首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analysed the inter- and intra-lake variability of free-living and particle-associated freshwater Actinobacteria communities in four limnological different lakes of the Mecklenburg Lake District, Northeastern Germany. Denaturing gradient gel electrophoresis (DGGE) specific for Actinobacteria was used to investigate phylogenetic diversity and seasonal dynamics of actinobacterial communities in the epilimnion of all lakes (inter-lake variability) and to assess differences between Actinobacteria communities of the epi-, meta- and hypolimnion of a single lake (intra-lake variability) respectively. DGGE analyses showed significant inter- and intra-lake differences between Actinobacteria communities of all lakes and water layers as well as between free-living and particle-associated Actinobacteria. Phylogenetic inferences of 16S rRNA gene sequences suggest that particular members of particle-associated Actinobacteria were exclusively affiliated to certain actinobacterial lineages. The phylogenetic comparison of 16S rRNA gene sequences of all lakes and water layer, however, indicated the occurrence of almost similar phylogenetic lineages in all studied habitats and suggest high intracluster diversity within already known actinobacterial lineages. Non-metric multidimensional scaling (NMS) ordination analyses and Pearson's product moment correlations revealed several strong correlations between the investigated Actinobacteria communities and various limnological parameters, such as conductivity, total phosphorous, alkalinity or primary production. However, no uniform correlation patterns were found between lakes, water layers and bacterial fractions. These heterogeneous correlation patterns together with the phylogenetic similarities of Actinobacteria communities from different lakes indicate that particular Actinobacteria represent various ecotypes or exhibit a pronounced ecophysiological plasticity.  相似文献   

2.
The occurrence, identity, and activity of microbes from the class Actinobacteria was studied in the surface waters of 10 oligo- to mesotrophic mountain lakes located between 913 m and 2,799 m above sea level. Oligonucleotide probes were designed to distinguish between individual lineages within this group by means of fluorescence in situ hybridization (FISH). Bacteria of a single phylogenetic lineage (acI) represented >90% of all Actinobacteria in the studied lakes, and they constituted up to 70% of the total bacterial abundances. In the subset of eight lakes situated above the treeline, the community contribution of bacteria from the acI lineage was significantly correlated with the ambient levels of solar UV radiation (UV transparency, r(2) = 0.72; P < 0.01). Three distinct genotypic subpopulations were distinguished within acI that constituted varying fractions of all Actinobacteria in the different lakes. The abundance of growing actinobacterial cells was estimated by FISH and immunocytochemical detection of bromodeoxyuridine (BrdU) incorporation into de novo-synthesized DNA. The percentages of Actinobacteria with visible DNA synthesis approximately corresponded to the average percentages of BrdU-positive cells in the total assemblages. Actinobacteria from different subclades of the acI lineage, therefore, constituted an important autochthonous element of the aquatic microbial communities in many of the studied lakes, potentially also due to their higher UV resistance.  相似文献   

3.
Nowadays, because of substantial use of petroleum-derived fuels the number and extension of hydrocarbon polluted terrestrial ecosystems is in growth worldwide. In remediation of aforementioned sites bioremediation still tends to be an innovative, environmentally attractive technology. Although huge amount of information is available concerning the hydrocarbon degradation potential of cultivable hydrocarbonoclastic bacteria little is known about the in situ long-term effects of petroleum derived compounds on the structure of soil microbiota. Therefore, in this study our aim was to determine the long-term impact of total petroleum hydrocarbons (TPHs), volatile petroleum hydrocarbons (VPHs), total alkyl benzenes (TABs) as well as of polycyclic aromatic hydrocarbons (PAHs) on the structure of bacterial communities of four different contaminated soil samples. Our results indicated that a very high amount of TPH affected positively the diversity of hydrocarbonoclastic bacteria. This finding was supported by the occurrence of representatives of the α-, β-, γ-Proteobacteria, Actinobacteria, Flavobacteriia and Bacilli classes. High concentration of VPHs and TABs contributed to the predominance of actinobacterial isolates. In PAH impacted samples the concentration of PAHs negatively correlated with the diversity of bacterial species. Heavily PAH polluted soil samples were mainly inhabited by the representatives of the β-, γ-Proteobacteria (overwhelming dominance of Pseudomonas sp.) and Actinobacteria.  相似文献   

4.
The diversity of attached and free-living Actinobacteria and Betaproteobacteria, based on 16S rRNA gene sequences, was investigated in a mesotrophic lake during two periods of contrasting phytoplankton dominance. Comparison analyses showed a phylogenetic difference between attached and free-living communities for the two bacterial groups. For Betaproteobacteria, the betaI clade was detected at all sampling dates in free-living and attached bacterial communities and was the dominant clade contributing to 57.8% of the total retrieved operational taxonomic units (OTUs). For Actinobacteria, the acIV cluster was found to be dominant, followed by acI contributing to 45% and 25% of the total retrieved OTUs, respectively. This study allows the determination of eight new putative clades among the Betaproteobacteria termed lbI-lbVIII and a new putative clade named acLBI belonging to the Actinobacteria. The seasonal dynamics of phytoplankton and zooplankton communities have been reflected as changes in distinct bacterial phylotypes for both attached and free-living communities. For attached communities, relationships were observed between Actinobacteria and Chrysophyceae, and between Betaproteobacteria and Dinophyceae and Chlorophyceae biomass. On the other hand, within free-living communities, few actinobacterial clades were found to be dependent on either nutrients or phytoplankton communities, whereas Betaproteobacteria were mainly associated with biological parameters (i.e. phytoplankton and copepod communities).  相似文献   

5.
We analysed the phylogenetic relatedness of 16S rRNA genes from freshwater bacteria affiliated with the class Actinobacteria. A polymerase chain reaction assay was developed to identify reliably rare Actinobacteria-related inserts within 16S rRNA gene clone libraries. In 18 libraries constructed from seven freshwater systems, altogether 63 actinobacterial sequence types were collected from a total of > 1800 clones. Sixty of the newly obtained sequences grouped within four distinct phylogenetic lineages. They constitute approximately 75% of the nearly complete sequences within these clusters that are presently available. A comparison with > 300 sequences from various soil habitats revealed that two of these monophyletic actinobacterial clades (acI and acII) almost exclusively harbour 16S rRNA sequence types from freshwaters and estuaries. This may indicate that such bacteria are not inoculated to freshwaters from terrestrial sources, but are autochthonous components of freshwater microbial assemblages. In contrast, sequence types from freshwaters, marine sediments and soils were clearly mixed in another of the actinobacterial lineages (acIV). Sequence divergence within acIV was the highest of all four lineages (88% minimum similarity), which potentially reflects its radiation across several habitat types. Within the freshwater lineages, groups of essentially identical sequence types were retrieved from geographically distant aquatic systems with strikingly different hydrological and limnological characteristics. This points to the necessity to investigate genotypic variability, in situ abundances and activities of these Actinobacteria in freshwater plankton in greater detail by cultivation-independent techniques.  相似文献   

6.
While microbial communities of aerosols have been examined, little is known about their sources. Nutrient composition and microbial communities of potential dust sources, saline lake sediments (SLS) and adjacent biological soil crusts (BSC), from Southern Australia were determined and compared with a previously analyzed dust sample. Multivariate analyses of fingerprinting profiles indicated that the bacterial communities of SLS and BSC were different, and these differences were mainly explained by salinity. Nutrient concentrations varied among the sites but could not explain the differences in microbial diversity patterns. Comparison of microbial communities with dust samples showed that deflation selects against filamentous cyanobacteria, such as the Nostocales group. This could be attributed to the firm attachment of cyanobacterial filaments to soil particles and/or because deflation occurs mainly in disturbed BSC, where cyanobacterial diversity is often low. Other bacterial groups, such as Actinobacteria and the spore-forming Firmicutes, were found in both dust and its sources. While Firmicutes-related sequences were mostly detected in the SLS bacterial communities (10% of total sequences), the actinobacterial sequences were retrieved from both (11-13%). In conclusion, the potential dust sources examined here show highly diverse bacterial communities and contain nutrients that can be transported with aerosols. The obtained fingerprinting and sequencing data may enable back tracking of dust plumes and their microorganisms.  相似文献   

7.
AIMS: The aims of this study were to develop media to cultivate actinomycetes, screen the resulting isolates with Actinobacteria-specific primers, and examine the efficacy of detection of the actinobacterial isolates with universal primers. METHODS AND RESULTS: Soil-extract medium was developed for a terrestrial bluff environment. Recovered isolates were subjected to polymerase chain reaction (PCR) with taxon-specific primers to identify Actinobacteria. Universal bacterial primers 24f and 1492r (modified and original versions) were used to amplify the 16S rRNA gene from the putative Actinobacteria. While both reverse primers failed to provide amplification products from 20% to 50% of the isolates, the 1492r primer detected Actinobacteria more effectively than 1492r-mod. The region of the gene containing the annealing site for the 1492r primers from 15 isolates that failed to amplify showed no differences in nucleotide sequence to the original 1492r primer. CONCLUSIONS: Universal 16S rRNA gene primers are not capable of amplifying this gene from all bacteria within an environmental sample. Some Actinobacteria may share 100% sequence similarity to universal primers but remain undetected. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings are important for studies of particular taxa in environmental samples where reactions utilizing universal primers may not reveal the extent of their presence and diversity.  相似文献   

8.
In this study, bacterial communities within the guts of several longicorn beetles were investigated by a culture-dependent method. A total of 142 bacterial strains were isolated from nine species of longicorn beetle, including adults and larvae. A comparison of their partial 16S rRNA gene sequences showed that most of the bacteria constituting the gut communities can typically be found in soil, plants and the intestines of animals, and approximately 10% were proposed as unreported. Phylogenetic analysis demonstrated that the bacterial species comprised 7 phyla, and approximately half were Gammaproteobacteria. Actinobacteria were the second most populous group (19%), followed by Firmicutes (13%) and Alphaproteobacteria (11%). Betaproteobacteria, Flavobacteria, and Acidobacteria were minor constituents. The taxonomic compositions of the isolates were variable according to the species of longicorn beetle. Particularly, an abundance of Actinobacteria existed in Moechotypa diphysis and Mesosa hirsute, which eat broadleaf trees; however, no Actinobacteria were isolated from Corymbia rubra and Monochamus alternatus, which are needle-leaf eaters. Considerable proportions of xylanase and pectinase producing bacteria in the guts of the longicorn beetles implied that the bacteria may play an important role in the digestion of woody diets. Actinobacteria and Gammaproteobacteria were the dominant xylanase producers in the guts of the beetles.  相似文献   

9.
Actinobacteria are typically soil bacteria that have important roles in soil development and biogeochemical cycling. However, little is known about the occurrence or the succession of communities of Actinobacteria in new habitats. In this study, we investigated the diversity and succession of the actinobacterial communities that inhabited the forelands of the Tianshan Glacier (China), which ranged in successional age from 0 to 100 years since the forefield was deglaciated. Actinobacteria was one of the dominant phyla in the glacier foreland and included the orders Acidimicrobiales, Actinomycetales, Rubrobacteriales and Solirubrobacteriales. Actinomycetales was the dominant order, but its relative abundance decreased through the chronosequence. Acidimicrobiales and Solirubrobacteriales were more abundant in the late stages of succession than in the early ones. The abundance of Rubrobacteriales was only high at 74a. The dominant genera Nocardioides and Arthrobacter were widely distributed and were found in each stage of succession. With nonparametric and rarefaction estimated analyses, we found that the phylotype richness of Actinobacteria was significantly correlated with time (r = 0.886, p = 0.019). The succession of actinobacterial communities was divided into 3 stages: the early stage (6a), the intermediate stage (10a and 20a) and the late stage (60a, 74a, and 100a). Based on the canonical correspondence analysis, the actinobacterial communities were affected significantly by soil pH (r = ?0.834, p = 0.039) and somewhat by the C/N ratio (r = 0.783, p = 0.066). The nonmetric multidimensional scaling analysis showed that the effect of geographical isolation on the actinobacterial communities was greater than that of the soils in the development of the chronosequence.  相似文献   

10.
AIMS: The termite gut microbiota can include a variety of micro-organisms from the three domains: Bacteria, Archaea and Eucarya. The bacterial groups from the gut systems are mainly affiliated to the proteobacteria, the Gram-positive groups Bacterioiodes/Flavobacterium branch and the spirochetes, Firmicutes and Actinobacteria. However, culture independent molecular studies have revealed that the majority of these microbial gut symbionts have not yet been cultured, including actinobacterial clusters associated with termite guts. Accordingly, the aim of this study was to selectively isolate the actinofloral layers of gut associated microflora of the Coptotermes lacteus (Froggatt) species located at the Sunshine Coast Region of Queensland, Australia to increase our knowledge on the diversity of actinobacterial taxa present in the termite guts. METHODS AND RESULTS: Actinofloral layers associated with the guts of the wood-eating subterranean termite C. lacteus were investigated by exploiting the phage susceptibility of different gut associated bacteria which impede the growth of actinomycetes on isolation plates. These unwanted microbial taxa were removed by exposing the gut contents to polyvalent bacteriophages specifically targeting different background bacterial taxa and after their removal from the isolation plates previously undetected and novel actinomycetes were successfully cultured from the gut samples. CONCLUSIONS: Use of bacteriophages as a means of selective pressure successfully revealed the presence of novel actinomycete species within the guts of C. lacteus. SIGNIFICANCE AND IMPACT OF THE STUDY: Molecular ecology has undoubtedly revealed the fascinating diversity of micro-organisms, which cannot be cultured. However, these advances in the field still have not provided the ability to detect and isolate micro-organisms effectively from their ecological niches. Accordingly, studies like the one described here have importance in increasing the chances of uncultured taxa to be isolated to complement molecular microbial ecological efforts towards the establishment of an understanding on the diversity of termite gut microflora.  相似文献   

11.
Actinobacteria are highly abundant in pelagic freshwater habitats and also occur in estuarine environments such as the Baltic Sea. Because of gradients in salinity and other environmental variables estuaries offer natural systems for examining factors that determine Actinobacteria distribution. We studied abundance and community structure of Bacteria and Actinobacteria along two transects in the northern Baltic Sea. Quantitative (CARD-FISH) and qualitative (DGGE and clone libraries) analyses of community composition were compared with environmental parameters. Actinobacteria accounted for 22–27% of all bacteria and the abundance changed with temperature. Analysis of 549 actinobacterial 16S rRNA sequences from four clone libraries revealed a dominance of the freshwater clusters ac I and ac IV, and two new subclusters ( ac I-B scB-5 and ac IV-E) were assigned. Whereas ac I was present at all stations, occurrence of ac II and ac IV differed between stations and was related to dissolved organic carbon (DOC) and chlorophyll a (Chl a ) respectively. The prevalence of the ac I-A and ac I-B subclusters changed in relation to total phosphorus (Tot-P) and Chl a respectively. Community structure of Bacteria and Actinobacteria differed between the river station and all other stations, responding to differences in DOC, Chl a and bacterial production. In contrast, the composition of active Actinobacteria (analysis based on reversely transcribed RNA) changed in relation to salinity and Tot-P. Our study suggests an important ecological role of Actinobacteria in the brackish northern Baltic Sea. It highlights the need to address dynamics at the cluster or subcluster phylogenetic levels to gain insights into the factors regulating distribution and composition of Actinobacteria in aquatic environments.  相似文献   

12.
The diversity and community structure of planktonic Actinobacteria in a freshwater river and five fresh/saline/hypersaline lakes on the Tibetan Plateau, China were investigated with a combination of geochemical and 16S rRNA gene phylogenetic analyses. A total of 387 actinobacterial 16S rRNA gene clones were sequenced, and they could be classified into Actinobacteridae, Acidimicrobidae, and unclassified Actinobacteria. The Actinobacteridae sequences were distributed into five suborders (e.g., Corynebacterineae, Frankineae, Micrococcineae, Propionibacterineae, and Streptosporangineae) and unclassified Actinobacteridae. Some actinobacterial members (specifically Micrococcineae) were present in a wide range of salinities (from freshwater to NaCl saturation). Statistical analysis showed that salinity and salinity-related environmental variables (such as ions and total nitrogen) significantly (r > 0.5; P < 0.05) influenced the distribution of planktonic actinobacterial community in the investigated aquatic biotopes. Our data have implications for a better understanding of the distribution of Actinobacteria in high-elevation lakes.  相似文献   

13.
Melanins are enigmatic pigments that are produced by a wide variety of microorganisms including several species of bacteria and fungi. Melanins are biological macromolecules with multiple important functions, yet their structures are not well understood. Melanins are frequently used in medicine, pharmacology, and cosmetics preparations. Melanins also have great application potential in agriculture industry. They have several biological functions including photoprotection, thermoregulation, action as free radical sinks, cation chelators, and antibiotics. Plants and insects incorporate melanins as cell wall and cuticle strengtheners, respectively. Actinobacteria are the most economically as well as biotechnologically valuable prokaryotes. However, the melanin properties are, in general, poorly understood. In this review an evaluation is made on the present state of research on actinobacterial melanins and its perspectives. The highlights include the production and biotechnological applications of melanins in agriculture, food, cosmetic and medicinal fields. With increasing advancement in science and technology, there would be greater demands in the future for melanins produced by actinobacteria from various sources.  相似文献   

14.
It is unknown whether closely related epidermal dendritic cells, Langerhans cells (LCs), and dermal dendritic cells (DDCs) have unique functions. In this study, we show that human DDCs have a broad TLR expression profile, whereas human LCs have a selective impaired expression of cell surface TLR2, TLR4, and TLR5, all involved in bacterial recognition. This distinct TLR expression profile is acquired during the TGF-beta1-driven development of LCs in vitro. Consequently, and in contrast to DDCs, LCs weakly respond to bacterial TLR2, TLR4, and TLR5 ligands in terms of cytokine production and maturation, as well as to whole Gram-positive and Gram-negative bacteria, whereas their responsiveness to viral TLR ligands and viruses is fully active and comparable to DDCs. Unresponsiveness of LCs to bacteria may be a mechanism that contributes to tolerance to bacterial commensals that colonize the skin.  相似文献   

15.
The attine ants are a monophyletic lineage that switched to fungus farming ca. 55–60 MYA. They have become a model for the study of complex symbioses after additional fungal and bacterial symbionts were discovered, but their abdominal endosymbiotic bacteria remain largely unknown. Here, we present a comparative microbiome analysis of endosymbiotic bacteria spanning the entire phylogenetic tree. We show that, across 17 representative sympatric species from eight genera sampled in Panama, abdominal microbiomes are dominated by Mollicutes, α‐ and γ‐Proteobacteria, and Actinobacteria. Bacterial abundances increase from basal to crown branches in the phylogeny reflecting a shift towards putative specialized and abundant abdominal microbiota after the ants domesticated gongylidia‐bearing cultivars, but before the origin of industrial‐scale farming based on leaf‐cutting herbivory. This transition coincided with the ancestral single colonization event of Central/North America ca. 20 MYA, documented in a recent phylogenomic study showing that almost the entire crown group of the higher attine ants, including the leaf‐cutting ants, evolved there and not in South America. Several bacterial species are located in gut tissues or abdominal organs of the evolutionarily derived, but not the basal attine ants. The composition of abdominal microbiomes appears to be affected by the presence/absence of defensive antibiotic‐producing actinobacterial biofilms on the worker ants' cuticle, but the significance of this association remains unclear. The patterns of diversity, abundance and sensitivity of the abdominal microbiomes that we obtained explore novel territory in the comparative analysis of attine fungus farming symbioses and raise new questions for further in‐depth research.  相似文献   

16.

Background

Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive.

Methodology/Principal Findings

We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA)-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication.

Conclusions/Significance

Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.  相似文献   

17.
Actinobacteria from special habitats are of interest due to their producing of bioactive compounds and diverse ecological functions. However, little is known of the diversity and functional traits of actinobacteria inhabiting coastal salt marsh soils. We assessed actinobacterial diversity from eight coastal salt marsh rhizosphere soils from Jiangsu Province, China, using culture-based and 16S rRNA gene high throughput sequencing (HTS) methods, in addition to evaluating their plant growth-promoting (PGP) traits of isolates. Actinobacterial sequences represented 2.8%–43.0% of rhizosphere bacterial communities, as determined by HTS technique. The actinobacteria community comprised 34 families and 79 genera. In addition, 196 actinobacterial isolates were obtained, of which 92 representative isolates were selected for further 16S rRNA gene sequencing and phylogenetic analysis. The 92 strains comprised seven suborders, 12 families, and 20 genera that included several potential novel species. All representative strains were tested for their ability of producing indole acetic acid (IAA), siderophores, 1-aminocyclopropane-1-carboxylate deaminase (ACCD), hydrolytic enzymes, and phosphate solubilization. Based on the presence of multiple PGP traits, two strains, Streptomyces sp. KLBMP S0051 and Micromonospora sp. KLBMP S0019 were selected for inoculation of wheat seeds grown under salt stress. Both strains promoted seed germination, and KLBMP S0019 significantly enhanced seedling growth under NaCl stress. Our study demonstrates that coastal salt marsh rhizosphere soils harbor a diverse reservoir of actinobacteria that are potential resources for the discovery of novel species and functions. Moreover, several of the isolates identified here are good candidates as PGP bacteria that may contribute to plant adaptions to saline soils.  相似文献   

18.
Gut microbiota has been recognized to play a beneficial role in honey bees (Apis mellifera). Present study was designed to characterize the gut bacterial flora of honey bees in north-west Pakistan. Total 150 aerobic and facultative anaerobic bacteria from guts of 45 worker bees were characterized using biochemical assays and 16S rDNA sequencing followed by bioinformatics analysis. The gut isolates were classified into three bacterial phyla of Firmicutes (60%), Proteobacteria (26%) and Actinobacteria (14%). Most of the isolates belonged to genera and families of Staphylococcus, Bacillus, Enterococcus, Ochrobactrum, Sphingomonas, Ralstonia, Enterobacteriaceae, Corynebacterium and Micrococcineae. Many of these bacteria were tolerant to acidic environments and fermented sugars, hence considered beneficial gut inhabitants and involved the maintenance of a healthy microbiota. However, several opportunistic commensals that proliferate in the hive environment including members Staphylococcus haemolyticus group and Sphingomonas paucimobilis were also identified. This is the first report on bee gut microbiota from north-west Pakistan geographically situated at the crossroads of Indian subcontinent and central Asia.  相似文献   

19.
To provide insight into the phylogenetic bacterial diversity of the freshwater sponge Spongilla lacustris, a 16S rRNA gene libraries were constructed from sponge tissues and from lake water. Restriction fragment length polymorphism (RFLP) analysis of >190 freshwater sponge-derived clones resulted in six major restriction patterns, from which 45 clones were chosen for sequencing. The resulting sequences were affiliated with the Alphaproteobacteria (n = 19), the Actinobacteria (n = 15), the Betaproteobacteria (n = 2), and the Chloroflexi (n = 2) lineages. About half of the sequences belonged to previously described actinobacterial (hgc-I) and betaproteobacterial (beta-II) sequence clusters of freshwater bacteria that were also present in the lake water 16S rRNA gene library. At least two novel, deeply rooting alphaproteobacterial lineages were recovered from S. lacustris that showed <89% sequence similarity to known phylogenetic groups. Electron microscopical observations revealed that digested bacterial remnants were contained within food vacuoles of sponge archaeocytes, whereas the extracellular matrix was virtually free of bacteria. This study is the first molecular diversity study of a freshwater sponge and adds to a growing database on the diversity and community composition of sponge-associated microbial consortia.  相似文献   

20.
Endosymbiotic gut bacteria play an essential role in the nutrition of many insects. Most of the nutritional interactions investigated so far involve gammaproteobacterial symbionts, whereas other groups have received comparatively little attention. Here, we report on the localization and the transmission route of the specific actinobacterial symbiont Coriobacterium glomerans from the gut of the red firebug, Pyrrhocoris apterus (Hemiptera: Pyrrhocoridae ). The symbionts were detected by diagnostic PCRs and FISH in the midgut section M3, in the rectum and in feces of the bugs as well as in the hemolymph of some females. Furthermore, adult female bugs apply the symbionts to the surface of the eggs during oviposition, from where they are later taken up by the hatchlings. Surface sterilization of egg clutches generated aposymbiotic insects and thereby confirmed the vertical transmission route via the egg surface. However, symbionts were readily acquired horizontally when the nymphs were reared in the presence of symbiont-containing eggshells, feces, or adult bugs. Using diagnostic PCRs and partial sequencing of the 16S rRNA gene, closely related bacterial symbionts were detected in the cotton stainer bug Dysdercus fasciatus (Hemiptera: Pyrrhocoridae ), suggesting that the symbiosis with Actinobacteria may be widespread among pyrrhocorid bugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号