reared sea trout. In both training groups [water current velocities 1 and 2 body lengths per second (bl s−1)] the plasma level of FFAs decreased significantly (P < 0.001) compared to the control group. Similar significant (P < 0.01) post-exercise decrease was observed also in the lipase-esterase activity in the red muscle, but not in white. Moreover, in the group swimming with higher intensity a significantly higher (P < 0.05) lipase-esterase activity in the red muscle was found compared with the group on moderate exercise. As with cytochrome c oxidase activity, a significant elevation in the enzyme activity was also observed after training in the 1 bl s−1 group in red and white muscle (P < 0.05 and P < 0.01, respectively). No changes were observed in β hydroxyacyl CoA dehydrogenase activity. The lipid content was on average nine times higher in red compared to white muscle being 16.7, 21.1, and 24.9% in the red muscle of the control, 1 and 2 bl s−1 groups, respectively, with a significant (P < 0.05) increase after training. We conclude that (1) unlike in mammals, plasma FFA kinetics and oxidation are not linearly related to exercise intensity in reared sea trout, (2) training enhances the capacity to uptake FFA from plasma, and (3) high intensity training shifts the proportion of energy derived from fat oxidation to carbohydrate-derived energy.  相似文献   

3.
We used a still-water swim channel in conjunction with open-flow oxygen and carbon dioxide respirometry to examine the energy requirements of river-otters (Lutra lutra L.) swimming voluntarily underwater in Neumünster Zoo (Germany). While at rest on land (5 °C), river-otters had a respiratory quotient of 0.77 and a resting metabolic rate of 4.1 W kg−1. This increased to an estimated 6.4 W kg−1 during rest in water (11–15 °C) and to 12.3 W kg−1 when the animals were feeding in the channel. River-otters swimming under water preferred a mean speed of 0.89 m s−1, and their energy requirements attained 11.6 W kg−1. Cost of transport, however, was minimal at 1.3 m s−1 and amounted to 0.95 J N−1 m−1. Accepted: 3 November 1997  相似文献   

4.
We examined the maximum sustainable swimming speed of late-stage larvae of nine species of tropical reef fishes from around Lizard Island, Great Barrier Reef, Australia. Larvae were captured in light traps and were swum in flumes at different experimental swimming speeds (of 5 cm s−1 intervals) continuously for 24 h. Logistic regression was used to determine the speed at which 90% of larvae were able to maintain swimming, and this was used to indicate the maximum sustainable swimming speed for each species. Maximum sustainable swimming speeds varied among the species examined, with the lethrinid maintaining the fastest sustainable swimming speed (24 cm s−1), followed by the Pomacentridae (10-20 cm s−1) and the Apogonidae (8-12 cm s−1). U-crit (maximum speed) explained 64% of the variation in sustainable speed among species, whereas total length only explained 33% of the variation in sustained swimming. A regression fitted across species suggests that 50% U-crit is a good approximation of the speed able to be maintained by these larvae for 24 h. A model based on a cubic relationship between sustained swimming time and speed was found to be more successful than either length or U-crit as a method of estimating sustainable swimming speed for most of the species examined. Overall, we found that swimming speed is an important factor when considering the potential for active swimming behaviour to influence dispersal patterns, recruitment success and levels of self-recruitment in reef fish larvae and needs to be carefully considered in models of larval dispersal.  相似文献   

5.
Ca(2+)-induced Ca2+ release (CICR) mechanism of cardiac excitation-contraction (e-c) coupling is dependent on the close apposition between the sarcolemmal dihydropyridine receptors (DHPR) and the sarcoplasmic reticulum (SR) ryanodine receptors (RyR). In particular, high RyR/DHPR ratio is considered to reflect strong dependence on SR Ca2+ stores for the intracellular Ca2+ transient. To indirectly evaluate the significance of CICR in fish hearts, densities of cardiac DHPRs and RyRs were compared in ventricular homogenates of three fish species (burbot, rainbow trout, and crucian carp) and adult rat by [3H] PN200-110 and [3H] ryanodine binding. The density of RyRs was significantly (P<0.05) higher in the adult rat (124+/-10 channels/microm3 myocyte volume) than in any of the fish species. Among the fish species, cold-acclimated (4 degrees C) trout had more RyRs than burbot, and crucian carp. The density of DHPRs was highest in the trout heart. RyR/DHPR ratio was significantly (P<0.05) higher in rat (4.1+/-0.5) than in the fish hearts (varying from 0.97+/-0.16 to 1.91+/-0.49) suggesting that "mammalian type" CICR is less important during e-c coupling in fish ventricular myocytes. In rainbow trout, acclimation to cold did not affect the RyR/DHPR ratio, while in crucian carp it was depressed in cold-acclimated animals (4 degrees C; 0.97+/-0.16) when compared to warm-acclimated fish (23 degrees C; 1.91+/-0.49). Although RyR/DHPR ratios were relatively low in fish hearts, there was a close correlation (r2=0.78) between the RyR/DHPR ratio and the magnitude of the Ry-sensitive component of contraction in ventricular muscle among the fish species examined in this study.  相似文献   

6.
Critical (<30 min) and prolonged (>60 min) swimming speeds in laboratory chambers were determined for larvae of six species of Australian freshwater fishes: trout cod Maccullochella macquariensis, Murray cod Maccullochella peelii, golden perch Macquaria ambigua, silver perch Bidyanus bidyanus, carp gudgeon Hypseleotris spp. and Murray River rainbowfish Melanotaenia fluviatilis. Developmental stage (preflexion, flexion, postflexion and metalarva) better explained swimming ability than did length, size or age (days after hatch). Critical speed increased with larval development, and metalarvae were the fastest swimmers for all species. Maccullochella macquariensis larvae had the highest critical [maximum absolute 46·4 cm s?1 and 44·6 relative body lengths (LB) s?1] and prolonged (maximum 15·4 cm s?1, 15·6 LB s?1) swimming speeds and B. bidyanus larvae the lowest critical (minimum 0·1 cm s?1, 0·3 LB s?1) and prolonged swimming speeds (minimum 1·1 cm s?1, 1·0 LB s?1). Prolonged swimming trials determined that the larvae of some species could not swim for 60 min at any speed, whereas the larvae of the best swimming species, M. macquariensis, could swim for 60 min at 44% of the critical speed. The swimming performance of species with precocial life‐history strategies, with well‐developed larvae at hatch, was comparatively better and potentially had greater ability to influence their dispersal by actively swimming than species with altricial life‐history strategies, with poorly developed larvae at hatch.  相似文献   

7.
Experiments were conducted to determine whether low-speed swimming during recovery from exhaustive exercise improved both metabolic recovery and performance during a swimming challenge. For these experiments, brook trout were allowed to recover from exhaustive exercise for 2 h while swimming at 0, 0.5, 1.0, or 1.5 body length (BL) s(-1) or allowed to recover from exhaustive exercise for 1, 2, or 3 h while swimming at 1.0 BL s(-1). At the appropriate interval, either (i) muscle and blood samples were removed from the fish or (ii) fish were assessed for performance (i.e., fatigue time) during a fixed-interval swimming test. Low-speed swimming during recovery from exhaustive exercise resulted in significantly longer fatigue times compared with fish recovering in still water (i.e., 0 BL s(-1)). However, swimming during recovery did not expedite recovery of muscle lactate or blood variables (e.g., lactate, osmolarity, glucose). These observations suggest that metabolic recovery and subsequent swimming performance may not be directly linked and that other factors play a role in swimming recovery in brook trout.  相似文献   

8.
Much recent progress has been made in our understanding of the mechanism of sarcoplasmic reticulum Ca2+ release in skeletal muscle. Vertebrate skeletal muscle excitation-contraction (E-C) coupling is thought to occur by a mechanical coupling mechanism involving protein-protein interactions that lead to activation of the sarcoplasmic reticulum (SR) ryanodine receptor (RyR)/Ca2+ release channel by the voltage-sensing transverse (T–) tubule dihydropyridine receptor (DHPR)/Ca2+ channel. In a subsequent step, the released Ca2+ amplify SR Ca2+ release by activating release channels that are not linked to the DHPR. Experiments with mutant muscle cells have indicated that skeletal muscle specific DHPR and RyR isoforms are required for skeletal muscle E-C coupling. A direct functional and structural interaction between a DHPR-derived peptide and the RyR has been described. The interaction between the DHPR and RyR may be stabilized by other proteins such as triadin (a SR junctional protein) and modulated by phosphorylation of the DHPR.  相似文献   

9.
Behavioural and electro-olfactogram (EOG) responses to synthetic F-prostaglandins (PGFs) were recorded in the three salmonids: brown trout Salmo trutta , lake whitefish Coregonus clupeaformis and rainbow trout Oncorhynchus mykiss . Exposure to 10−8 M PGF and 13, 14-dihydro-PGF increased swimming activity in individually exposed brown trout in a flow-through tank. Digging and nest probing behaviours were further observed in brown trout females exposed to PGF. Lake whitefish exposed to 10−8 M PGF and 15-keto-PGF also increased their locomotion. In rainbow trout, the absence of behavioural responses to PGFs correlates with a lack of olfactory sensitivity to these chemicals. PGFs triggered behavioural responses distinct from the feeding stimulant in brown trout. EOG measurements demonstrated that brown trout were most sensitive to PGF, with a threshold concentration of 10−11 M. Lake whitefish were most sensitive to both 15-keto-PGF and 13, 14-dihydro-PGF. Cross-adaptation and binary mixture experiments suggest that only one olfactory receptive mechanism is involved in PGFs detection. The behavioural and olfactory responses observed with exposure to PGF and its metabolites suggest these compounds function as reproductive pheromones in brown trout and lake whitefish.  相似文献   

10.
The present study aimed to clarify whether swimming performance is affected by reflective markers being attached to the swimmer’s body, as is required for a kinematic analysis of swimming. Fourteen well-trained male swimmers (21.1 ± 1.7 yrs) performed maximal 50 m front crawl swimming with (W) and without (WO) 25 reflective markers attached to their skin and swimwear. This number represents the minimum required to estimate the body’s center of mass. Fifty meter swimming time, mid-pool swimming velocity, stroke rate, and stroke length were determined using video analysis. We found swimming time to be 3.9 ± 1.6% longer for W condition. Swimming velocity (3.3 ± 1.8%), stroke rate (1.2 ± 2.0%), and stroke length (2.1 ± 2.7%) were also significantly lower for W condition. To elucidate whether the observed reduction in performance was potentially owing to an additional drag force induced by the reflective markers, measured swimming velocity under W condition was compared to a predicted velocity that was calculated based on swimming velocity obtained under WO condition and an estimate of the additional drag force induced by the reflective markers. The mean prediction error and ICC (2,1) for this analysis of measured and predicted velocities was 0.014 m s−1 and 0.894, respectively. Reducing the drag force term led to a decrease in the degree of agreement between the velocities. Together, these results suggest that the reduction in swimming performance resulted, at least in part, from an additional drag force produced by the reflective markers.  相似文献   

11.
Summer habitat use by sympatric Arctic charr Salvelinus alpinus, young Atlantic salmon Salmo salar and brown trout Salmo trutta was studied by two methods, direct underwater observation and electrofishing, across a range of habitats in two sub-arctic rivers. More Arctic charr and fewer Atlantic salmon parr were observed by electrofishing in comparison to direct underwater observation, perhaps suggesting a more cryptic behaviour by Arctic charr. The three species segregated in habitat use. Arctic charr, as found by direct underwater observation, most frequently used slow (mean ±s .d . water velocity 7·2 ± 16·6 cm s−1) or often stillwater and deep habitats (mean ±s .d . depth 170·1 ± 72·1 cm). The most frequently used mesohabitat type was a pool. Young Atlantic salmon favoured the faster flowing areas (mean ±s .d . water velocity 44·0 ± 16·8 cm s−1 and depth 57·1 ± 19·0 cm), while brown trout occupied intermediate habitats (mean ±s .d . water velocity 33·1 ± 18·6 cm s−1 and depth 50·2 ± 18·0 cm). Niche overlap was considerable. The Arctic charr observed were on average larger (total length) than Atlantic salmon and brown trout (mean ±s .d . 21·9 ± 8·0, 10·2 ± 3·1 and 13·4 ± 4·5 cm). Similar habitat segregation between Atlantic salmon and brown trout was found by electrofishing, but more fishes were observed in shallower habitats. Electrofishing suggested that Arctic charr occupied habitats similar to brown trout. These results, however, are biased because electrofishing was inefficient in the slow-deep habitat favoured by Arctic charr. Habitat use changed between day and night in a similar way for all three species. At night, fishes held positions closer to the bottom than in the day and were more often observed in shallower stream areas mostly with lower water velocities and finer substrata. The observed habitat segregation is probably the result of interference competition, but the influence of innate selective differences needs more study.  相似文献   

12.
The swimming capacity of Barbus bocagei was measured with the critical swimming speed (Ucrit) standard test in a modified Bla?ka‐type swim tunnel. Sixty B. bocagei were tested and they exhibited a mean ±s .d . Ucrit of 0·81 ± 0·11 m s?1 or 3·1 ± 0·86 total lengths per second (LT s?1). Sex had no effect on Ucrit but significant differences were found between the swimming performance of fish with distinct sizes.  相似文献   

13.
While many coral reef fishes utilise substratum refuges, the direct influence of water flow and swimming ability on such refuging patterns is yet to be established. This study examined the swimming ability and refuging behaviour of a labrid (Halichoeres margaritaceus) and a pomacentrid (Pomacentrus chrysurus) that inhabit high flow, wave-swept coral reef flats. Field observations of refuging patterns were combined with experimental evaluations in a flow tank using a replica of a substratum hole frequently used by these species. Under a range of flow speeds commonly found on the reef flat (0–60 cm s−1), flow within the substratum refuge was reduced to speeds of 0–12 cm s−1, representing a 75–100% flow reduction. Swimming ability of each species was then tested at 60 cm s−1 with and without access to this flow refuge. Both species were able to maintain activity within the 60 cm s−1 flow for considerably longer when provided with a refuge, with increases from approximately 39 min to 36 h for H. margaritaceus and 8 min to 88 h for P. chrysurus. Despite H. margaritaceus having the strongest swimming ability without access to a refuge, P. chrysurus was able to maintain swimming activity more than twice as long as H. margaritaceus when provided with a refuge. These increases in activity are probably due to energetic savings, with this type of refuge providing an estimated 95% energy saving over swimming directly into a unidirectional flow of 60 cm s−1. These results highlight the major advantages provided by refuging behaviour and emphasise the importance of habitat refuges in shaping patterns of habitat use in reef fishes.  相似文献   

14.
The behaviour of wild (n = 43, mean LT = 152 mm) and hatchery-reared (n = 71, mean LT = 198 mm) Atlantic salmon and wild anadromous brown trout (n = 34, mean LT = 171 mm) post-smolts with acoustic transmitters was compared in a Norwegian fjord system. There was no difference in survival between wild and hatchery reared salmon from release in the river mouth to passing receiver sites 9.5 km and 37.0 km from the release site. Mortality approached 65% during the first 37 km of the marine migration for both groups. There was no difference between wild and hatchery-reared salmon either in time from release to first recording at 9.5 km (mean 135 and 80 h), or in the rate of movement through the fjord (mean 0.53 and 0.56 bl s−1). Hatchery-reared salmon reached the 37 km site sooner after release than the wild salmon (mean 168 and 450 h), but rate of movement in terms of body lengths per second did not differ (mean 0.56 and 0.77 bl s−1). The brown trout remained a longer period in the inner part of the fjord system, with much slower rates of movement during the first 9.5 km (mean 0.06 bl s−1).  相似文献   

15.
Water temperature is known to be a particularly important environmental factor that affects fish swimming performance, but it is unknow how acute temperature changes affect the fish performance of Ptychobarbus kaznakovi. P. kaznakovi in the Lancang River have declined quickly in recent years, and this species was used to examine the effects of acute temperature changes on swimming abilities and oxygen consumption in a Brett‐type swimming tunnel respirometer. The standard metabolic rate (SMR) and routine metabolic rate (RMR) showed 216% and 134% increases, respectively, at 22°C (an acute increase from 17 to 22°C) compared to those at 12°C (an acute decrease from 17 to 12°C). Moreover, the RMR was approximately 1.7, 1.6 and 1.3 times the value of the SMR at 12°C, 17°C and 22°C, respectively. The critical swimming speed (Ucrit) of P. kaznakovi at 22°C was 5.45 ± 0.45BL/S, which was 45% higher than that at 12°C (3.77 ± 0.92BL/S). The oxygen consumption rates (MO2) reached their maximum values at swimming speeds near the Ucrit for all the temperature treatments. The maximum metabolic rate (MMR) values at 12°C, 17°C and 22°C were 274.53 ± 142.60 (mgO2 kg?1 hr?1), 412.85 ± 216.34 (mgO2 kg?1 hr?1) and 1,095.73 ± 52.50 (mgO2 kg?1 hr?1), respectively. Moreover, there was a narrow aerobic scope at 12°C compared to that at 17°C and 22°C. The effect of acute temperature changes on the swimming abilities and oxygen consumption of P. kaznakovi indicated that water temperature changes caused by dam construction could directly affect energy consumption during the upstream migration of fish.  相似文献   

16.
Swimming has relevant physiological changes in farmed fish, although the potential link between swimming and oxidative stress remains poorly studied. We investigated the effects of different medium-term moderate swimming conditions for 6 h on the antioxidant status of gilthead seabream (Sparus aurata), analyzing the activity of enzymes related to oxidative stress in the liver and skeletal red and white muscle. Forty fish were induced to swim individually with the following conditions: steady low (SL, 0.8 body length (BL)·s−1), steady high (SH, 2.3 BL·s−1), oscillating low (OL, 0.2–0.8 BL·s−1) and oscillating high (OH, 0.8–2.3 BL·s−1) velocities, and a non-exercised group with minimal water flow (MF, < 0.1 BL·s−1). All swimming conditions resulted in lower activities of superoxide dismutase (SOD), glutathione reductase (GR), and glutathione-S-transferase (GST) in the liver compared to the MF group, while steady swimming (SL and SH) led to higher reduced glutathione/oxidized glutathione ratio (GSH/GSSG) compared to the MF condition. Swimming also differently modulated the antioxidant enzyme activities in red and white muscles. The OH condition increased lipid peroxidation (LPO), catalase (CAT) and glutathione peroxidase (GPx) activities in the red muscle, decreasing the GSH/GSSG ratio, whereas the SL condition led to increased GSH. Oscillating swimming conditions (OL and OH) led to lower CAT activity in the white muscle, although GPx activity was increased. The GSH/GSSG ratio in white muscle was increased in all swimming conditions. Liver and skeletal muscle antioxidant status was modulated by exercise, highlighting the importance of adequate swimming conditions to minimize oxidative stress in gilthead seabream.  相似文献   

17.
The energy cost per unit of distance (C s, kilojoules per metre) of the front-crawl, back, breast and butterfly strokes was assessed in 20 elite swimmers. At sub-maximal speeds (v), C s was measured dividing steady-state oxygen consumption (O2) by the speed (v, metres per second). At supra-maximal v, C s was calculated by dividing the total metabolic energy (E, kilojoules) spent in covering 45.7, 91.4 and 182.9 m by the distance. E was obtained as: E = E an+O2max t pO2max(1−e−( t p/)), where E an was the amount of energy (kilojoules) derived from anaerobic sources, O2max litres per second was the maximal oxygen uptake, α (=20.9 kJ · l O2 −1) was the energy equivalent of O2, τ (24 s) was the time constant assumed for the attainment of O2max at muscle level at the onset of exercise, and t p (seconds) was the performance time. The lactic acid component was assumed to increase exponentially with t p to an asymptotic value of 0.418 kJ · kg−1 of body mass for t p ≥ 120 s. The lactic acid component of E an was obtained from the net increase of lactate concentration after exercise (Δ[La]b) assuming that, when Δ[La]b = 1 mmol · l−1 the net amount of metabolic energy released by lactate formation was 0.069 kJ · kg−1. Over the entire range of v, front crawl was the least costly stroke. For example at 1 m · s−1, C s amounted, on average, to 0.70, 0.84, 0.82 and 0.124 kJ · m−1 in front crawl, backstroke, butterfly and breaststroke, respectively; at 1.5 m · s−1, C s was 1.23, 1.47, 1.55 and 1.87 kJ · m−1 in the four strokes, respectively. The C s was a continuous function of the speed in all of the four strokes. It increased exponentially in crawl and backstroke, whereas in butterfly C s attained a minimum at the two lowest v to increase exponentially at higher v. The C s in breaststroke was a linear function of the v, probably because of the considerable amount of energy spent in this stroke for accelerating the body during the pushing phase so as to compensate for the loss of v occurring in the non-propulsive phase. Accepted: 14 April 1998  相似文献   

18.
Open-flow oxygen and carbon dioxide respirometry was used in Neumünster Zoo (Germany) to examine the energy requirements of six Asian small-clawed otters (Amblonyx cinerea) at rest and swimming voluntarily under water. Our aim was to compare their energy requirements with those of other warm-blooded species to elucidate scale effects and to test whether the least aquatic of the three otter species differs markedly from these and its larger relatives. While at rest on land (16 °C, n = 26), otters (n = 6, mean body mass 3.1 ± 0.4 kg) had a respiratory quotient of 0.77 and a resting metabolic rate of 5.0 ± 0.8 Wkg−1(SD). This increased to 9.1 ± 0.8 Wkg−1 during rest in water (11–15 °C, n = 4) and to 17.6 ± 1.4 Wkg−1 during foraging and feeding activities in a channel (12 °C, n = 5). While swimming under water (n = 620 measurements) in an 11-m long channel, otters preferred a speed range between 0.7 ms−1 and 1.2 ms−1. Transport costs were minimal at 1 ms−1 and amounted to 1.47 ± 0.24 JN−1 m−1 (n = 213). Metabolic rates of small-clawed otters in air were similar to those of larger otter species, and about double those of terrestrial mammals of comparable size. In water, metabolic rates during rest and swimming were larger than those extrapolated from larger otter species and submerged swimming homeotherms. This is attributed to high thermoregulatory costs, and high body drag at low Reynolds numbers. Accepted: 21 December 1998  相似文献   

19.
To evaluate low-intensity exercise training induced changes in the expression of dihydropyridine (DHP) and ryanodine (Ry) receptors both mRNA and protein levels were determined by quantitative RT-PCR and immunoblot analysis from gastrocnemius (GAS) and rectus femoris (RF) muscles of mice subjected to a 15-week aerobic exercise program. The level of muscular work was assayed by changes in myosin heavy chain (MHC) content, myoglobin (Mb) expression and muscle size. The mRNA expression and optical density of DHP receptor increased significantly in GAS by 66.8 and 39.5%, respectively. The expression of Ry receptor, on the other hand, was not up-regulated. In RF, there was a significant increase of 38.4% in the mRNA expression of DHP receptor, although the protein level remained the same. No changes in Ry receptor expression was observed. The training resulted in a 1.58% increase in the amount of MHC IIa and a 2.34% decrease in that of IIb and IId in GAS. A significant 8.3% increase in the Mb content was observed. In RF, no significant changes in MHC or in Mb content were noted. Our results show that an evident increase in the mRNA and protein expression of DHP receptor was induced in GAS even by a relatively low-intensity exercise. Surprisingly, contrast to DHP receptor expression, no changes in Ry receptor mRNA, or protein levels were found, indicating more abundant demand for DHP receptor after increased muscle activity.  相似文献   

20.
We have previously established that L6 skeletal muscle cell cultures display capacitative calcium entry (CCE), a phenomenon established with other cells in which Ca(2+) uptake from outside cells increases when the endoplasmic reticulum (sarcoplasmic reticulum in muscle, or SR) store is decreased. Evidence for CCE rested on the use of thapsigargin (Tg), an inhibitor of the SR CaATPase and consequently transport of Ca(2+) from cytosol to SR, and measurements of cytosolic Ca(2+). When Ca(2+) is added to Ca(2+)-free cells in the presence of Tg, the measured cytosolic Ca(2+) rises. This has been universally interpreted to mean that as SR Ca(2+) is depleted, exogenous Ca(2+) crosses the plasma membrane, but accumulates in the cytosol due to CaATPase inhibition. Our goal in the present study was to examine CCE in more detail by measuring Ca(2+) in both the SR lumen and the cytosol using established fluorescent dye techniques for both. Surprisingly, direct measurement of SR Ca(2+) in the presence of Tg showed an increase in luminal Ca(2+) concentration in response to added exogenous Ca(2+). While we were able to reproduce the conventional demonstration of CCE-an increase of Ca(2+) in the cytosol in the presence of thapsigargin-we found that this process was inhibited by the prior addition of ryanodine (Ry), which inhibits the SR Ca(2+) release channel, the ryanodine receptor (RyR). This was also unexpected if Ca(2+) enters the cytosol first. When Ca(2+) was added prior to Ry, the later was unable to exert any inhibition. This implies a competitive interaction between Ca(2+) and Ry at the RyR. In addition, we found a further paradox: we had previously found Ry to be an uncompetitive inhibitor of Ca(2+) transport through the RyR during excitation-contraction coupling. We also found here that high concentrations of Ca(2+) inhibited its own uptake, a known feature of the RyR. We confirmed that Ca(2+) enters the cells through the dihydropyridine receptor (DHPR, also known as the L-channel) by demonstrating inhibition by diltiazem. A previous suggestion to the contrary had used Mn(2+) in place of direct Ca(2+) measurements; we showed that Mn(2+) was not inhibited by diltiazem and was not capacitative, and thus not an appropriate probe of Ca(2+) flow in muscle cells. Our findings are entirely explained by a new model whereby Ca(2+) enters the SR from the extracellular space directly through a combined channel formed from the DHPR and the RyR. These are known to be in close proximity in skeletal muscle. Ca(2+) subsequently appears in the cytosol by egress through a separate, unoccupied RyR, explaining Ry inhibition. We suggest that upon excitation, the DHPR, in response to the electrical field of the plasma membrane, shifts to an erstwhile-unoccupied receptor, and Ca(2+) is released from the now open RyR to trigger contraction. We discuss how this model also resolves existing paradoxes in the literature, and its implications for other cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号