首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The distribution of NADPH-diaphorase activity was examined inthe accessory olfactory bulb of the rat using a direct histochemicaltechnique. Labeled fibers and somata were found in all layersof the accessory olfactory bulb. The entire vomeronasal nerveand all vomeronasal glomeruli were strongly labeled, contraryto the main olfactory bulb, where only dorsomedial olfactoryglomeruli displayed NADPH-diaphorase activity. NADPH-diapborasepositive neurons were identified as periglomerular cells inthe glomerular layer and external plexiform layer, horizontalcells in the internal plexiform layer, and granule cells anddeep short-axon cells in the granule cell layer. The labeleddendrites of the granule cells formed a dense neuropile in thegranule cell layer, internal plexiform layer and external plexiformlayer. The staining pattern in the accessory olfactory bulbwas more complex than what has been previously reported, anddemonstrated both similarities and differences with the distributionof NADPH-diaphorase in the main olfactory bulb.  相似文献   

2.
With the aid of a sheep antiserum against rat brain glutamate decarboxylase (GAD), the endogenous marker for GABAergic neurons, we have labeled immunocytochemically various types of nerve cells in the main olfactory bulb of rats, with and without topic injections of colchicine. The peroxidase-antiperoxidase procedure was applied to floating Vibratome and frozen sections. A large part of the periglomerular cell population and practically all granule cells in the deep layers contain GAD-like immunoreactivity in untreated rats, while tufted and mitral cells (the projection neurons) are unstained. This observation confirms a previous study with a rabbit antiserum against mouse brain GAD, which suggested that GABAergic neurons with presynaptic dendrites contain high somatal concentrations of GAD. We show, however, that immunostaining of granule cell bodies decreases progressively from the internal plexiform layer to the deep portion of the granule cell layer. Many cell processes in the glomeruli are densely stained. They presumably represent synaptic gemmules of the numerous GAD-positive periglomerular cells, which thus could provide initial, inhibitory modulation of the afferent input. In the external plexiform layer immunostaining of the neuropil is substantially denser in the superficial half than in the deep half. This may reflect a corresponding gradient of inhibition related to unequal frequency of occurrence of synaptic gemmules of granule cell dendrites. Alternatively such a graded immunostaining of cell processes could be related to the corresponding gradient in the density of immunostaining of granule cell bodies in the deep layers, in accordance with recent data indicating that superficial and deep granule cells project their ascending dendrites respectively to superficial and deep portions of the external plexiform layer. Furthermore, we have demonstrated the presence of additional classes of GAD-positive neurons, microneurons in the external plexiform layer, small neurons in the periglomerular region, the external plexiform layer, the mitral cell layer, the internal plexiform layer, and medium-size neurons in the granule layer and the white matter. The small- and medium-size GAD-positive neurons appear weakly immunoreactive in untreated rats, but become densely stained after topic colchicine injection. Such cells presumably lack presynaptic dendrites and may correspond to different types of short axon cells demonstrated by the Golgi method.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Transregulation of erbB expression in the mouse olfactory bulb.   总被引:2,自引:0,他引:2  
Previously, we have shown that erbB-3 expression is restricted to the ensheathing cells of the olfactory nerve layer, while erbB-4 is found in the periglomerular and mitral/tufted cells of the olfactory bulb and in cells coming out from the rostral migratory stream of the subependymal layer. In the present work, we have treated adult mice with zinc sulfate intranasal irrigation and analyzed erbB-3 and erbB-4 expression in the deafferented olfactory bulb. Following treatment, olfactory axons undergo degeneration, as indicated by the loss of OMP expression in the deafferented olfactory bulb. The thickness of the olfactory nerve layer is reduced, but the specific intensity of erbB-3 labeling in the remaining olfactory nerve layer is increased with respect to control. Interestingly, following deafferentation, erbB-4 immunoreactivity decreases specifically in cell types that normally make synaptic contacts with primary olfactory neurons in the glomeruli, i.e. periglomerular and mitral/tufted cells. Partial lesion of the olfactory epithelium allows regenerative axon growth of olfactory neurons to the olfactory bulb. Following olfactory axon regeneration, erbB-3 and erbB-4 immunoreactivity in the olfactory bulb is similar to control. Thus, like tyrosine hydroxylase, the down regulation of erbB-4 expression in the periglomerular cells is reversible.  相似文献   

4.
Summary We have studied the distribution of calbindin D-28k immunoreactivity in the rat olfactory bulb using specific monoclonal antibodies and the avidin-biotin-immunoperoxidase method. The largest number of positive neurons was located in the periglomerular layer. These neurons were identified as periglomerular cells; they have been described also by other authors as calbindin-positive elements. Close to these neurons, a second population of nerve cells was identified as superficial shortaxon neurons. The remaining layers showed a smaller number of stained elements. Other labeled neurons were located along the external border of the external plexiform layer; the scarce neurons marking its internal border were identified as van Gehuchten cells. No immunoreactive structures were found in the mitral cell layer, although we observed another population of immunostained short-axon cells at its internal border. Some reactive structures, identified by us as horizontal and vertical cells of Cajal, were located in the boundary zone between the internal plexiform layer and the granule layer. In the white matter, we found a neuronal type characterized by its large size and oriented arborization of varicose dendrites.  相似文献   

5.
Pannexins form membrane channels that release biological signals to communicate with neighboring cells. Here, we report expression patterns of pannexin 1 (Panx1) and pannexin 2 (Panx2) in the olfactory epithelium and olfactory bulb of adult mice. In situ hybridization revealed that mRNAs for Panx1 and Panx2 were both expressed in the olfactory epithelium and olfactory bulb. Expression of Panx1 and Panx2 was mainly found in cell bodies below the sustentacular cell layer in the olfactory epithelium, indicating that Panx1 and Panx2 are expressed in mature and immature olfactory neurons, and basal cells. Expression of Panx2 was observed in sustentacular cells in a few locations of the olfactory epithelium. In the olfactory bulb, Panx1 and Panx2 were expressed in spatial patterns. Many mitral cells, tufted cells, periglomerular cells and granule cells were Panx1 and Panx2 positive. Mitral cells located at the dorsal and lateral portions of the olfactory bulb showed weak Panx1 expression compared with those in the medial side. However, the opposite was true for the distribution of Panx2 positive mitral cells. There were more Panx2 mRNA positive mitral cells and granule cells compared to those expressing Panx1. Our findings on pannexin expression in the olfactory system of adult mice raise the novel possibility that pannexins play a role in information processing in the olfactory system. Demonstration of expression patterns of pannexins in the olfactory system provides an anatomical basis for future functional studies.  相似文献   

6.
1) Two efferent neurone populations - mitral and tufted cells - are present in the main structure of the rat olfactory bulb. 2) The tufted cells, whose axons leave the olfactory bulb, are scattered throughout the whole of the outer plexiform layer and some of them lie in the periglomelural layer. 3) The axons of some of the tufted cells lead to the rostral part of the prepyriform cortex (the anterior olfactory nucleus). 4) Our findings do not indicate that the tufted cells ensure monosynapltic interbulbar connection.  相似文献   

7.
Pressler RT  Strowbridge BW 《Neuron》2006,49(6):889-904
Inhibitory local circuits in the olfactory bulb play a critical role in determining the firing patterns of output neurons. However, little is known about the circuitry in the major plexiform layers of the olfactory bulb that regulate this output. Here we report the first electrophysiological recordings from Blanes cells, large stellate-shaped interneurons located in the granule cell layer. We find that Blanes cells are GABAergic and generate large I(CAN)-mediated afterdepolarizations following bursts of action potentials. Using paired two-photon guided intracellular recordings, we show that Blanes cells have a presumptive axon and monosynaptically inhibit granule cells. Sensory axon stimulation evokes barrages of EPSPs in Blanes cells that trigger long epochs of persistent spiking; this firing mode was reset by hyperpolarizing membrane potential steps. Persistent firing in Blanes cells may represent a novel mechanism for encoding short-term olfactory information through modulation of tonic inhibitory synaptic input onto bulbar neurons.  相似文献   

8.
aftographic exeperiments on the localization of radiolabelednoradrenaline, dopamine and dopa, as well as immunohistochemicalstudies on hydroxylase-like activity, are summarized and comparedin both rat and turtle olfactory bulbs. Evoked field potentialstudies on effects of dopamine are also discussed. The histochemicalstudies suggest that dopaminergic periglomerular neurons arethe most significant cellular component of the catecholaminergicsystem in the olfactory bulb of both species. Scattered fluorescentcell group was also present in the internal plexiform layerand superficial granule cell layer of the turtle olfactory bulb.Other fibres, not related to intrinsic bulbar neuronal cellbodies, were also labeled, mostly in the granule cell layerbut also in the external plexiform layer. These might belongto a centrifugal catecholaminergic system from brain stem neurons.In the in vitro turtle olfactory bulb, dopamine and apomorphinedepressed the amplitude of field potentials evoked by a singlevolley in the olfactory nerve or lateral olfactory tract, andreduced the depression and latency of reponses when paired volleywere delivered. It is suggested that catecholaminergic systemsplay a key role in modulating mitral cell activity through actionsin both superficial (glomerular) and deep (granule) layers.This may involve direct actions, or other, non-catecholaminergicinterneurons.  相似文献   

9.
Liu N 《Chemical senses》2000,25(4):401-406
Unilateral naris closure produced dramatic down-regulation of tyrosine hydroxylase (TH) gene expression in periglomerular dopaminergic neurons in the olfactory bulb. To explore molecular mechanisms of TH gene regulation, the present study investigated the regional distribution of protein kinase A (PKAalpha), protein kinase C (PKCalpha), and CaM kinases II (CaMKIIalpha, beta) and IV (CaMKIV) in the normal olfactory bulb and in response to odor deprivation. Strong PKAalpha immunostaining was found in the glomerular, granule cell, external plexiform and olfactory nerve layers. PKCalpha staining was strong in granule cell and external plexiform layers but weak in the glomerular layer. Whereas CaMKIV was primarily found in granule cells, CaMKII was present in the glomerular, external plexiform, mitral cell and granule cell layers. No change in immunoreactivities of these kinases occurred in the olfactory bulb ipsilateral to naris closure. The expression of PKAalpha, PKCalpha and CaMKII, but not CaMKIV, in periglomerular cells suggests that these three kinases may play a role in TH gene regulation in the olfactory bulb. The lack of change in kinase protein levels after naris closure also suggests that any involvement of these kinases in TH gene expression in the olfactory bulb must be through altered kinase activity and not protein levels.  相似文献   

10.
In the present study, we investigated changes in glutamate decarboxylase 65 (GAD65) and GAD67 immunoreactivity and protein levels in the main olfactory bulb (MOB) after 5 min of transient forebrain ischemia in gerbils. GAD65 immunoreactivity in the sham-operated group was shown in neurons and neuropil except for the somata of granule cells. GAD65 immunoreactivity was increased in neurons in the external plexiform layer 60 days after ischemia, and in mitral cells 30 and 60 days after ischemia. GAD67 immunoreactivity in the sham-operated group was shown in periglomerular cells, neuron in the external plexiform layer and granule cells with neuropil. GAD67 immunoreactivity in periglomerular cells was increased 10, 45 and 60 days after ischemia. GAD67 immunoreactivity in neurons in the external plexiform layer was increased 10 and 15 days after ischemia. Mitral cells showed strong GAD67 immunoreactivity 10 days after ischemia. However, GAD67 immunoreactivity in the granule cells was not changed with time after ischemia. In Western blot analysis for GAD65 and GAD67 protein levels in the ischemic gerbil MOB, GAD65 level was not changed after ischemia; GAD67 level was increased 10 days after ischemia. These results suggest that transient ischemia causes changes in GAD65 and GAD67 immunoreactivity in the gerbil MOB, and this change may induce a malfunction in olfaction after an ischemic insult. Ki-Yeon Yoo and In Koo Hwang equally contributed to this article.  相似文献   

11.
Summary The ultrastructure of differentiating rat presumptive olfactory bulb in organ culture was investigated with particular reference to mitral cell differentiation and formation of synapses. The presumptive olfactory bulb and olfactory mucosa were dissected en bloc from rat embryos on the fifteenth day of gestation and cultured for 7 days, after which the expiants were examined by electron microscopy. The presumptive olfactory bulb had differentiated into a laminated structure with layers corresponding to the glomerular, external plexiform and mitral cell layers. Mitral-like cells were identified by their location and large cell size. Ultrastructural observations indicated that they were relatively well-differentiated. Their dendrites extended into the glomerular layer in which they were postsynaptic to incoming olfactory axons. The distal part of these dendrites frequently contained coated vesicles. Both asymmetrical and symmetrical synapses were found. The symmetrical synapses involved dendrodendritic contacts between periglomerular cells. Synapses in reciprocal arrangements were not observed in the organ cultures.  相似文献   

12.
The structure of the olfactory bulb in tadpoles of Xenopus laevis (stages 54-56) was studied using axon tracing (with biocytin or low-weight dextran) and immunocytochemical techniques. Filling the olfactory nerve with biocytin made the nerve layer and the glomeruli visible. Dye injections into the glomerular layer labeled the lateral olfactory tract. Vice versa, dye injections into the lateral olfactory tract made mitral cells and their glomerular branching patterns visible. Anti-GABA antiserum stained periglomerular and granule cells, while the olfactory nerve and mitral cells were labeled by antiglutamate antiserum. We describe the layering, the numbers of cells and glomeruli, and their localization in both the main and the accessory olfactory bulb.  相似文献   

13.
LHRH was immunocytochemically localized within the olfactory bulb of prepubertal (n = 3), ovariectomized (n = 3), and hypophyseal-stalk-transected (HST) female pigs (n = 3). Perikarya of LHRH-immunoreactive neurons of all pigs were sparsely distributed mostly in the rostral half of the olfactory bulb, along the ventromedial and ventrolateral edge of the olfactory nerve layer, or at its interace with the glomerular layer. Processes from these cells and other LHRH containing axons either entered individual glomeruli forming a network within its interior or coursed around glomeruli penetrating into the external granular layers. Additional fibers penetrated into similar regions of the accessory olfactory bulb. Irregularly shaped perikarya were also detected within the internal granular layer of the ventral olfactory bulb, but only in tissue from HST pigs. From analysis of serial sections, there was no evidence of LHRH projections across the olfactory peduncle that connects the olfactory bulb with adjacent brain regions. If olfactory LHRH neurons are involved in reproductive behavior and physiology in the pig, this pathway involves additional unidentified intervening neurons. Endocrine factors probably influence the expression of immunoreactive LHRH in the internal granule layer, since their presence was revealed only in HST pigs.  相似文献   

14.
The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory bulb remain poorly understood. Using in vivo electroporation and monosynaptic tracing, we show that postnatal-born granule cells form synaptic connections with centrifugal inputs and mitral/tufted cells in the mouse olfactory bulb. In addition, newly born granule cells receive extensive input from local inhibitory short axon cells, a poorly understood cell population. The connectivity of short axon cells shows clustered organization, and their synaptic input onto newborn granule cells dramatically and selectively expands with odor stimulation. Our findings suggest that sensory experience promotes the synaptic integration of new neurons into cell type-specific olfactory circuits.  相似文献   

15.
The nerve fiber layer of the opossum olfactory bulb, formed by axons originating from bipolar neurons in the olfactory epithelium, and glomeruli are intensely immunoreactive for olfactory marker protein. The surrounding extra-glomerular neuropil contains numerous periglomerular neurons immunoreactive for either tyrosine hydroxylase or corticotropin releasing factor. Dendrites of both types of immunoreactive neurons extend into the intraglomerular neuropil. CRF-immunoreactive neurons are fewer in number than TH-immunoreactive neurons and are observed primarily in the periglomerular region. Occasional, scattered TH-immunoreactive neurons are seen in the deeper layers of the olfactory bulb.  相似文献   

16.
In order to reveal excitatory amino acid-ergic neuronal connections in the rat olfactory bulb, uptake sites for the tritiated D-aspartic acid were analyzed by high resolution autoradiography. Light microscopy revealed both cellular and terminal-like uptake. Based on electron microscopy, overwhelming majority of the cellular uptake was assigned to glial cells. A fairly high number of labelled terminals appeared in the surroundings of the mitral cell somata, within the deepest portion of the external plexiform layer, in the internal plexiform layer and in the outer half of the granule cell layer. Labelled terminals synapsed onto likely granule cell dendrites or spines, at asymmetric membrane thickenings. These results suggest that, although the output neurons may not utilize glutamic or aspartic acid as their transmitters, these amino acids may, however, contribute to the bulbar neurotransmission, as mediator substances of a subgroup of centrifugal fibers to the olfactory bulb.  相似文献   

17.
The distribution of calbindin, calretinin and parvalbumin during the development of the mouse main olfactory bulb (MOB) was studied using immunohistochemistry techniques. The results are as follows:(1) calbindin-immunoreactive profiles were mainly located in the glomerular layer, and few large calbindin-immunoreactive cells were found in the subependymal layer of postnatal day 10 (P10) to postnatal day 40 (P40) mice; (2) no calbindin was detected in the mitral cell layer at any stage; (3) calretinin-immunoreactive profiles were present in all layers of the main olfactory bulb at all stages, especially in the olfactory nerve layer, glomerular layer and granule cell layer; (4) parvalbumin-immunoreactive profiles were mainly located in the external plexiform layer (except for P10 mice); (5) weakly stained parvalbumin-immunoreactive profiles were present in the glomerular layer at all stages; and (6) no parvalbumin was detected in the mitral cell layer at any stage.  相似文献   

18.
The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on beta-galactosidase (beta-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNF(lacZneo) mice). We find that beta-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of beta-gal in gamma-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB.  相似文献   

19.
Molecular mechanisms of neurotrophin signaling on dendrite development and dynamics are only partly understood. To address the role of brain-derived neurotrophic factor (BDNF) in the morphogenesis of GABAergic neurons of the main olfactory bulb, we analyzed mice lacking BDNF, mice carrying neurotrophin-3 (NT3) in the place of BDNF, and TrkB signaling mutant mice with a receptor that can activate phospholipase Cgamma (PLCgamma) but is unable to recruit the adaptors Shc/Frs2. BDNF deletion yielded a compressed olfactory bulb with a significant loss of parvalbumin (PV) immunoreactivity in GABAergic interneurons of the external plexiform layer. Dendrite development of PV-positive interneurons was selectively attenuated by BDNF since other Ca2+ -binding protein-containing neuron populations appeared unaffected. The deficit in PV-positive neurons could be rescued by the NT3/NT3 alleles. The degree of PV immunoreactivity was dependent on BDNF and TrkB recruitment of the adaptor proteins Shc/Frs2. In contrast, PLCgamma signaling from the TrkB receptor was sufficient for dendrite growth in vivo and consistently, blocking PLCgamma prevented BDNF-dependent dendrite development in vitro. Collectively, our results provide genetic evidence that BDNF and TrkB signaling selectively regulate PV expression and dendrite growth in a subset of neurochemically-defined GABAergic interneurons via activation of the PLCgamma pathway.  相似文献   

20.
In recent years the evolution of olfactory bulb periglomerular cells, as well as the function of periglomerular cells in olfactory encoding, has attracted increasing attention. Studies of neural information encoding based on the analysis of simulation and modeling have given rise to electrophysiological models of periglomerular cells, which have an important role in the understanding of the biology of these cells. In this review we provide a brief introduction to the anatomy of the olfactory system and the cell types in the olfactory bulb. We elaborate on the latest progress in the study of the heterogeneity of periglomerular cells based on different classification criteria, such as molecular markers, structure, ion channels and action potentials. Then, we discuss the several existing electrophysiological models of periglomerular cells, and we highlight the problems and defects of these models. Finally, considering our present work, we propose a future direction for electrophysiological investigations of periglomerular cells and for the modeling of periglomerular cells and olfactory information encoding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号