首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
4-coumarate:CoA ligase (4CL), the last enzyme of the general phenylpropanoid pathway, provides precursors for the biosynthesis of a large variety of plant natural products. 4 CL catalyzes the formation of CoA thiol esters of 4-coumarate and other hydroxycinnamates in a two step reaction involving the formation of an adenylate intermediate. 4 CL shares conserved peptide motifs with diverse adenylate-forming enzymes such as firefly luciferases, non-ribosomal peptide synthetases, and acyl:CoA synthetases. Amino acid residues involved in 4 CL catalytic activities have been identified, but domains involved in determining substrate specificity remain unknown. To address this question, we took advantage of the difference in substrate usage between the Arabidopsis thaliana 4 CL isoforms At4CL1 and At4CL2. While both enzymes convert 4-coumarate, only At4CL1 is also capable of converting ferulate. Employing a domain swapping approach, we identified two adjacent domains involved in substrate recognition. Both substrate binding domain I (sbd I) and sbd II of At4CL1 alone were sufficient to confer ferulate utilization ability upon chimeric proteins otherwise consisting of At4CL2 sequences. In contrast, sbd I and sbd II of At4CL2 together were required to abolish ferulate utilization in the context of At4CL1. Sbd I corresponds to a region previously identified as the substrate binding domain of the adenylation subunit of bacterial peptide synthetases, while sbd II centers on a conserved domain of so far unknown function in adenylate-forming enzymes (GEI/LxIxG). At4CL1 and At4CL2 differ in nine amino acids within sbd I and four within sbd II, suggesting that these play roles in substrate recognition.  相似文献   

2.
4-Coumarate:coenzyme A ligase (4CL) plays a key role in phenylpropanoid metabolism, providing precursors for a large variety of important plant secondary metabolites, such as lignin, flavonoids, and phytoalexins. Although 4CLs have been believed to be specific to plants, a gene encoding a 4CL-like enzyme which shows more than 40% identity in amino acid sequence to plant 4CLs was found in the genome of the gram-positive, filamentous bacterium Streptomyces coelicolor A3(2). The recombinant enzyme, produced in Escherichia coli with a histidine tag at its N-terminal end, showed distinct 4CL activity. The optimum pH and temperature of the reaction were pH 8.0 and 30 degrees C, respectively. The K(m) value for 4-coumarate and k(cat) were determined as 131 +/- 4 micro M and 0.202 +/- 0.007 s(-1), respectively. The K(m) value was comparable to those of plant 4CLs. The substrate specificity of this enzyme was, however, distinctly different from those of plant 4CLs. The enzyme efficiently converted cinnamate (K(m), 190 +/- 2 micro M; k(cat), 0.475 +/- 0.012 s(-1)), which is a very poor substrate for plant 4CLs. Furthermore, the enzyme showed only low activity toward caffeate and no activity toward ferulate, both of which are generally good substrates for plant 4CLs. The enzyme was therefore named ScCCL for S. coelicolor A3(2) cinnamate CoA ligase. To determine the amino acid residues providing the unique substrate specificity of ScCCL, eight ScCCL mutant enzymes having a mutation(s) at amino acid residues that probably line up along the substrate-binding pocket were generated. Mutant A294G used caffeate as a substrate more efficiently than ScCCL, and mutant A294G/A318G used ferulate, which ScCCL could not use as a substrate, suggesting that Ala(294) and Ala(318) are involved in substrate recognition. Furthermore, the catalytic activities of A294G and A294G/A318G toward cinnamate and 4-coumarate were greatly enhanced compared with those of the wild-type enzyme.  相似文献   

3.
Two temperature-sensitive mutants (lysS1 and lysS2) of the lysyl-transfer ribonucleic acid synthetase (l-lysine:tRNA ligase [adenosine 5'-monophosphate], EC 6.1.1.6) of Bacillus subtilis have been isolated. Although protein synthesis is inhibited in both mutants at the restrictive temperature (42 to 45 C), the mutants remain viable in a minimal medium. In comparison with the wild-type lysyl-tRNA synthetase, the l-lysine-dependent exchange of [(32)P]pyrophosphate with adenosine 5'-triphosphate (ATP) for both mutant enzymes is decreased. The lysS1 enzyme is completely defective in the ATP-dependent attachment of l-lysine to tRNA, whereas the lysS2 enzyme has 3- to 10-fold reduced levels of this activity. Temperature-resistant transformants have wild-type enzyme levels, whereas partial revertants to temperature resistance have varied levels of enzyme activity. The attachment and exchange activities of the lysS2 enzyme are more heat labile in vitro than the wild-type enzyme, as is the attachment activity of a partial revertant of the lysS1 mutant. The lysS1 and the lysS2 lysyl-tRNA synthetases have higher apparent K(m) values for lysine and ATP, in both the activation and the attachment reactions. The lysS2 enzyme has a V(max) for tRNA(lys) one-third that of the wild-type enzyme. Molecular weights of approximately 150,000 for the wild-type and lysS2 enzymes and approximately 76,000 for the lysS1 enzyme were estimated from sedimentation positions in sucrose density gradients assayed by the ATP-pyrophosphate exchange activity. We propose that the two mutations (lysS1 and lysS2) directly affect the sites for exchange activity, but indirectly alter attachment activity as a consequence of defective subunit association.  相似文献   

4.
The Multidrug Resistance Protein, MRP1 (ABCC1) confers drug resistance and transports organic anions such as leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-D-glucuronide) (E(2)17betaG). Previous studies showed that portions of the first membrane spanning domain (MSD1) and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. We have replaced 12 prolines in MSD1 and CL3 with alanine and determined the effects of these substitutions on MRP1 expression and transport activity. All singly substituted MRP1-Pro mutants could be expressed in HeLa cells, except MRP1-P104A. The expressed mutants also transported LTC(4) and E(2)17betaG, and their K(m) (LTC(4)) values were similar to wild-type MRP1. Expression of the double mutant MRP1-P42/51A was reduced by >80% although it localized to the plasma membrane and transported organic anions. MRP1 expression was also reduced when the first transmembrane helix (amino acids 37-54) was deleted. In contrast, the phenotypes of the multiply substituted CL3 mutants MRP1-P196/205/207/209A and MRP1-P235/255A were comparable to wild-type MRP1. However, Pro(255)-substituted MRP1 mutants showed reduced immunoreactivity with a monoclonal antibody (MAb) whose epitope is located in CL3. We conclude that certain prolines in MSD1 and CL3 play a role in the expression and structure of MRP1.  相似文献   

5.
1-Deoxy-d-xylulose 5-phosphate (DXP) reductoisomerase, which simultaneously catalyzes the intramolecular rearrangement and reduction of DXP to form 2-C-methyl-d-erythritol 4-phosphate, constitutes a key enzyme of an alternative mevalonate-independent pathway for isopentenyl diphosphate biosynthesis. The dxr gene encoding this enzyme from Escherichia coli was overexpressed as a histidine-tagged protein and characterized in detail. DNA sequencing analysis of the dxr genes from 10 E. coli dxr-deficient mutants revealed base substitution mutations at four points: two nonsense mutations and two amino acid substitutions (Gly(14) to Asp(14) and Glu(231) to Lys(231)). Diethyl pyrocarbonate treatment inactivated DXP reductoisomerase, and subsequent hydroxylamine treatment restored the activity of the diethyl pyrocarbonate-treated enzyme. To characterize these defects, we overexpressed the mutant enzymes G14D, E231K, H153Q, H209Q, and H257Q. All of these mutant enzymes except for G14D were obtained as soluble proteins. Although the purified enzyme E231K had wild-type K(m) values for DXP and NADPH, the mutant enzyme had less than a 0.24% wild-type k(cat) value. K(m) values of H153Q, H209Q, and H257Q for DXP increased to 3.5-, 7.6-, and 19-fold the wild-type value, respectively. These results indicate that Glu(231) of E. coli DXP reductoisomerase plays an important role(s) in the conversion of DXP to 2-C-methyl-d-erythritol 4-phosphate, and that His(153), His(209), and His(257), in part, associate with DXP binding in the enzyme molecule.  相似文献   

6.
The initiation of protein synthesis by Streptococcus faecalis R grown in folate-free culture occurs without N-formylation or N-acylation of methionyl-tRNA(f) (Met). Methionyl-tRNA synthetase and methionyl-tRNA formyltransferase were partially purified from S. faecalis grown under normal culture conditions in the presence of folate (plus-folate); the general properties of the enzymes were determined and compared with the properties of the enzymes purified from wild-type cells grown in the absence of folate (minus-folate). S. faecalis methionyl-tRNA synthetase displays optimal activity at pH values between 7.2 and 7.8, requires Mg(2+), and has an apparent molecular weight of 106,000, as determined by gel filtration, and 127,000, as determined by sucrose density gradient centrifugation. The K(m) values of plus-folate methionyl-tRNA synthetase for each of the three substrates in the aminoacylation reaction (l-methionine, adenosine triphosphate, and tRNA) are nearly identical to the respective substrate Michaelis constants of minus-folate methionyl-tRNA synthetase. Furthermore, both plus- and minus-folate S. faecalis methionyl-tRNA synthetases catalyze, at equal rates, the aminoacylation of tRNA(f) (Met) and tRNA(m) (Met) isolated from either plus-folate or minus-folate cells. S. faecalis methionyl-tRNA formyltransferase displays optimal activity at pH values near 7.0, is stimulated by Mg(2+), and has an apparent molecular weight of approximately 29,900 when estimated by sucrose density gradient centrifugation. The K(m) value of plus-folate formyltransferase for plus-folate Met-tRNA(f) (Met) does not differ significantly from that of minus-folate formyltransferase for minus-folate Met-tRNA(f) (Met). Both enzymes can utilize either 10-formyltetrahydrofolate or 10-formyltetrahydropteroyltriglutamate as the formyl donor; the Michaelis constant for the monoglutamyl pteroyl coenzyme is slightly less than that of the triglutamyl pteroyl coenzyme for both transformylases. Tetrahydrofolate and uncharged tRNA(f) (Met) are competitive inhibitors of both plus- and minus-folate S. faecalis formyltransferase; folic acid, pteroic acid, aminopterin, and Met-tRNA(m) (Met) are not inhibitory. These results indicate that the presence or absence of folic acid in the culture medium of S. faecalis has no apparent effect on either methionyl-tRNA synthetase or methionyl-tRNA formyltransferase, the two enzymes directly involved in the formation of formylmethionyl-tRNA(f) (Met). Therefóre, the lack of N-formylation of Met-tRNA(f) (Met) in minus-folate S. faecalis is due to the absence of the formyl donor, a 10-formyl-tetrahydropteroyl derivative. Although the general properties of S. faecalis methionyl-tRNA synthetase are similar to those of other aminoacyl-tRNA synthetases, S. faecalis methionyl-tRNA formyltransferase differs from other previously described transformylases in certain kinetic parameters.  相似文献   

7.
Adenylosuccinate synthetases from different sources contain an N-terminal glycine-rich sequence GDEGKGK, which is homologous to the conserved sequence GXXXXGK found in many other guanine nucleotide-binding proteins or enzymes. To determine the role of this sequence in the structure and function of Escherichia coli adenylosuccinate synthetase, site-directed mutagenesis was performed to generate five mutant enzymes: G12V (Gly12----Val), G15V (Gly15----Val), G17V (Gly17----Val), K18R (Lys18----Arg), and I19T (Ile19----Thr). Comparison of the kinetic properties of the wild-type enzyme and those of the mutant enzymes revealed that the sequence is critical for enzyme activity. Replacement of Gly12, Gly15, or Gly17 with Val, or replacement of Lys18 with Arg, resulted in significant decreases in the kcat/Km values of the enzyme. Because the consensus sequence GXXXXGK(T/S) has been found in many GTP-binding proteins, isoleucine at position 19 in the E. coli adenylosuccinate synthetase was changed to threonine to produce the sequence GDEGKGKT. This mutation, which more closely resembles the consensus sequence, resulted in a 160-fold increase in the Km value for substrate GTP; however, there were no great changes for the other two substrates, IMP and aspartate. Based on these data, we suggest that the N-terminal glycinerich sequence in E. coli adenylosuccinate synthetase plays a more important role in enzyme catalysis than in substrate binding. In addition, a hydrophobic amino acid residue such as isoleucine, leucine, or valine, rather than threonine, may play a critical role in GTP binding in adenosuccinate synthetase. These findings suggest that the glycine-rich sequence in adenylosuccinate synthetase functions differently relative to those in other GTP binding proteins or enzymes.  相似文献   

8.
We have performed random mutagenesis coupled with selection to isolate mutant enzymes with high catalytic activities at low temperature from thermophilic 3-isopropylmalate dehydrogenase (IPMDH) originally isolated from Thermus thermophilus. Five cold-adapted mutant IPMDHs with single-amino-acid substitutions were obtained and analyzed. Kinetic analysis revealed that there are two types of cold-adapted mutant IPMDH: k(cat)-improved (improved in k(cat)) and K(m)-improved (improved in k(cat)/K(m)) types. To determine the mechanisms of cold adaptation of these mutants, thermodynamic parameters were estimated and compared with those of the Escherichia coli wild-type IPMDH. The Delta G(m) values for Michaelis intermediate formation of the k(cat)-improved-type enzymes were larger than that of the T. thermophilus wild-type IPMDH and similar to that of the E. coli wild-type IPMDH. The Delta G(m) values of K(m)-improved-type enzymes were smaller than that of the T. thermophilus wild-type IPMDH. Fitting of NAD(+) binding was improved in the K(m)-improved-type enzymes. The two types of cold-adapted mutants employed one of the two strategies of E. coli wild-type IPMDH: relative destabilization of the Michaelis complex in k(cat)-improved-type, and destabilization of the rate-limiting step in K(m)-improved type mutants. Some cold-adapted mutant IPMDHs retained thermostability similar to that of the T. thermophilus wild-type IPMDH.  相似文献   

9.
10.
The primary structures of cis-prenyltransferases are completely different from those of trans-prenyltransferases. To obtain information about amino acid residues relating to catalytic function, random mutation of the undecaprenyl diphosphate synthase gene of Micrococcus luteus B-P 26 was carried out to construct a mutated gene library using an error-prone polymerase chain reaction. From the library, the mutants showing poor enzymatic activity were selected by the colony autoradiography method. Among 31 negative clones selected from 3,000 mutants, two clones were found to contain only one amino acid substitution at either Asn-77 or Trp-78. To determine the functional roles of these interesting residues, we prepared six mutated enzymes with substitutions at residues Asn-77 or Trp-78 by site-directed mutagenesis. Substitution of Asn-77 with Ala, Asp, or Gln resulted in a dramatic decrease in catalytic activity, but the K(m) values for both allylic and homoallylic substrates of these mutant enzymes were comparable to those of the wild-type. On the other hand, three Trp-78 mutants, W78I, W78R, and W78D, showed 5-20-fold increased K(m) values for farnesyl diphosphate but not for Z-geranylgeranyl diphosphate. However, these mutants showed moderate levels of enzymatic activity and comparable K(m) values for isopentenyl diphosphate to that of the wild-type. These results suggest that the Asn-Trp motif is involved in the binding of farnesyl diphosphate and enzymatic catalysis.  相似文献   

11.
Random PCR mutagenesis was applied to the Thermus thermophilus xylA gene encoding xylose isomerase. Three cold-adapted mutants were isolated with the following amino-acid substitutions: E372G, V379A (M-1021), E372G, F163L (M-1024) and E372G (M-1026). The wild-type and mutated xylA genes were cloned and expressed in Escherichia coli HB101 using the vector pGEM-T Easy, and their physicochemical and catalytic properties were determined. The optimum pH for xylose isomerization activity for the mutants was approximately 7.0, which is similar to the wild-type enzyme. Compared with the wild-type, the mutants were active over a broader pH range. The mutants exhibited up to nine times higher catalytic rate constants (k(cat)) for d-xylose compared with the wild-type enzyme at 60 degrees C, but they did not show any increase in catalytic efficiency (k(cat)/K(m)). For d-glucose, both the k(cat) and the k(cat)/K(m) values for the mutants were increased compared with the wild-type enzyme. Furthermore, the mutant enzymes exhibited up to 255 times higher inhibition constants (K(i)) for xylitol than the wild-type, indicating that they are less inhibited by xylitol. The thermal stability of the mutated enzymes was poorer than that of the wild-type enzyme. The results are discussed in terms of increased molecular flexibility of the mutant enzymes at low temperatures.  相似文献   

12.
The cytoplasmic leucyl-tRNA synthetases of Neurospora crassa wild type (grown at 37 degrees C) and mutant (grown at 28 degrees C) were purified approximately 1770-fold and 1440-fold respectively. Additional enzyme preparations were carried out with mutant cells grown for 24 h at 28 degrees C and transferred then to 37 degrees C for 10-70 h of growth. The mitochondrial leucyl-tRNA synthetase of the wild type was purified approximately 722-fold. The mitochondrial mutant enzyme was found only in traces. The cytoplasmic leucyl-tRNA synthetase from the mutant (grown at 37 degrees C) in vivo is subject of a proteolytic degradation. This leads to an increased pyrophosphate exchange, without altering aminoacylation. Proteolysis in vitro by trypsin or subtilisin of isolated cytoplasmic wild-type and mutant leucyl-tRNA synthetases, however, did not establish and difference in the degradation products and in their catalytic properties. Comparing the cytoplasmic wild-type and mutant enzymes (grown at 28 degrees C) via steady-state kinetics did not show significant differences between these synthetases either. The rate-determining step appears to be after the transfer of the aminoacyl group to the tRNA, e.g. a conformational change or the release of the product. Besides leucine only isoleucine is activated by the enzymes with a discrimination of approximately 1:600; however, no Ile-tRNALeu is released. Similarly these enzymes, when tested with eight ATP analogs, cannot be distinguished. For both enzymes six ATP analogs are neither substrates nor inhibitors. Two analogs are substrates with identical kinetic parameters. The mitochondrial wild-type leucyl-tRNA synthetase is different from the cytoplasmic enzyme, as particularly exhibited by aminoacylating Escherichia coli tRNALeu but not N. crassa cytoplasmic tRNALeu. The presence of traces of the analogous mitochondrial mutant enzyme could be demonstrated. Therefore, the difference between wild-type and mutant leu-5 does not rest in the catalytic properties of the cytoplasmic leucyl-tRNA synthetases. Differences in other properties of these enzymes are not excluded. In contrast the activity of the mitochondrial leucyl-tRNA synthetase of the mutant is approximately 1% of that of the wild-type enzyme.  相似文献   

13.
Itk is a Tec family tyrosine kinase found in T cells that is activated upon ligation of the T cell receptor (TCR/CD3), CD2, or CD28. Itk contains five domains in addition to the catalytic domain: pleckstrin homology, Tec homology which contains a proline-rich region, Src homology 3, and Src homology 2. To provide a basis for understanding the contribution of these various domains to catalysis, recombinant Itk was purified and its substrate specificity determined by steady-state kinetic methods. Measurements of the rates of phosphorylation of various protein substrates, including Src associated in mitosis 68K protein (SAM68), CD28, linker for activation of T cells, and CD3 zeta, at a fixed concentration indicated that SAM68 was phosphorylated most rapidly. Wild-type Itk and three Itk mutants were characterized by comparing their activity (k(cat)) using the SAM68 substrate. A deletion mutant removing the pleckstrin homology domain and part of the Tec homology domain (Itk(Delta152)) had approximately 10-fold less activity than wild type, a mutant with an altered proline-rich domain (P158A,P159A) had a more dramatic 100-fold loss of activity, and the catalytic domain alone was essentially inactive. Itk(Delta152) had K(m) values for ATP and SAM68 nearly identical to those of the wild-type enzyme, while Itk(P158A,P159A) had approximately 3-fold higher K(m) values for each substrate. SAM68 phosphorylation by the wild-type and mutant enzymes in the presence of several tyrosine kinase inhibitors were compared using a homogeneous time-resolved fluorescence assay. Both the Itk(Delta152) deletion mutant and the Itk(P158A,P159A) mutant had IC(50) values similar to those of the wild-type enzyme for staurosporine, PP1, and damnacanthal. These comparisons, taken together with the similar K(m) values for ATP and SAM68 substrate between the wild-type and the mutant enzymes, indicate that the amino acids in the N-terminal 152 residues and proline-rich domains enhance catalysis by affecting turnover rate rather than substrate binding.  相似文献   

14.
Replacing several serine and threonine residues on the Ser/Thr surface of the xylanase from Aspergillus niger BCC14405 with four and five arginines effectively increases the thermostability of the enzyme. The modified enzymes showed 80% of maximal activity after incubating in xylan substrate for 2h at 50 degrees C compared to only 15% activity for wild-type enzyme. The half-life of the mutated enzymes increased to 257+/-16 and 285+/-10 min for the four- and five-arginine mutants, respectively, compared to 14+/-1 min for the wild-type enzyme. Thus, the arginine substitutions effectively increase stability by 18-20-fold. Kinetic parameters of the four-arginine-substitution enzyme were maintained at the level of the wild-type enzyme with the K(m) and V(max) values of 8.3+/-0.1 mgml(-1) and 9556+/-66 (n=3) U mg(-1) protein, respectively. The five-arginine-substitution enzyme showed only slight alteration in K(m) and V(max) with K(m) of 11.7+/-1.7 mgml(-1) and V(max) of 8502+/-65 Umg(-1) protein, indicating lower substrate affinity and catalytic rate. Our study demonstrated that properly introduced arginine residues on the Ser/Thr surface of xylanase family 11 might be very effective in improvement of enzyme thermostability.  相似文献   

15.
Despite the structural similarities between cholesterol oxidase from Streptomyces and that from Brevibacterium, both enzymes exhibit different characteristics, such as catalytic activity, optimum pH and temperature. In attempts to define the molecular basis of differences in catalytic activity or stability, substitutions at six amino acid residues were introduced into cholesterol oxidase using site-directed mutagenesis of its gene. The amino acid substitutions chosen were based on structural comparisons of cholesterol oxidases from Streptomyces and BREVIBACTERIUM: Seven mutant enzymes were constructed with the following amino acid substitutions: L117P, L119A, L119F, V145Q, Q286R, P357N and S379T. All the mutant enzymes exhibited activity with the exception of that with the L117P mutation. The resulting V145Q mutant enzyme has low activities for all substrates examined and the S379T mutant enzyme showed markedly altered substrate specificity compared with the wild-type enzyme. To evaluate the role of V145 and S379 residues in the reaction, mutants with two additional substitutions in V145 and four in S379 were constructed. The mutant enzymes created by the replacement of V145 by Asp and Glu had much lower catalytic efficiency for cholesterol and pregnenolone as substrates than the wild-type enzyme. From previous studies and this study, the V145 residue seems to be important for the stability and substrate binding of the cholesterol oxidase. In contrast, the catalytic efficiencies (k(cat)/K(m)) of the S379T mutant enzyme for cholesterol and pregnenolone were 1.8- and 6.0-fold higher, respectively, than those of the wild-type enzyme. The enhanced catalytic efficiency of the S379T mutant enzyme for pregnenolone was due to a slightly high k(cat) value and a low K(m) value. These findings will provide several ideas for the design of more powerful enzymes that can be applied to clinical determination of serum cholesterol levels and as sterol probes.  相似文献   

16.
Epoxide hydrolase from Agrobacterium radiobacter catalyzes the hydrolysis of epoxides to their diols via an alkyl-enzyme intermediate. The recently solved X-ray structure of the enzyme shows that two tyrosine residues (Tyr152 and Tyr215) are positioned close to the nucleophile Asp107 in such a way that they can serve as proton donor in the alkylation reaction step. The role of these tyrosines, which are conserved in other epoxide hydrolases, was studied by site-directed mutagenesis. Mutation of Tyr215 to Phe and Ala and mutation of Tyr152 to Phe resulted in mutant enzymes of which the k(cat) values were only 2-4-fold lower than for wild-type enzyme, whereas the K(m) values for the (R)-enantiomers of styrene oxide and p-nitrostyrene oxide were 3 orders of magnitude higher than the K(m) values of wild-type enzyme, showing that the alkylation half-reaction is severely affected by the mutations. Pre-steady-state analysis of the conversion of (R)-styrene oxide by the Y215F and Y215A mutants showed that the 1000-fold elevated K(m) values were mainly caused by a 15-40-fold increase in K(S) and a 20-fold reduction in the rate of alkylation. The rates of hydrolysis of the alkyl-enzyme intermediates were not significantly affected by the mutations. The double mutant Y152F+Y215F showed only a low residual activity for (R)-styrene oxide, with a k(cat)/K(m) value that was 6 orders of magnitude lower than with wild-type enzyme and 3 orders of magnitude lower than with the single tyrosine mutants. This indicates that the effects of the mutations were cumulative. The side chain of Gln134 is positioned in the active site of the X-ray structure of epoxide hydrolase. Mutation of Gln134 to Ala resulted in an active enzyme with slightly altered steady-state kinetic parameters compared to wild-type enzyme, indicating that Gln134 is not essential for catalysis and that the side chain of Gln134 mimics bound substrate. Based upon this observation, the inhibitory potential of various unsubstituted amides was tested, resulting in the identification of phenylacetamide as a competitive inhibitor with an inhibition constant of 30 microM.  相似文献   

17.
Two distinct genes encode the 93% homologous type 1 (placenta, peripheral tissues) and type 2 (adrenals, gonads) 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD/isomerase) in humans. Mutagenesis studies using the type 1 enzyme have produced the Y154F and K158Q mutant enzymes in the Y(154)-P-H(156)-S-K(158) motif as well as the Y269S and K273Q mutants from a second motif, Y(269)-T-L-S-K(273), both of which are present in the primary structure of the human type 1 3beta-HSD/isomerase. In addition, the H156Y mutant of the type 1 enzyme has created a chimera of the type 2 enzyme motif (Y(154)-P-Y(156)-S-K(158)) in the type 1 enzyme. The mutant and wild-type enzymes have been expressed and purified. The K(m) value of dehydroepiandrosterone is 13-fold greater, and the maximal turnover rate (K(cat)) is 2-fold greater for wild-type 2 3beta-HSD compared with the wild-type 1 3beta-HSD activity. The H156Y mutant of the type 1 enzyme has substrate kinetic constants for 3beta-HSD activity that are very similar to those of the wild-type 2 enzyme. Dixon analysis shows that epostane inhibits the 3beta-HSD activity of the wild-type 1 enzyme with 14-17-fold greater affinity compared with the wild-type 2 and H156Y enzymes. The Y154F and K158Q mutants exhibit no 3beta-HSD activity, have substantial isomerase activity, and utilize substrate with K(m) values similar to those of wild-type 1 isomerase. The Y269S and K273Q mutants have low, pH-dependent 3beta-HSD activity, exhibit only 5% of the maximal isomerase activity, and utilize the isomerase substrate very poorly. From these studies, a structural basis for the profound differences in the substrate and inhibition kinetics of the wild-type 1 and 2 3beta-HSD, plus a catalytic role for the Tyr(154) and Lys(158) residues in the 3beta-HSD reaction have been identified. These advances in our understanding of the structure/function of human type 1 and 2 3beta-HSD/isomerase may lead to the design of selective inhibitors of the type 1 enzyme not only in placenta to control the onset of labor but also in hormone-sensitive breast, prostate, and choriocarcinoma tumors to slow their growth.  相似文献   

18.
Reger AS  Carney JM  Gulick AM 《Biochemistry》2007,46(22):6536-6546
The adenylate-forming enzymes, including acyl-CoA synthetases, the adenylation domains of non-ribosomal peptide synthetases (NRPS), and firefly luciferase, perform two half-reactions in a ping-pong mechanism. We have proposed a domain alternation mechanism for these enzymes whereby, upon completion of the initial adenylation reaction, the C-terminal domain of these enzymes undergoes a 140 degrees rotation to perform the second thioester-forming half-reaction. Structural and kinetic data of mutant enzymes support this hypothesis. We present here mutations to Salmonella enterica acetyl-CoA synthetase (Acs) and test the ability of the enzymes to catalyze the complete reaction and the adenylation half-reaction. Substitution of Lys609 with alanine results in an enzyme that is unable to catalyze the adenylate reaction, while the Gly524 to leucine substitution is unable to catalyze the complete reaction yet catalyzes the adenylation half-reaction with activity comparable to the wild-type enzyme. The positions of these two residues, which are located on the mobile C-terminal domain, strongly support the domain alternation hypothesis. We also present steady-state kinetic data of putative substrate-binding residues and demonstrate that no single residue plays a dominant role in dictating CoA binding. We have also created two mutations in the active site to alter the acyl substrate specificity. Finally, the crystallographic structures of wild-type Acs and mutants R194A, R584A, R584E, K609A, and V386A are presented to support the biochemical analysis.  相似文献   

19.
CYO1 is required for thylakoid biogenesis in cotyledons of Arabidopsis thaliana. To elucidate the enzymatic characteristics of CYO1, we analyzed the protein disulfide isomerase (PDI) activity of CYO1 using dieosin glutathione disulfide (Di-E-GSSG) as a substrate. The reductase activity of CYO1 increased as a function of Di-E-GSSG, with an apparent K(m) of 824nM and K(cat) of 0.53min(-1). PDI catalyzes dithiol/disulfide interchange reactions, and the cysteine residues in PDI proteins are very important. To analyze the significance of the cysteine residues for the PDI activity of CYO1, we estimated the kinetic parameters of point-mutated CYO1 proteins. C117S, C124S, C135S, and C156S had higher values for K(m) than did wild-type CYO1. C158S had a similar K(m) but a higher K(cat), and C138S and C161S had similar K(m) values but lower K(cat) values than did wild-type CYO1. These results suggested that the cysteine residues at positions 138 and 161 were important for PDI activity. Low PDI activity of CYO1 was observed when NADPH or NADH was used as an electron donor. However, PDI activity was observed with CYO1 and glutathione, suggesting that glutathione may serve as a reducing agent for CYO1 in vivo. Based on analysis with the split-ubiquitin system, CYO1 interacted with the A1 and A2 subunits of PSI and the CP43 and CP47 subunits of PSII. Thus, CYO1 may accelerate the folding of cysteine residue--containing PSI and PSII subunits by repeatedly breaking and creating disulfide bonds.  相似文献   

20.
The importance of the conserved Tyr352 and Asp380 residues of Bacillus stearothermophilus aminopeptidase II (AP-II) was investigated by site-directed mutagenesis. The wild-type and mutant enzymes were expressed in recombinant Escherichia coli M15 cells and the 45-kD proteins were purified from the cell-free extracts by Ni(2+)-NTA resin. The specific activity for Tyr352 and Asp380 replacements was decreased by more than 3.5-fold. Detailed analysis of the kinetic consequences in the mutant proteins revealed that the K (m) values were increased 1.9- to 2.6-fold with respect to wild-type enzyme. Catalytic efficiencies (k (cat)/K (m)) of mutant proteins were between 3.5- and 31-fold lower than the corresponding value of the wild-type enzyme. Tryptophan emission fluorescence and circular dichroism spectra were nearly identical for wild-type and mutant enzymes. These results indicate that residues Tyr352 and Asp380 are essential for the proper function of AP-II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号