首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vasoconstrictor effects of PGE2 and PGF are less pronounced on retinal vessels of the newborn than of the adult pig. We tested the hypothesis that the decreased vasomotor response to these prostaglandins might be due to relatively fewer receptors and/or different receptor subtypes (in the case of PGE2) on retinal vessels of the newborn animal. Binding studies using [3H]PGE2 and [3H]PGF revealed that PGE2 (EP) and PGF (FP) receptor densities in retinal microvessel membrane preparations from newborn animals were approximately 25% of those found in vessels from the adult. The Kd for PGF did not differ; however, the Kd for PGE2 was less in newborn than in adult vessels. Competition binding studies using AH 6809 (EP1 antagonist), butaprost (EP2 agonist), M&B 28,767 (EP3 agonist), and AH 23848B (EP4 antagonist) suggested that the retinal vessels of the newborn contained approximately equal number of EP1 and EP2 receptor subtypes whereas the main receptor subtype in the adult vessels was EP1. In addition, PGE2 and butaprost produced comparable increases in adenosine 3′,5′-cyclic monophosphate synthesis in newborn and adult vessels. PGE2, 17-phenyl trinor PGE2 (EP1agonist) and PGF caused a 2.5 to 3-fold greater increase in inositol1,4,5-triphosphate (IP3) formation in adult than in newborn preparations. It is concluded that fewer PGF receptors and an associated decrease in receptor-coupled IP3 formation in the retinal vessels of the newborn could lead to weaker vasoconstrictor effects of PGF on retinal vessels of the newborn than of adult pigs; fewer EP1 receptors (associated with vasoconstriction) and a relatively greater proportion of EP2 receptors (associated with vasodilation) might be responsible for the reduced retinal vasoconstrictor effects of PGE2 in the newborn.  相似文献   

2.
The receptors mediating prostanoid-induced contraction of guinea-pig isolated trachea have been characterised in terms of a recently proposed general classification of prostanoid receptors. Results obtained on the trachea were compared with those obtained on guinea-pig fundus, which contains a sub-type of PGE2-sensitive (EP-) receptor termed the EP1-receptor, and guinea-pig lung strip, which contains a thromboxane-sensitive or TP-receptor. The following agonists were studied, PGE2, PGF2α and the thromboxane-like agonists U-46619 and Wy17186. The antagonists studied were SC-19220 which selectivity blocks EP1-receptors, and AH19437 which selectively blocks TP-receptors. On guinea-pig fundus the rank order of agonist potency was PGE2 > PGF2α > Wy17186 U-46619, and responses to all agonists were antagonised by SC-19220 but not by AH19437. On guinea-pig lung strip the rank order of potency was U-46619 > Wy17186 PGF2α > PGE2 and responses to all agonists tested were blocked by AH19437 but not by SC-19220. On the trachea, the rank order was PGE2 = U-46619 > Wy17186 = PGF2α. SC-19220 antagonised responses to PGE2 and PGF2α, but not those to U-46619 or Wy17186. Conversely, AH19437 antagonised responses to U-46619 and Wy17186 but not those to PGE2 or PGF2α. It is concluded that prostanoid-induced contractions of guinea-pig trachea can be mediated by both EP1- and TP-receptors.  相似文献   

3.
Accumulating evidence suggests that COX-2-derived prostaglandin E2 (PGE2) plays an important role in esophageal adenocarcinogenesis. Recently, PGE2 receptors (EP) have been shown to be involved in colon cancer development. Since it is not known which receptors regulate PGE2 signals in esophageal adenocarcinoma, we investigated the role of EP receptors using a human Barrett's-derived esophageal adenocarcinoma cell line (OE33). OE33 cells expressed COX-1, COX-2, EP1, EP2 and EP4 but not EP3 receptors as determined by real time RT-PCR and Western-blot. Treatment with 5-aza-dC restored expression, suggesting that hypermethylation is involved in EP3 downregulation. Endogenous PGE2 production was mainly due to COX-2, since this was significantly suppressed with COX-2 inhibitors (NS-398 and SC-58125), but not COX-1 inhibitors (SC-560). Cell proliferation (3H-thymidine uptake) was significantly inhibited by NS-398 and SC-58125, the EP1 antagonist SC-51322, AH6809 (EP1/EP2 antagonist), and the EP4 antagonist AH23848B, but was not affected by exogenous PGE2. However, treatment with the selective EP2 agonist Butaprost or 16,16-dimethylPGE2 significantly inhibited butyrate-induced apoptosis and stimulated OE33 cell migration. The effect of exogenous PGE2 on migration was attenuated when cells were first treated with EP1 and EP4 antagonists. These findings suggest a potential role for EP selective antagonists in the treatment of esophageal adenocarcinoma.  相似文献   

4.
Abstract

Prostanoids, that is, prostaglandins (PGs) PGE2, PGF, PGI2, PGD2 and thromboxane A2(TXA2), are the oldest members of the eicosanoid family. The PGs are a family of lipid mediators formed in response to various stimuli. They are transported into the extracellular microenvironment by specific multidrug resistance-associated proteins (MRPs) after synthesis. Once exported to the microenvironment, prostanoids bind to G-protein coupled receptors that contain seven transmembrane spanning domains. There are eight types of the prostanoid receptors conserved in mammals from mouse to human. They are the PGD receptor (DP), four subtypes of the PGE receptor (EP1, EP2, EP3 and EP4), the PGF receptor (FP), PGI receptor (IP) and TXA receptor (TP). Recently, several studies have revealed the roles of PG receptor signaling in various pathological conditions, and suggest that selective manipulation of the prostanoid receptors may be beneficial in treatment of the pathological conditions. Here we review these recent findings of roles of prostanoid receptor signaling and their therapeutic implications.  相似文献   

5.
Prostanoids comprising prostaglandins (PGs) and thromboxanes (TXs) have been shown to play physiological and pathological roles in zebrafish. However, the molecular basis of zebrafish prostanoid receptors has not been established. Here, we demonstrate that there exist at least five ‘contractile’ (Ca2+-mobilizing) and one ‘inhibitory’ (Gi-coupled) prostanoid receptors in zebrafish; five ‘contractile’ receptors consisting of two PGE2 receptors (EP1a and EP1b), two PGF receptors (FP1 and FP2), and one TXA2 receptor TP, and one ‘inhibitory’ receptor, the PGE2 receptor EP3. [3H]PGE2 specifically bound to the membranes of cells expressing zebrafish EP1a, EP1b and EP3 with a Kd of 4.8, 1.8 and 13.6 nM, respectively, and [3H]PGF specifically bound to the membranes of cells expressing zebrafish FP1 and FP2, with a Kd of 6.5 and 1.6 nM, respectively. U-46619, a stable agonist for human and mouse TP receptors, significantly increased the specific binding of [35S]GTPγS to membranes expressing the zebrafish TP receptor. Upon agonist stimulation, all six receptors showed an increase in intracellular Ca2+ levels, although the increase was very weak in EP1b, and pertussis toxin abolished only the EP3-mediated response. Zebrafish EP3 receptor also suppressed forskolin-induced cAMP formation in a pertussis toxin-sensitive manner. In association with the low structural conservation with mammalian receptors, most agonists and antagonists specific for mammalian EP1, EP3 and TP failed to work on each corresponding zebrafish receptor. This work provides further insights into the diverse prostanoid actions mediated by their receptors in zebrafish.  相似文献   

6.
Although prostanoids are known to be involved in regulation of the spontaneous beating rate of cultured neonatal rat cardiomyocytes, the various subtypes of prostanoid receptors have not been investigated in detail. In our experiments, prostaglandin (PG)F and prostanoid FP receptor agonists (fluprostenol, latanoprost and cloprostenol) produced a decrease in the beating rate. Two prostanoid IP receptor agonists (iloprost and beraprost) induced first a marked drop in the beating rate and then definitive abrogation of beating. In contrast, the prostanoid DP receptor agonists (PGD2 and BW245C) and TP receptor agonists (U-46619) produced increases in the beating rate. Sulprostone (a prostanoid EP1 and EP3 receptor agonist) induced marked increases in the beating rate, which were suppressed by SC-19220 (a selective prostanoid EP1 antagonist). Butaprost (a selective prostanoid EP2 receptor agonist), misoprostol (a prostanoid EP2 and EP3 receptor agonist), 11-deoxy-PGE1 (a prostanoid EP2, EP3 and EP4 receptor agonist) did not alter the beating rate. Our results strongly suggest that prostanoid EP1 receptors are involved in positive regulation of the beating rate. Prostanoid EP1 receptor expression was confirmed by western blotting with a selective antibody. Hence, neonatal rat cardiomyocytes express both prostanoid IP and FP receptors (which negatively regulate the spontaneous beating rate) and prostanoid TP, DP1 and EP1 receptors (which positively regulate the spontaneous beating rate).  相似文献   

7.
Comparison of rank orders of agonist potency of the anturally occurring prostanoids. PGD2, PGE2, PGF2α and PGI2 as well as the stable TxA2 mimetic, U-46619, on a range of smooth muscle preparations provides evidences evidence for the existence of distinct receptors for PGE2. PGF2α and TxA2. Since others have provided evidence for the existence of distinct receptors for PGD2 and PGI2, we suggest that receptors exist for each of these naturally occurring 2-series prostanoids. Results obtained with two specific prostanoid receptor blocking drugs, SC-19220 and AH 19437, supported and extend these conclusions. SC-19220 selectively block some but not all PGE-sensitive receptors. While AH 19437 selectively blocks all U-46619/TxA2-sensitive receptors. A nomenclature for prostanoid receptors is proposed,; in which each receptor is designated the letter P preceded by a letter signifying the most potent natural prostanoid agonist at than receptor, such that receptors sensitivity to PGs D2, E2, F2α, I2 and TxA2 become DP-, EP-, FP- and TP- receptors respectively. Where some sub-division is required within a receptor group, e.g. EP-receptors (SC-19220-sensitive and SC-19220-insensitive), subcript numbers may be used such that these are EP1 and EP2 subtypes. The resulting scheme is a working hypothesis and its confirmation requires the development of potent selective prostanoid receptor blocking drugs for each postulated type.  相似文献   

8.
d?-Erythro-16-methoxy-PGE2, PGA2, PGF2α, 11-deoxy PGE1, and 11-deoxy PGF1α have been prepared via the cuprate conjugate addition procedure. These congeners are less potent than the parent prostaglandins as stimulators of isolated gerbil colon contractions and as bronchodilators in the guinea pig Konzett assay.  相似文献   

9.
We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts.  相似文献   

10.
The synthetic prostaglandin analogs 16, 16-dimethyl PGF and 16, 16-dimethyl PGE2 were administered to dogs with chronic biliary and gastric fistulas. The effects of 16, 16 diMePGF and 16, 16 diMePGE2 were evaluated on bile flow and composition and bile adenosine 3′, 5′ monophosphate (cyclic AMP) secretion. 16, 16 diMePGF in doses of 0.125 and 0.25 μg-kg-min significantly increased hepatic bile flow. The choleresis was characterized by increased cloride and bicarbonate secretion. Measurement by radioimmunoassay of bile cyclic AMP concentration demonstrated no evident increase in bile cyclic AMP secretion associated with the choleresis produced by 16, 16 diMePGF. The administration of 16, 16 diMePGE2 in a dose range 0.01 to 1.0 μg-kg-min did not significantly alter bile flow rates or composition. Bile erythritol-14C clearance, a measure of canalicular bile flow, was significantly increased by PGF but not by 16, 16-dimethyl PGF, suggesting that the mechanism of action of PGF in stimulating hepatic bile flow may be different from that involved in 16, 16-dimethyl PGF choleresis. The results of this study indicate that the synthetic PGF analog produces a choleretic response not mediated by adenylate cyclase and associated with increased chloride and bicarbonate secretion.  相似文献   

11.
The communication describes the total synthesis of (±)-15-methyl-11-deoxy PGE1 and its C-15-epimer. The synthesis of (±)-15-methyl-11-deoxy PGF1 and (±)-15-methyl-11-deoxy PGF is also reported. Preliminary data for the bronchodilator activity is presented.  相似文献   

12.
We have developed a pharmacophore model for the EP3 receptor antagonists based on its endogenous ligand PGE2. This ligand-based design yielded a series of novel peri-substituted [4.3.0] bicyclic aromatics featuring 1-alklyaryl 7-heterocyclic sulfonamide substituents. The synthesized molecules are potent antagonists of human EP3 receptor in vitro and show inhibition of rat platelets aggregation. Optimized derivatives display high selectivity over IP, FP, and other EP receptor panels.  相似文献   

13.
Loss of luteal progesterone secretion at the end of the ovine estrous cycle is via uterine PGF2α secretion. However, uterine PGF2α secretion is not decreased during early pregnancy in ewes. Instead, the embryo imparts a resistance to PGF2α. Prostaglandins E (PGE; PGE1 + PGE2) are increased in endometrium and uterine venous blood during early pregnancy in ewes to prevent luteolysis. Chronic intrauterine infusion of PGE1 or PGE2 prevents spontaneous or IUD, estradiol-17β, or PGF2α-induced premature luteolysis in nonbred ewes. The objective was to determine whether chronic intrauterine infusion of PGE1 or PGE2 affected mRNA for LH receptors, occupied and unoccupied receptors for LH in luteal and caruncular endometrium, and luteal function. Ewes received Vehicle, PGE1, or PGE2 every 4 h from days 10 to 16 of the estrous cycle via a cathether installed in the uterine lumen ipsilateral to the luteal-containing ovary.Jugular venous blood was collected daily for analysis of progesterone and uterine venous blood was collected on day-16 for analysis of PGF2α and PGE. Corpora lutea and caruncular endometrium were collected from day-10 preluteolytic control ewes and day-16 ewes treated with Vehicle, PGE1 or PGE2 for analysis of the mRNA for LH receptors and occupied and unoccupied receptors for LH. Luteal weights on day-16 in ewes treated with PGE1 or PGE2 and day-10 control ewes were similar (P  0.05), but were greater (P  0.05) than in day-16 Vehicle-treated ewes. Progesterone profiles on days 10–16 differed (P  0.05) among treatment groups: PGE1 > PGE2 > Vehicle-treated ewes. Concentrations of PGF2α and PGE in uterine venous plasma on day-16 were similar (P  0.05) in the three treatment groups. Luteal mRNA for LH receptors and unoccupied and occupied LH receptors were similar (P  0.05) in day-10 control ewes and day-16 ewes treated with PGE2 and were lower (P  0.05) in day-16 Vehicle-treated ewes. PGE2 prevented loss (P  0.05) of day-16 luteal mRNA for LH receptors and occupied and unoccupied LH receptors. Luteal and caruncular tissue mRNA for LH receptors and occupied and unoccupied LH receptors were greater (P  0.05) on day-16 of PGE1-treated ewes than any treatment group. mRNA for LH receptors and occupied and unoccupied receptors for LH in caruncules were greater (P  0.05) in day-16 Vehicle or PGE2-treated ewes than in day-10 control ewes. It is concluded that PGE1 and PGE2 share some common mechanisms to prevent luteolysis; however, only PGE1 increased luteal and endometrial mRNA for LH receptors and occupied and unoccupied LH receptors. PGE2 prevents a decrease in luteal mRNA for LH receptors and occupied and unoccupied receptors for LH without altering endometrial mRNA for LH receptors or occupied and unoccupied receptors for LH.  相似文献   

14.
Recently we proposed that COX-2 induction precedes expression of HO-1 in ischemic preconditioned rat brain. In the current study, we investigated the molecular mechanism by which prostaglandin E2, one of COX-2 metabolites, induces HO-1 in rat C6 brain cells. We demonstrated that concentration of PGE2 increased HO-1 expression in C6 cells in vitro. The effects of PGE2 were mimicked by PGE2 receptor EP2 agonists, 11-deoxy PGE2, and cAMP analog, dibutyl-cAMP. HO-1 expression by PGE2 was inhibited by LY294002, PI3K inhibitor and H89, PKA inhibitor. The EP2-specific antagonist, AH8006 also inhibited PGE2-mediated HO-1 expression in a concentration-dependent manner. Finally, PGE2 inhibited GOX-induced apoptosis as assayed by FACS analysis or DNA strand breaks assay, and this cell death was reversed by ZnPPIX, HO-1 inhibitor. In addition to HO-1 induction, PGE2 also increased phosphorylation of Bad by PKA- and PI3K-depednent manner. Taken together, we conclude that PGE2 induces HO-1 protein expression through PKA and PI3K signaling pathways via EP2 receptor in C6 cells. The induction of HO-1 along with increase of p-Bad by PGE2 is responsible for anti-apoptosis against oxidant stress.  相似文献   

15.
β1-Integrins mediate cell attachment to different extracellular matrix proteins, intracellular proteins, and intercellular adhesions. Recently, it has been reported that prostaglandin E2 (PGE2) has anti-inflammatory properties such as inhibition of the expression of adhesion molecules or production of chemokines. However, the effect of PGE2 on the expression of β1-integrin remains unknown. In this study, we investigated the effects of PGE2 on the expression of β1-integrin in the human monocytic cell line THP-1 and in CD14+ monocytes/macrophages in human peripheral blood. For this, we examined the role of four subtypes of PGE2 receptors and E-prostanoid (EP) receptors on PGE2-mediated inhibition. We found that PGE2 significantly inhibited the expression of β1-integrin, mainly through EP4 receptors in THP-1 cells and CD14+ monocytes/macrophages in human peripheral blood. We suggest that PGE2 has anti-inflammatory effects, leading to the inhibited expression of β1-integrin in human monocytes/macrophages, and that the EP4 receptor may play an important role in PGE2-mediated inhibition.  相似文献   

16.
This study investigates the pronounced synergism between the weak contractile action of prostaglandin E2 (PGE2) and strong actions of phenylephrine, U-46619 and K+ on rat isolated femoral artery. The potency ranking for synergism was SC-46275 (prostanoid receptor agonist selectivity: EP3EP1)=sulprostone (EP3>EP1)>17-phenyl PGE2 (EP1>EP3). The novel EP3 antagonist L-798106 (0.2–1 μM) blocked the enhanced action of sulprostone (pA2=7.35–8.10), while the EP1 antagonist SC-51322 (1 μM) did not (pA2<6.0). Matching responses to priming agent and priming agent/sulprostone were similarly suppressed by nifedipine (300 nM) and the selective Rho-kinase inhibitors H-1152 (0.1–1 μM) and Y-27632 (1–10 μM). Our findings implicate an EP3 receptor in the prostanoid component of contractile synergism. While the synergism predominantly operates through a Ca2+ influx–Rho-kinase pathway, the EP3 receptor does not necessarily transduce via Rho-kinase.  相似文献   

17.
Activation of EP2 receptors by prostaglandin E2 (PGE2) promotes brain inflammation in neurodegenerative diseases, but the pathways responsible are unclear. EP2 receptors couple to Gαs and increase cAMP, which associates with protein kinase A (PKA) and cAMP-regulated guanine nucleotide exchange factors (Epacs). Here, we studied EP2 function and its signaling pathways in rat microglia in their resting state or undergoing classical activation in vitro following treatment with low concentrations of lipopolysaccharide and interferon-γ. Real time PCR showed that PGE2 had no effect on expression of CXCL10, TGF-β1, and IL-11 and exacerbated the rapid up-regulation of mRNAs encoding cyclooxygenase-2, inducible NOS, IL-6, and IL-1β but blunted the production of mRNAs encoding TNF-α, IL-10, CCL3, and CCL4. These effects were mimicked fully by the EP2 agonist butaprost but only weakly by the EP1/EP3 agonist 17-phenyl trinor PGE2 or the EP4 agonist CAY10598 and not at all by the EP3/EP1 agonist sulprostone and confirmed by protein measurements of cyclooxygenase-2, IL-6, IL-10, and TNF-α. In resting microglia, butaprost induced cAMP formation and altered the mRNA expression of inflammatory mediators, but protein expression was unchanged. The PKA inhibitor H89 had little or no effect on inflammatory mediators modulated by EP2, whereas the Epac activator 8-(4-chlorophenylthio)-2′-O-methyladenosine 3′,5′-cyclic monophosphate acetoxymethyl ester mimicked all butaprost effects. These results indicate that EP2 activation plays a complex immune regulatory role during classical activation of microglia and that Epac pathways are prominent in this role.  相似文献   

18.
Suspensions of dispersed bovine luteal cells prepared by collagenase digestion of luteal tissue specifically bound [3H]Prostaglandin (PG) E1 and [3H]PGF. While the number of sites per cell (~ 1.8 × 105) were about the same for both [3H]PGs, the apparent Kds were different: [3H]PGE1 ? 2.4 nM; [3H]PGF ? 11 nM. The [3H]PGs binding was inhibited in a dose-dependent manner in the presence of increasing concentrations of unlabeled PGs. Potency order for inhibition of [3H]PGE1 binding was: PGE2 > PGE1 > PGF > PGF. The corresponding data for [3H]PGF was: PGF > PGF > PGE2 > PGE1. While [3H]PGE1 and [3H]PGF bind to their own receptors with high affinity, their affinities for each other's binding were extremely low. Thus, these results demonstrate that luteal cells, like plasma membranes isolated from luteal tissue, contain receptors for PGEs and PGF which are discrete with respect to specificity and affinity.  相似文献   

19.
20.
Isolated bovine, canine, and human coronary arteries exhibited dose dependent contractions to prostaglandin (PG) E2 and F (50 ng/ml to 10 μg/ml). The ED50 value for both PGE2 and PGF was 500 ng/ml in the bovine and human coronary arteries. Paradoxically, although PGE2 and PGF are vasoconstrictors, administration of their precursor, arachidonate (100 ng/ml to 10 μg/ml) caused relaxation of the bovine, canine and human coronary arteries. This observation suggests that arachidonate is not being converted by the coronary PG synthetase to PGE2 or PGF. However, the arachidonate induced coronary relaxation was inhibited by pretreatment with PG synthetase inhibitors, indomethacin, meclofenemate and aspirin. Indomethacin addition to the strips previously relaxed by arachidonate caused contraction. In contrast to other PGs (E2 and F), PGE1 (10 ng/ml to 10 μg/ml) caused dose dependent relaxation of the bovine coronary arteries (ED50 = 100 ng/ml). Indomethacin induced further relaxation of the blood vessels previously relaxed by PGE1. Since PGE1 cannot arise from arachidonate, the arachidonate coronary dilation and reversal by indomethacin must be independent of PGE1 formation. Linolenate (100 ng/ml to 10 μg/ml) and oleate (100 ng/ml to 10 μg/ml) also caused relaxation of the bovine coronary blood vessels both before and after indomethacin, thereby eliminating a direct non-specific fatty acid effect as the cause of the arachidonate relaxation. These results suggest that in isolated coronaries, arachidonate undergoes a novel conversion, possibly by PG synthetase, to a dilating substance which exerts different contractile effects than exogenously administered PGE2, PGF and PGE1.This work was supported by (USPHS) training grants NS 05221, RCDA (P.N.) HL-19586, HL-11771A, HL-14397 and SCOR grant HL-17646, HL-17646-0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号