首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The eukaryotic translation initiation factor 2 (eIF2) has key functions in the initiation step of protein synthesis. eIF2 guides the initiator tRNA to the ribosome, participates in scanning of the mRNA molecule, supports selection of the start codon, and modulates the translation of mRNAs in response to stress. eIF2 comprises a heterotrimeric complex whose assembly depends on the ATP-grasp protein Cdc123. Mutations of the eIF2γ subunit that compromise eIF2 complex formation cause severe neurological disease in humans. To this date, however, details about the assembly mechanism, step order, and the individual functions of eIF2 subunits remain unclear. Here, we quantified assembly intermediates and studied the behavior of various binding site mutants in budding yeast. Based on these data, we present a model in which a Cdc123-mediated conformational change in eIF2γ exposes binding sites for eIF2α and eIF2β subunits. Contrary to an earlier hypothesis, we found that the associations of eIF2α and eIF2β with the γ-subunit are independent of each other, but the resulting heterodimers are nonfunctional and fail to bind the guanosine exchange factor eIF2B. In addition, levels of eIF2α influence the rate of eIF2 assembly. By binding to eIF2γ, eIF2α displaces Cdc123 and thereby completes the assembly process. Experiments in human cell culture indicate that the mechanism of eIF2 assembly is conserved between yeast and humans. This study sheds light on an essential step in eukaryotic translation initiation, the dysfunction of which is linked to human disease.  相似文献   

3.
In eukaryotic translation, termination and ribosome recycling phases are linked to subsequent initiation of a new round of translation by persistence of several factors at ribosomal sub‐complexes. These comprise/include the large eIF3 complex, eIF3j (Hcr1 in yeast) and the ATP‐binding cassette protein ABCE1 (Rli1 in yeast). The ATPase is mainly active as a recycling factor, but it can remain bound to the dissociated 40S subunit until formation of the next 43S pre‐initiation complexes. However, its functional role and native architectural context remains largely enigmatic. Here, we present an architectural inventory of native yeast and human ABCE1‐containing pre‐initiation complexes by cryo‐EM. We found that ABCE1 was mostly associated with early 43S, but also with later 48S phases of initiation. It adopted a novel hybrid conformation of its nucleotide‐binding domains, while interacting with the N‐terminus of eIF3j. Further, eIF3j occupied the mRNA entry channel via its ultimate C‐terminus providing a structural explanation for its antagonistic role with respect to mRNA binding. Overall, the native human samples provide a near‐complete molecular picture of the architecture and sophisticated interaction network of the 43S‐bound eIF3 complex and the eIF2 ternary complex containing the initiator tRNA.  相似文献   

4.
5.
Eukaryotic translation initiation factor 5A (eIF5A) is an essential protein tightly linked to cellular polyamine homeostasis. It receives the unique spermidine-derived posttranslational modification hypusine that is necessary for eIF5A's biochemical activity and cellular proliferation. The eIF5A protein stimulates ribosomal peptidyl-transferase and may be involved in nucleocytoplasmic mRNA transport. Little is known about the molecular genetics of eIF5A. Here we report on the sequence and molecular characterization of human EIF5A2, a novel phylogenetically conserved gene for eIF5A. EIF5A2 stretches over 17 kb and consists of five exons and four introns. It is localized at 3q25-q27, often noted for chromosomal instability in cancers. EIF5A2 is highly expressed in testis and colorectal adenocarcinoma and at moderate levels in the brain, in contrast to the ubiquitously expressed EIF5A1 gene. Two EIF5A2 mRNAs share a 129-nt 5' UTR and a coding sequence for the 153-amino-acid eIF5AII protein, but possess two alternative 3' UTRs of 46 and 890 nt that arise through differential polyadenylation. The protein is 84% identical and 94% similar to eIF5AI. Both EIF5A genes are conserved in vertebrates. Our findings lend further support for a specialized gene expression program of polyamine metabolic proteins and regulators that function to maintain polyamine homeostasis at elevated levels during spermatogenesis.  相似文献   

6.
Controlling translation during protein synthesis is crucial for cell proliferation and differentiation. Protein translation is orchestrated by an assembly of various protein components at the ribosomal subunits. The eukaryotic translation initiation factor 4G (eIF4G) plays an important role in the formation of the translation initiation complex eIF4F consisting of eIF4G, the ATP dependent RNA helicase eIF4A and the cap binding protein eIF4E. One of the functions of eIF4G is the enhancement of the activity of eIF4A facilitated mainly through binding to the HEAT1 domain of eIF4G. In order to understand the interaction of HEAT1 with eIF4A and other components during translation initiation backbone assignment is essential. Here we report the 1H, 13C and 15N backbone assignment for the HEAT1 domain of human eIF4G isoform I (eIF4GI-HEAT1), the first of three HEAT domains of eIF4G (29 kDa) as a basis for the elucidation of its structure and interactions with its binding partners, necessary for understanding the mechanism of its biological function.  相似文献   

7.
The eukaryotic translation initiation factor 2 (eIF2) is central to the onset of protein synthesis and its modulation in response to physiological demands. eIF2, a heterotrimeric G-protein, is activated by guanine nucleotide exchange to deliver the initiator methionyl-tRNA to the ribosome. Here we report that assembly of the eIF2 complex in vivo depends on Cdc123, a cell proliferation protein conserved among eukaryotes. Mutations of CDC123 in budding yeast reduced the association of eIF2 subunits, diminished polysome levels, and increased GCN4 expression indicating that Cdc123 is critical for eIF2 activity. Cdc123 bound the unassembled eIF2γ subunit, but not the eIF2 complex, and the C-terminal domain III region of eIF2γ was both necessary and sufficient for Cdc123 binding. Alterations of the binding site revealed a strict correlation between Cdc123 binding, the biological function of eIF2γ, and its ability to assemble with eIF2α and eIF2β. Interestingly, high levels of Cdc123 neutralized the assembly defect and restored the biological function of an eIF2γ mutant. Moreover, the combined overexpression of eIF2 subunits rescued an otherwise inviable cdc123 deletion mutant. Thus, Cdc123 is a specific eIF2 assembly factor indispensable for the onset of protein synthesis. Human Cdc123 is encoded by a disease risk locus, and, therefore, eIF2 biogenesis control by Cdc123 may prove relevant for normal cell physiology and human health. This work identifies a novel step in the eukaryotic translation initiation pathway and assigns a biochemical function to a protein that is essential for growth and viability of eukaryotic cells.  相似文献   

8.
9.
An mRNA m7G cap binding-like motif within human Ago2 represses translation   总被引:14,自引:0,他引:14  
microRNAs (miRNAs) bind to Argonaute (Ago) proteins and inhibit translation or promote degradation of mRNA targets. Human let-7 miRNA inhibits translation initiation of mRNA targets in an m(7)G cap-dependent manner and also appears to block protein production, but the molecular mechanism(s) involved is unknown and the role of Ago proteins in translational regulation remains elusive. Here we identify a motif (MC) within the Mid domain of Ago proteins, which bears significant similarity to the m(7)G cap-binding domain of eIF4E, an essential translation initiation factor. We identify conserved aromatic residues within the MC motif of human Ago2 that are required for binding to the m(7)G cap and for translational repression but do not affect the assembly of Ago2 with miRNA or its catalytic activity. We propose that Ago2 represses the initiation of mRNA translation by binding to the m(7)G cap of mRNA targets, thus likely precluding the recruitment of eIF4E.  相似文献   

10.
Translation is divided into initiation, elongation, termination and ribosome recycling. Earlier work implicated several eukaryotic initiation factors (eIFs) in ribosomal recycling in vitro. Here, we uncover roles for HCR1 and eIF3 in translation termination in vivo. A substantial proportion of eIF3, HCR1 and eukaryotic release factor 3 (eRF3) but not eIF5 (a well-defined “initiation-specific” binding partner of eIF3) specifically co-sediments with 80S couples isolated from RNase-treated heavy polysomes in an eRF1-dependent manner, indicating the presence of eIF3 and HCR1 on terminating ribosomes. eIF3 and HCR1 also occur in ribosome- and RNA-free complexes with both eRFs and the recycling factor ABCE1/RLI1. Several eIF3 mutations reduce rates of stop codon read-through and genetically interact with mutant eRFs. In contrast, a slow growing deletion of hcr1 increases read-through and accumulates eRF3 in heavy polysomes in a manner suppressible by overexpressed ABCE1/RLI1. Based on these and other findings we propose that upon stop codon recognition, HCR1 promotes eRF3·GDP ejection from the post-termination complexes to allow binding of its interacting partner ABCE1/RLI1. Furthermore, the fact that high dosage of ABCE1/RLI1 fully suppresses the slow growth phenotype of hcr1Δ as well as its termination but not initiation defects implies that the termination function of HCR1 is more critical for optimal proliferation than its function in translation initiation. Based on these and other observations we suggest that the assignment of HCR1 as a bona fide eIF3 subunit should be reconsidered. Together our work characterizes novel roles of eIF3 and HCR1 in stop codon recognition, defining a communication bridge between the initiation and termination/recycling phases of translation.  相似文献   

11.
Eukaryotic translation initiation involves recognition of the 5' end of cellular mRNA by the cap-binding complex known as eukaryotic initiation factor 4F (eIF4F). Initiation is a key point of regulation in gene expression in response to mechanisms mediated by signal transduction pathways. We have investigated the molecular interactions underlying inhibition of human eIF4E function by regulatable repressors called 4E-binding proteins (4E-BPs). Two essential components of eIF4F are the cap-binding protein eIF4E, and eIF4G, a multi-functional protein that binds both eIF4E and other essential eIFs. We show that the 4E-BPs 1 and 2 block the interaction between eIF4G and eIF4E by competing for binding to a dorsal site on eIF4E. Remarkably, binding of the 4E-BPs at this dorsal site enhances cap-binding via the ventral cap-binding slot, thus trapping eIF4E in inactive complexes with high affinity for capped mRNA. The binding contacts and affinities for the interactions between 4E-BP1/2 and eIF4E are distinct (estimated K(d) values of 10(-8) and 3x10(-9) for 4E-BP1 and 2, respectively), and the differences in these properties are determined by three amino acids within an otherwise conserved motif. These data provide a quantitative framework for a new molecular model of translational regulation.  相似文献   

12.
E De Gregorio  T Preiss    M W Hentze 《The EMBO journal》1999,18(17):4865-4874
Most eukaryotic mRNAs possess a 5' cap structure (m(7)GpppN) and a 3' poly(A) tail which promote translation initiation by binding the eukaryotic translation initiation factor (eIF)4E and the poly(A) binding protein (PABP), respectively. eIF4G can bridge between eIF4E and PABP, and-through eIF3-is thought to establish a link to the small ribosomal subunit. We fused the C-terminal region of human eIF4GI lacking both the eIF4E- and PABP-binding sites, to the IRE binding protein IRP-1. This chimeric protein suffices to direct the translation of the downstream cistron of bicistronic mRNAs bearing IREs in their intercistronic space in vivo. This function is preserved even when translation via the 5' end is inhibited. Deletion analysis defined the conserved central domain (amino acids 642-1091) of eIF4G as an autonomous 'ribosome recruitment core' and implicated eIF4A as a critical binding partner. Our data reveal the sufficiency of the conserved eIF4G ribosome recruitment core to drive productive mRNA translation in living cells. The C-terminal third of eIF4G is dispensable, and may serve as a regulatory domain.  相似文献   

13.
Summary. The putative translation factor eIF5A is essential for cell viability and is highly conserved from archaebacteria to mammals. This factor is the only cellular protein that undergoes an essential posttranslational modification dependent on the polyamine spermidine, called hypusination. This review focuses on the functional characterization of eIF5A. Although this protein was originally identified as a translation initiation factor, subsequent studies did not support a role for eIF5A in general translation initiation. eIF5A has also been implicated in nuclear export of HIV-1 Rev and mRNA decay, but these findings are controversial in the literature and may reflect secondary effects of eIF-5A function. Next, the involvement of eIF5A and hypusination in the control of the cell cycle and proliferation in various organisms is reviewed. Finally, recent evidence in favor of reconsidering the role of eIF5A as a translation factor is discussed. Future studies may reveal the specific mechanism by which eIF5A affects protein synthesis.  相似文献   

14.
The eukaryotic translation initiation factor (eIF) 4B promotes the RNA-dependent ATP hydrolysis activity and ATP-dependent RNA helicase activity of eIF4A and eIF4F during translation initiation. Although this function is conserved among plants, animals, and yeast, eIF4B is one of the least conserved of initiation factors at the sequence level. To gain insight into its functional conservation, the organization of the functional domains of eIF4B from wheat has been investigated. Plant eIF4B contains three RNA binding domains, one more than reported for mammalian or yeast eIF4B, and each domain exhibits a preference for purine-rich RNA. In addition to a conserved RNA recognition motif and a C-terminal RNA binding domain, wheat eIF4B contains a novel N-terminal RNA binding domain that requires a short, lysine-rich containing sequence. Both the lysine-rich motif and an adjacent, C-proximal motif are conserved with an N-proximal sequence in human and yeast eIF4B. The C-proximal motif within the N-terminal RNA binding domain in wheat eIF4B is required for interaction with eIFiso4G, an interaction not reported for other eIF4B proteins. Moreover, each RNA binding domain requires dimerization for binding activity. Two binding sites for the poly(A)-binding protein were mapped to a region within each of two conserved 41-amino acid repeat domains on either side of the C-terminal RNA binding domain. eIF4A bound to an adjacent region within each repeat, supporting a central role for these conserved eIF4B domains in facilitating interaction with other components of the translational machinery. These results support the notion that eIF4B functions by organizing multiple components of the translation initiation machinery and RNA.  相似文献   

15.
The putative translation initiation factor 5A (eIF5A) is a small protein, highly conserved and essential in all organisms from archaea to mammals. Although the involvement of eIF5A in translation initiation has been questioned, new evidence reestablished the connection between eIF5A and this cellular process. In order to better understand the function of elF5A, a screen for synthetic lethal gene using the tif51A-3 mutant was carried out and a new mutation (G80D) was found in the essential gene YPT1, encoding a protein involved in vesicular trafficking. The precursor form of the vacuolar protein CPY is accumulated in the ypt1-G80D mutant at the nonpermissive temperature, but this defect in vesicular trafficking did not occur in the tif51A mutants tested. Overexpression of eIF5A suppresses the growth defect of a series of ypt1 mutants, but this suppression does not restore correct CPY sorting. On the other hand, overexpression of YPT1 does not suppress the growth defect of tif51A mutants. Further, it was revealed that eIF-5A is present in both soluble and membrane fractions, and its membrane association is ribosome-dependent. Finally, we demonstrated that the ypt1 and other secretion pathway mutants are sensitive to paromomycin. These results confirm the link between translation and vesicular trafficking and reinforce the implication of eIF5A in protein synthesis.  相似文献   

16.
The putative translation factor eIF5A is essential for cell viability and is highly conserved from archebacteria to mammals. Although this protein was originally identified as a translation initiation factor, subsequent experiments did not support a role for eIF5A in general translation. In this work, we demonstrate that eIF-5A interacts with structural components of the 80S ribosome, as well as with the translation elongation factor 2 (eEF2). Moreover, eIF5A is further shown to cofractionate with monosomes in a translation-dependent manner. Finally, eIF5A mutants show altered polysome profiles and are sensitive to translation inhibitors. Our results re-establish a function for eIF5A in translation and suggest a role for this factor in translation elongation instead of translation initiation.  相似文献   

17.
Eukaryotic translation initiation factor 4E (eIF4E) is the cap‐binding protein that binds the 5′ cap structure of cellular messenger RNAs (mRNAs). Despite the obligatory role of eIF4E in cap‐dependent mRNA translation, how the translation activity of eIF4E is controlled remains largely undefined. Here, we report that mammalian eIF4E is regulated by SUMO1 (small ubiquitin‐related modifier 1) conjugation. eIF4E sumoylation promotes the formation of the active eIF4F translation initiation complex and induces the translation of a subset of proteins that are essential for cell proliferation and preventing apoptosis. Furthermore, disruption of eIF4E sumoylation inhibits eIF4E‐dependent protein translation and abrogates the oncogenic and antiapoptotic functions associated with eIF4E. These data indicate that sumoylation is a new fundamental regulatory mechanism of protein synthesis. Our findings suggest further that eIF4E sumoylation might be important in promoting human cancers.  相似文献   

18.
Shin BS  Maag D  Roll-Mecak A  Arefin MS  Burley SK  Lorsch JR  Dever TE 《Cell》2002,111(7):1015-1025
Translation initiation factor eIF5B/IF2 is a GTPase that promotes ribosomal subunit joining. We show that eIF5B mutations in Switch I, an element conserved in all GTP binding domains, impair GTP hydrolysis and general translation but not eIF5B subunit joining function. Intragenic suppressors of the Switch I mutation restore general translation, but not eIF5B GTPase activity. These suppressor mutations reduce the ribosome affinity of eIF5B and increase AUG skipping/leaky scanning. The uncoupling of translation and eIF5B GTPase activity suggests a regulatory rather than mechanical function for eIF5B GTP hydrolysis in translation initiation. The translational defect suggests eIF5B stabilizes Met-tRNA(i)(Met) binding and that GTP hydrolysis by eIF5B is a checkpoint monitoring 80S ribosome assembly in the final step of translation initiation.  相似文献   

19.
The main role of the translation initiation factor 3 (eIF3) is to orchestrate formation of 43S-48S preinitiation complexes (PICs). Until now, most of our knowledge on eIF3 functional contribution to regulation of gene expression comes from yeast studies. Hence, here we developed several novel in vivo assays to monitor the integrity of the 13-subunit human eIF3 complex, defects in assembly of 43S PICs, efficiency of mRNA recruitment, and postassembly events such as AUG recognition. We knocked down expression of the PCI domain-containing eIF3c and eIF3a subunits and of eIF3j in human HeLa and HEK293 cells and analyzed the functional consequences. Whereas eIF3j downregulation had barely any effect and eIF3a knockdown disintegrated the entire eIF3 complex, eIF3c knockdown produced a separate assembly of the a, b, g, and i subunits (closely resembling the yeast evolutionary conserved eIF3 core), which preserved relatively high 40S binding affinity and an ability to promote mRNA recruitment to 40S subunits and displayed defects in AUG recognition. Both eIF3c and eIF3a knockdowns also severely reduced protein but not mRNA levels of many other eIF3 subunits and indeed shut off translation. We propose that eIF3a and eIF3c control abundance and assembly of the entire eIF3 and thus represent its crucial scaffolding elements critically required for formation of PICs.  相似文献   

20.
The association of eucaryotic translation initiation factor eIF4G with the cap-binding protein eIF4E establishes a critical link between the mRNA and the ribosome during translation initiation. This association requires a conserved seven amino acid peptide within eIF4G that binds to eIF4E. Here we report that a 98-amino acid fragment of S. cerevisiae eIF4G1 that contains this eIF4E binding peptide undergoes an unfolded to folded transition upon binding to eIF4E. The folding of the eIF4G1 domain was evidenced by the eIF4E-dependent changes in its protease sensitivity and (1)H-(15)N HSQC NMR spectrum. Analysis of a series of charge-to-alanine mutations throughout the essential 55.4-kDa core of yeast eIF4G1 also revealed substitutions within this 98-amino acid region that led to reduced eIF4E binding in vivo and in vitro. These data suggest that the association of yeast eIF4E with eIF4G1 leads to the formation of a structured domain within eIF4G1 that could serve as a specific site for interactions with other components of the translational apparatus. They also suggest that the stability of the native eIF4E-eIF4G complex is determined by amino acid residues outside of the conserved seven-residue consensus sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号