首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical expressions for the probability of survival of an irradiated cell have been obtained in a simple form. An attempt has been made to calculate the probability that a cell will remain in normal condition or in damaged state at a given instant of time. The important assumption which makes this possible is that once the cell is repaired it will behave like a normal cell for further irradiation.  相似文献   

2.
The mechanisms governing the emergence of the earliest mammalian neural cells during development remain incompletely characterized. A default mechanism has been suggested to underlie neural fate acquisition; however, an instructive process has also been proposed. We used mouse embryonic stem (ES) cells to explore the fundamental issue of how an uncommitted, pluripotent mammalian cell will self-organize in the absence of extrinsic signals and what cellular fate will result. To assess this default state, ES cells were placed in conditions that minimize external influences. Individual ES cells were found to rapidly transition directly into neural cells, a process shown to be independent of suggested instructive factors (e.g., fibroblast growth factors). Further, we provide evidence that the default neural identity is that of a primitive neural stem cell (NSC). The exiguous conditions used to reveal the default state were found to present primitive NSCs with a survival challenge (limiting their persistence and proliferation), which could be mitigated by survival factors or genetic interference with apoptosis.  相似文献   

3.
For many permanent cell lines the transition from a growing (P) to a resting (R) state is reversibly controlled by growth factors present in serum. This P-to-R transition was studied in a neuronal cell line (B 104) with respect to the action of serum, dibutyryl cyclic AMP (DBcAMP), gangliosides, and a glioma cell-produced growth factor GGF. In this cell system gangliosides seem to act as differentiation and survival factors. The kinetics of uptake of radioactively labeled gangliosides and survival experiments both support the idea of the stable incorporation of exogenously added gangliosides into the cells. Based on the experimental evidence a new model of cell development is proposed. Thus in addition to the R or G0 state, which in this cell system is rather unstable and probably regulated by cyclic nucleotides, we postulate a differentiated D state, which is controlled by gangliosides and which is characterized by its stability (survival time). This D compartment seems to be closer to the in vivo differentiated neuron than does the R or P state. The possible mechanisms for the action of gangliosides are discussed.  相似文献   

4.
The tissue microenvironment plays a critical role in cell survival and growth and can contribute to cell transformation and tumor development. Cellular interactions with the stroma and with other cells provide key signals that control cellular arrest or division, survival or death, and entrance or exit from a quiescent state. Together, these decisions are essential for maintenance of tissue homeostasis. Tissue oxygenation is an important component of the microenvironment that can acutely alter the behavior of a cell through the direct regulation of genes involved in cell survival, apoptosis, glucose metabolism, and angiogenesis. Loss of tissue homeostasis due to, for example, oncogene activation leads to the disruption of these signals and eventually can lead to cell transformation and tumor development. Here we review the role of tissue oxygenation, and in particular physiologic skin hypoxia, on cell survival and senescence and how it contributes to melanocyte transformation and melanoma development.  相似文献   

5.
In this review we present skin biology from the perspective of apoptosis. We stress that apoptosis acts as an important homeostatic and defence mechanism in the developing and mature epidermis. Programmed cell death functions in establishing the architecture of the human epidermis and its appendages during development by deletion of stage-specific cells and in the adult epidermis by elimination of excess and abnormal cells. Arguments are presented to support the hypothesis that known regulators of keratinocyte growth may act as survival factors which suppress the cell death pathway. Surviving cells continue to divide until they encounter anti-proliferative factors. Then, unless cells are severely injured and die of necrosis, they will terminally differentiate to death or will die by apoptosis. The mechanisms controlling keratinocyte maturation are co-ordinated with cell position within the epidermal strata. Inappropriate regulatory signals or response of a cell inappropriate to its state will activate apoptosis. Parallels between terminally differentiating keratinocytes and apoptotic cells imply that terminal differentiation and apoptosis proceed along the same death pathway. For terminally differentiating cells, however, this pathway is more elaborate because it allows expression of tissue- and differentiation-specific genes. A model is presented that integrates apoptosis and keratinocyte growth and differentiation.  相似文献   

6.
Biological networks of large dimensions, with their diagram of interactions, are often well represented by a Boolean model with a family of logical rules. The state space of a Boolean model is finite, and its asynchronous dynamics are fully described by a transition graph in the state space. In this context, a model reduction method will be developed for identifying the active or operational interactions responsible for a given dynamic behaviour. The first step in this procedure is the decomposition of the asynchronous transition graph into its strongly connected components, to obtain a “reduced” and hierarchically organized graph of transitions. The second step consists of the identification of a partial graph of interactions and a sub-family of logical rules that remain operational in a given region of the state space. This model reduction method and its usefulness are illustrated by an application to a model of programmed cell death. The method identifies two mechanisms used by the cell to respond to death-receptor stimulation and decide between the survival and apoptotic pathways.  相似文献   

7.
The starvation-survival response of Staphylococcus aureus as a result of glucose, amino acid, phosphate, or multiple-nutrient limitation was investigated. Glucose and multiple-nutrient limitation resulted in the loss of viability of about 99 to 99.9% of the population within 2 days. The remaining surviving cells developed increased survival potential, remaining viable for months. Amino acid or phosphate limitation did not lead to the development of a stable starvation-survival state, and cells became nonculturable within 7 days. For multiple-nutrient limitation, the development of the starvation-survival state was cell density dependent. Starvation survival was associated with a decrease in cell size and increase in resistance to acid shock and oxidative stress. There was no evidence for the formation of a viable but nonculturable state during starvation as demonstrated by flow cytometry. Long-term survival of cells was dependent on cell wall and protein biosynthesis. Analysis of [35S]methionine incorporation and labelled proteins demonstrated that differential protein synthesis occurred deep into starvation.  相似文献   

8.
Eukaryotic cell proliferation is controlled by specific growth factors and the availability of essential nutrients. If either of these signals is lacking, cells may enter into a specialized nondividing resting state, known as stationary phase or G(0). The entry into such resting states is typically accompanied by a dramatic decrease in the overall growth rate and an increased resistance to a variety of environmental stresses. Since most cells spend most of their life in these quiescent states, it is important that we develop a full understanding of the biology of the stationary phase/G(0) cell. This knowledge would provide important insights into the control of two of the most fundamental aspects of eukaryotic cell biology: cell proliferation and long-term cell survival. This review will discuss some recent advances in our understanding of the stationary phase of growth in the budding yeast, Saccharomyces cerevisiae.  相似文献   

9.
自噬(Autophagy)是真核生物细胞中一类高度保守的、依赖于溶酶体或液泡途径对胞质蛋白和细胞器进行降解的生物学过程。细胞自噬除维持细胞稳态外,在细胞响应各种外界胁迫中也发挥重要作用。近年来,陆续发现浮游植物能够通过细胞自噬应答众多环境胁迫,并在浮游植物细胞中鉴定出了类似于哺乳动物细胞中的核心自噬功能单位。自噬作为一种独特的程序性细胞死亡(PCD)形式,对浮游植物遭受胁迫后的个体存活及种群延续具有至关重要的作用。因此,细胞自噬也将成为浮游植物研究领域的一个新的着力点。主要综述了浮游植物细胞中自噬的保守性、诱导因素、调控机制、自噬与凋亡的交互作用以及浮游植物自噬研究方法等研究进展。  相似文献   

10.
Hybridoma 2E3-O cells were transfected with bcl-2 alone or with bcl-2 and bag-1 in combination. The bcl-2/bag-1 transfectant survived maintaining viability above 75% for almost 5 days when the cells were treated with excess (30 mM) thymidine for arresting cell cycle, whereas the mock transfectant survived for only 2 days, and the bcl-2 alone transfectant lived for 4 days. Owing to this extended viable culture period, the bcl-2/bag-1 transfectant produced twofold amount of antibody in comparison with the mock transfectant in non-proliferating state prepared by the excess thymidine treatment. When their proliferation was arrested by serum limitation, the bcl-2/bag-1 transfectant and the bcl-2 alone transfectant survived for 3 days maintaining viability above 75% while the mock transfectant survived only 1 day. The bcl-2/bag-1 transfectans produced the antibody at the rate three times as high as the bcl-2 alone transfectant and the mock transfectant in non-proliferating state established by serum limitation. Such genetic engineering of hybridoma cells for improving survival in the non-proliferating state will be useful for using nutrients in culture medium efficiently to produce antibody, since nutrients could be diverted from cell proliferation to antibody production in such non-proliferating viable cell culture. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Cancer cells depend on a supportive niche (the tumor microenvironment) that promotes tumor cell survival while protecting the malignant cells from therapeutic challenges and the host's defense systems. Cancer cells and the support cells in the tumor microenvironment communicate via cytokines/chemokines, cell:cell contact, or alterations in the metabolic state of the niche (e.g. hypoxia) that promote growth and survival of the tumor cell, influence metastasis, and defeat immune surveillance. These signaling pathways involve dysregulation of not only protein kinases but also protein phosphatases as normal signal transduction processes require both activation and deactivation. For instance, aberrant receptor signaling can result from constitutive activation of a tyrosine kinase such as FLT3 or inactivation of a tyrosine protein phosphatase such as SHP-2 (PTPN11). Activation of serine/threonine kinases such as AKT and ERK are often observed during the development of drug resistance while genomic and non-genomic suppression of serine/threonine protein phosphatases such as PP2A achieve similar results. It is fairly clear that the various protein phosphatases will impact processes that support drug resistance. Of growing interest is the emerging model whereby the support cells in the tumor microenvironment actually serve as drivers of tumorigenesis. This phenomenon has been most prominently observed in osteoblast cells in leukemic niches. At least one protein phosphatase, PTPN11, has emerged as a critical driver of this process in juvenile myelomonocytic leukemia. This review will cover the role of various serine/threonine and tyrosine protein phosphatases in processes that are central to tumor microenvironment function.  相似文献   

12.
It has now become recognized that one of the key events in the induction of apoptosis, or programmed cell death, in both plants and animals is the release of cytochrome c from mitochondria. It is also known that oxidative stress imposed on cells can have a profound effect on the onset or progression of apoptosis. Here, we discuss how the redox status of cytochrome c, and thus its structure, can be altered by the presence of reactive oxygen species (ROS) and reduced glutathione (GSH). We suggest that cytochrome c will only induce programmed cell death if present in the cytoplasm in the oxidized state, and that the presence of high levels of cytoplasmic GSH maintain cytochrome c in an inactive (reduced) state, thus behaving as a fail-safe mechanism if cytochrome c is released by mitochondria when programmed cell death is not the required outcome. If the redox status of the cell is disturbed however, perhaps in the presence of hydrogen peroxide, GSH concentrations will drop, the cellular E(h) will rise, and cytochrome c will tend towards the oxidized state, allowing programmed cell death to proceed. Therefore, we propose that the redox state of cytoplasmic cytochrome c may be a key regulator of programmed cell death.  相似文献   

13.
We have shown previously that human intestinal epithelial cell survival and anoikis are distinctively regulated according to the state of differentiation. Here we analyzed the roles of protein kinase B/Akt isoforms in such differentiation state distinctions. Anoikis was induced in undifferentiated and differentiated enterocytes by inhibition of focal adhesion kinase (Fak; pharmacologic inhibition or overexpression of dominant-negative mutants) or beta1 integrins (antibody blocking) or by maintaining cells in suspension. Expression/activation parameters of Akt isoforms (Akt-1, Akt-2, and Akt-3) and Fak were analyzed. Activity of Akt isoforms was also blocked by inhibition of phosphatidylinositol 3-kinase or by overexpression of dominant-negative mutants. Here we report the following. 1) The expression/activation levels of Akt-1 increase overall during enterocytic differentiation, and those of Akt-2 decrease, whereas Akt-3 is not expressed. 2) Akt-1 activation is dependent on beta1 integrins/Fak signaling, regardless of the differentiation state. 3) Akt-2 activation is dependent on beta1 integrins/Fak signaling in undifferentiated cells only. 4) Activation of Akt-1 is phosphatidylinositol 3-kinase-dependent, whereas that of Akt-2 is not. 5) Akt-2 does not promote survival or apoptosis/anoikis. 6) Akt-1 is essential for survival. 7) Akt-2 cannot substitute for Akt-1 in the suppression of anoikis. Hence, the expression and regulation of Akt isoforms show differentiation state-specific distinctions that ultimately reflect upon their selective implication in the mediation of human intestinal epithelial cell survival. These data provide new insights into the synchronized regulation of cell survival/death that is required in the dynamic renewal process of tissues such as the intestinal epithelium.  相似文献   

14.
The pathways involved in neuronal survival or death have been extensively studied mainly in cell lines. Recent evidence has suggested that activation of the stress activated pathways, jun N-terminal kinase (JNK) and p38 may play important roles in neuronal cell death or regeneration. In this review we will discuss these pahtways in detail. We will examine the evidence that these pathways are important in neuronal cell death. Finally we will review the evidence that inhibitors of these pathways have a neuroprotective effect both in vitro and in vivo.  相似文献   

15.
Summary A cell survival model with saturable repair has been developed. The model is based on the assumption that after irradiation the cell can be in one of the following three states: In state A the viable cells have no lesions, in state C cells carry lethal lesions and in state B cells exhibit potentially lethal lesions which can be repaired by a saturable enzymatic repair system or which are converted to lethal lesions. The model incorporates five parameters. The applicability of the model has been demonstrated by fitting 11 experimental data sets obtained with different cell lines, different kinds of radiation and variable repair times simulated by liquid holding recovery or inhibition of repair processes by different agents. The model and the results obtained are discussed in relation to published results.Dedicated to Prof. K.G. Zimmer on his 75th birthday  相似文献   

16.
17.
Complex living systems such as mammalian cells can be arrested in a solid phase by ultrarapid cooling. This allows for precise observation of cellular structures as well as cryopreservation of cells. The state of water, the main constituent of biological samples, is crucial for the success of cryogenic applications. Water exhibits many different solid states. If it is cooled extremely rapidly, liquid water turns into amorphous ice, also called vitreous water, a glassy and amorphous solid. For cryo-preservation, the vitrification of cells is believed to be mandatory for cell survival after freezing. Intracellular ice crystallization is assumed to be lethal, but experimental data on the state of water during cryopreservation are lacking. To better understand the water conditions in cells subjected to freezing protocols, we chose to directly analyze their subcellular water states by cryo-electron microscopy and tomography, cryoelectron diffraction, and x-ray diffraction both in the cryofixed state and after warming to different temperatures. By correlating the survival rates of cells with their respective water states during cryopreservation, we found that survival is less dependent on ice-crystal formation than expected. Using high-resolution cryo-imaging, we were able to directly show that cells tolerate crystallization of extra- and intracellular water. However, if warming is too slow, many small ice crystals will recrystallize into fewer but bigger crystals, which is lethal. The applied cryoprotective agents determine which crystal size is tolerable. This suggests that cryoprotectants can act by inhibiting crystallization or recrystallization, but they also increase the tolerance toward ice-crystal growth.  相似文献   

18.
In this study we have compared the ability of the organic polymers Ficoll and hydroxyethylcellulose (HEC) and the disaccharides sucrose and trehalose to support cell survival during freeze-drying and subsequent storage of a gram-negative Sphingobium sp. In addition to determination of viability rates, cell integrity was evaluated using lipid peroxidation and RNA quality assays for the different storage conditions and formulation compositions. All formulations resulted in high initial cell survival rates after freeze-drying. However, the disaccharide formulations were superior to the polymer-based formulations in supporting cell survival during storage with the exception of Ficoll that upon storage under vacuum yielded bacterial survival rates equal to that of sucrose. Storage in the presence of both oxygen and moisture was detrimental for bacterial survival in all formulations tested, however, lipid peroxidation or RNA damages were not the controlling mechanisms for cell death in this system. The ability of Ficoll and HEC to support cell survival during freeze-drying show that organic polymers, expected to lack the water replacing capability of e.g. disaccharides, can successfully be used as lyoprotectants. For storage under vacuum conditions we suggest that the intracellular amount of sugars (i.e. trehalose), or other protective native cell components, is sufficient for a basic protection inside the bacteria cell and that the amorphous state is the most important aspect of the formulation excipient. However, when exposed to oxygen and moisture during storage this protection is not sufficient to prevent cell degeneration.  相似文献   

19.
We propose a mathematical model for mitochondria-dependent apoptosis, in which kinetic cooperativity in formation of the apoptosome is a key element ensuring bistability. We examine the role of Bax and Bcl-2 synthesis and degradation rates, as well as the number of mitochondrial permeability transition pores (MPTPs), on the cell response to apoptotic stimuli. Our analysis suggests that cooperative apoptosome formation is a mechanism for inducing bistability, much more robust than that induced by other mechanisms, such as inhibition of caspase-3 by the inhibitor of apoptosis (IAP). Simulations predict a pathological state in which cells will exhibit a monostable cell survival if Bax degradation rate is above a threshold value, or if Bax expression rate is below a threshold value. Otherwise, cell death or survival occur depending on initial caspase-3 levels. We show that high expression rates of Bcl-2 can counteract the effects of Bax. Our simulations also demonstrate a monostable (pathological) apoptotic response if the number of MPTPs exceeds a threshold value. This study supports our contention, based on mathematical modeling, that cooperativity in apoptosome formation is critically important for determining the healthy responses to apoptotic stimuli, and helps define the roles of Bax, Bcl-2, and MPTP vis-à-vis apoptosome formation.  相似文献   

20.
Autoreactive B cells arise routinely as part of the naive B cell repertoire. The immune system employs several mechanisms in an attempt to silence these autoreactive cells before they achieve immunocompetence. The BCR plays a central role in B cell development, activation, survival, and apoptosis, and thus is a critical component of the regulation of both protective and autoreactive B cells. The strength of signal mediated by the BCR is determined by numerous factors, both B cell intrinsic and B cell extrinsic. Perturbations in the molecules that regulate the BCR signal strength or that activate pathways that engage in cross talk with the BCR-mediated signaling pathways can lead to the aberrant survival and activation of autoreactive B cells. In this review, we will discuss the some newly identified genetic loci and factors that modulate the BCR signal transduction pathway and, therefore, the regulation of autoreactive B cells. We will also provide evidence for a model of autoreactivity in which a reduction in the strength of the BCR signal allows the survival and the modulation of a naive B cell repertoire replete with autoreactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号