首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Using intracellular recording and immunohistochemistry, we studied the presynaptic muscarinic autoreceptor subtypes controlling ACh release in the neuromuscular junctions of the newborn (3-6 days postnatal) and adult (30-40 days) rat. In the Levator auris longus muscles of both newborn and adult rats, acetylcholine release was modified by the M1-receptor selective antagonists pirenzepine (10 microM) and MT-7 (100 nM) and by the M2-receptor selective antagonists methoctramine (1 microM) and AF-DX 116 (10 microM). The M4-receptor selective antagonists tropicamide (1 microM) and MT-3 (100 nM) can also modify the neurotransmitter release in certain synapses of the newborn muscles. The neurotransmitter release was not altered by the M3-receptor selective antagonist 4-DAMP (1 microM) in the adult or newborn rats. However, we directly demonstrate by immunocytochemistry the presence of these receptors in the motor endplates and conclude that M1-, M2-, M3- and M4-type muscarinic receptors are present in all the neuromuscular junctions of the rat muscle both in newborn and adult animals. These receptors may be located in the perisynaptic glial cell as well as at the nerve terminals.  相似文献   

2.
Acetylcholine (ACh), a major neurotransmitter from the autonomic nervous system, regulates the cholinergic stimulation of insulin secretion, through interactions with muscarinic receptors. The present study has characterised the individual involvement of muscarinic receptor subtypes in ACh-induced insulin secretion, using clonal beta cells and selective muscarinic receptor antagonists. BRIN BD11 cells clearly expressed mRNA encoding m1--m4 whereas m5 was not detected by RT-PCR. Insulin release was measured from BRIN BD11 cells treated with ACh in the presence of muscarinic receptor antagonists at concentrations ranging from 3 nM to 1 microM. 300 nM of muscarinic toxin-3 (M4 antagonist) and 1 microM of methoctramine (M2 antagonist) increased ACh (100 microM) stimulated insulin secretion by 168% and 50% respectively (ANOVA, P<0.05). The antagonists alone had no effect on insulin secretion. In contrast, 300 nM of pirenzepine (M1 antagonist) and 30 nM of hexahydro-sila-difenidol p-fluorohydrochloride (M3 antagonist) inhibited ACh stimulation by 91% and 84% respectively (ANOVA, P<0.01). It is concluded that ACh acts on different receptor subtypes producing both a stimulatory and an inhibitory action on insulin release.  相似文献   

3.
Acetylcholine (ACh), a major neurotransmitter from the autonomic nervous system, regulates the cholinergic stimulation of insulin secretion, through interactions with muscarinic receptors. The present study has characterised the individual involvement of muscarinic receptor subtypes in ACh-induced insulin secretion, using clonal β cells and selective muscarinic receptor antagonists. BRIN BD11 cells clearly expressed mRNA encoding m1–m4 whereas m5 was not detected by RT-PCR. Insulin release was measured from BRIN BD11 cells treated with ACh in the presence of muscarinic receptor antagonists at concentrations ranging from 3 nM to 1 μM. 300 nM of muscarinic toxin-3 (M4 antagonist) and 1 μM of methoctramine (M2 antagonist) increased ACh (100 μM) stimulated insulin secretion by 168% and 50% respectively (ANOVA, P<0.05). The antagonists alone had no effect on insulin secretion. In contrast, 300 nM of pirenzepine (M1 antagonist) and 30 nM of hexahydro-sila-difenidol p-fluorohydrochloride (M3 antagonist) inhibited ACh stimulation by 91% and 84% respectively (ANOVA, P<0.01). It is concluded that ACh acts on different receptor subtypes producing both a stimulatory and an inhibitory action on insulin release.  相似文献   

4.
Cui YY  Zhu L  Wang H  Advenier C  Chen HZ  Devillier P 《Life sciences》2008,82(17-18):949-955
Gastro-oesophageal acid reflux may cause airway responses such as cough, bronchoconstriction and inflammation in asthmatic patients. Studies in humans or in animals have suggested that these responses involve cholinergic nerves. The purpose of this study was to investigate the role of the efferent vagal component on airway microvascular leakage induced by instillation of hydrochloric acid (HCl) into the oesophagus of guinea-pigs and the subtype of muscarinic receptors involved. Airway microvascular leakage induced by intra-oesophageal HCl instillation was abolished by bilateral vagotomy or by the nicotinic receptor antagonist, hexamethonium. HCl-induced leakage was inhibited by pretreatment with atropine, a non-specific muscarinic receptor antagonist, and also by pretreatment with either pirenzepine, a muscarinic M(1) receptor antagonist, or 4-DAMP, a muscarinic M(3) receptor antagonist. Pirenzepine was more potent than atropine and 4-DAMP. These antagonists were also studied on airway microvascular leakage or bronchoconstriction induced by intravenous administration of acetylcholine (ACh). Atropine, pirenzepine and 4-DAMP inhibited ACh-induced airway microvascular leakage with similar potencies. In sharp contrast, 4-DAMP and atropine were more potent inhibitors of ACh-induced bronchoconstriction than pirenzepine. Methoctramine, a muscarinic M(2) receptor antagonist, was ineffective in all experimental conditions. These results suggest that airway microvascular leakage caused by HCl intra-oesophageal instillation involves ACh release from vagus nerve terminals and that M(1) and M(3) receptors play a major role in cholinergic-mediated microvascular leakage, whereas M(3) receptors are mainly involved in ACh-induced bronchoconstriction.  相似文献   

5.
A family of five subtypes of muscarinic acetylcholine receptors (mAChR) has been identified based on their molecular structures and second signal transduction pathways. In the present study, we examined the antagonist binding profiles of 9 muscarinic antagonists (atropine, 4-DAMP, pirenzepine, oxybutynin, tiquizium, timepidium, propiverine, darifenacin and zamifenacin) for human muscarinic acetylcholine receptor subtypes (m1, m2, m3, m4 and m5) produced by using a baculovirus infection system in Sf9 insect cells, and rat tissue membrane preparations (heart and submandibular gland). In a scopolamine methyl chloride [N-methyl-3H]- ([3H]NMS) binding assay, pirenzepine and timepidium displayed the highest affinities for the m1 and m2 subtypes, respectively, and both zamifenacin and darifenacin had the highest affinities for the m3 subtype, although the selectivities among the five subtypes were less than 10-fold. Propiverine showed a slightly higher affinity for the m5 subtype, whereas none of the drugs used in this study was uniquely selective for the m4 subtype. The binding affinities of muscarinic antagonists for rat heart and submandibular gland strong correlated with those for human cloned m2 and m3 subtypes, respectively. These data suggest that [3H]NMS binding studies using rat heart and submandibular gland might be useful methods which predict the affinities of test drugs for human muscarinic M2 and M3 receptor subtypes.  相似文献   

6.
Receptor characterization in human esophageal smooth muscle is limited by tissue availability. We used human esophageal smooth muscle cells in culture to examine the expression and function of muscarinic receptors. Primary cultures were established using cells isolated by enzymatic digestion of longitudinal muscle (LM) and circular muscle (CM) obtained from patients undergoing esophagectomy for cancer. Cultured cells grew to confluence after 10-14 days in medium containing 10% fetal bovine serum and stained positively for anti-smooth muscle specific alpha-actin. mRNA encoding muscarinic receptor subtypes M(1)-M(5) was identified by RT-PCR. The expression of corresponding protein for all five subtypes was confirmed by immunoblotting and immunocytochemistry. Functional responses were assessed by measuring free intracellular Ca(2+) concentration ([Ca(2+)](i)) using fura 2 fluorescence. Basal [Ca(2+)](i), which was 135 +/- 22 nM, increased transiently to 543 +/- 29 nM in response to 10 microM ACh in CM cells (n = 8). This response was decreased <95% by 0.01 microM 4-diphenylacetoxy-N-methylpiperidine, a M(1)/M(3)-selective antagonist, whereas 0.1 microM methoctramine, a M(2)/M(4)-selective antagonist, and 0.1 microM pirenzepine, a M(1)-selective antagonist, had more modest effects. LM and CM cells showed similar results. We conclude that human smooth muscle cells in primary culture express five muscarinic receptor subtypes and respond to ACh with a rise in [Ca(2+)](i) mediated primarily by the M(3) receptor and involving release of Ca(2+) from intracellular stores. This culture model provides a useful tool for further study of esophageal physiology.  相似文献   

7.
Ochi Y  Horie S  Maruyama T  Watanabe K  Yano S 《Life sciences》2005,77(16):2040-2050
The existence of a direct action of acetylcholine and gastrin on muscarinic M3 and cholecystokinin2 (CCK2) receptors on gastric parietal cells has not yet been convincingly established because these stimulated acid secretions are remarkably inhibited by histamine H2 receptor antagonists. In the present study, we investigated the necessity of intracellular cyclic AMP in inducing gastric acid secretion via muscarinic M3 and CCK2 receptors on parietal cells using an isolated mouse stomach preparation. Bethanechol (10-300 microM) produced a marked increase in acid output and this increase was completely blocked by famotidine (10 microM). In the presence of famotidine, bethanechol (1-30 microM) augmented the acid secretory response to dibutyryl AMP (200 microM) in a concentration-dependent manner. The augmentation was blocked by atropine (1 microM), 4-DAMP (0.1 microM), a muscarinic M3-selective antagonist, and by Ca2+ exclusion from the serosal nutrient solution. Pentagastrin (0.3-3 microM) also concentration-dependently stimulated gastric acid secretion, but the effect was completely inhibited by famotidine. In the presence of famotidine, pentagastrin (0.1-0.3 microM) elicited a definite potentiation of the acid secretory response to dibutyryl cyclic AMP (200 microM). This potentiation was inhibited by YM022 (1 microM), a CCK2 receptor antagonist, and by exclusion of Ca2+ from the serosal nutrient solution. The present results suggest that gastric acid secretion via the activation of muscarinic M3 and CCK2 receptors on the parietal cells is induced by activation of the cyclic AMP-dependent secretory pathway.  相似文献   

8.
Cholinergic dopamine release from the in vitro rabbit carotid body.   总被引:1,自引:0,他引:1  
The aim of this study was to test whether cholinergic mechanisms regulate dopamine (DA) release from the carotid body (CB) and interact with DA D(2) autoreceptors. One hundred forty-two CBs from adult rabbits were infused in vitro in a surviving medium bubbled with O(2) (Bairam A, Marchal F, Cottet-Emard JM, Basson H, Pequignot JM, Hascoet JM, and Lahiri S. J Appl Physiol 80: 20-24, 1996). CB DA content and release were measured after 1 h of exposure to various treatments: control, cholinergic agonist (0.1-50 microM carbachol), full muscarinic antagonist (1 and 10 microM atropine), antagonists of M(1) and M(2) muscarinic receptors (1 and 10 microM pirenzepine and 10 microM AFDX-116, respectively), and the DA D(2) receptor antagonist domperidone (1 microM), alone and with carbachol (1 microM). Compared with control, the release of DA was significantly increased by carbachol (1-50 microM), AFDX-116, and domperidone and decreased by atropine (10 microM) and pirenzepine (10 microM). The effects of domperidone and carbachol were not significantly different but were clearly additive. It is concluded that, in the rabbit CB, M(1) and M(2) muscarinic receptor subtypes may be involved in the control of DA release, in addition to the DA D(2) autoreceptors.  相似文献   

9.
This study was conducted to investigate the subtypes of muscarinic receptors involved in the action of cholinergic agents on prostacyclin synthesis in the rabbit aorta. Prostacyclin production measured as 6-keto-PGF1 alpha was assessed after exposing the aortic rings to different cholinergic agents. Acetylcholine (ACh) (M1 and M2 agonist) (1-10 microM) and arecaidine proparagyl ester (APE) (M2 selective agonist) (1-10 microM) enhanced 6-keto-PGF1 alpha output in a concentration-dependent manner. A selective M1 receptor agonist, McN-A-343, at 1 microM-1 mM did not alter 6-keto-PGF1 alpha output. ACh- and APE induced increases in 6-keto-PGF1 alpha output were attenuated by the M1/M2 antagonist atropine (0.1 microM), M2 alpha antagonist (AF-DX 116), (0.1-1.0 microM), and by selective M2 beta antagonist, hexahydro-sila-difendiol (HHSiD) (0.1-1.0 microM), but not by the M1 antagonist pirenzepine (1.0 microM). 6-Keto-PGF1 alpha output elicited by ACh- or APE was not altered by the adrenergic receptor antagonists phentolamine and propranolol or by the nicotinic receptor blocker hexamethonium. Similarly, the arachidonic acid- or norepinephrine induced 6-keto-PGF1 alpha accumulation was not altered by these muscarinic receptor antagonists. Indomethacin, a cyclooxygenase inhibitor, prevented arachidonic acid, ACh- or APE induced 6-keto-PGF1 alpha output. Removal of the endothelium abolished the production of 6-keto-PGF1 alpha elicited by ACh, APE, bradykinin, and calcium ionophore A 23187, but not that induced by angiotensin II, K+ or norepinephrine. These data suggest that vascular prostaglandin generation elicited by cholinergic agonists is mediated via activation of M2 alpha and M2 beta but not M1 muscarinic receptors, which are most likely located on the endothelium.  相似文献   

10.
Muscarinic facilitation of 14C-ACh release from post-ganglionic parasympathetic nerve terminals was studied in bladder strips prepared from spinal intact (SI) and spinal cord transected (SCT) rats. The spinal cord was transected at the lower thoracic spinal segments 3 weeks prior to the experiments. Using non-facilitatory stimulation (2 Hz) the release of ACh in spinal intact rats did not change in the presence of a non-specific muscarinic antagonist, atropine (100 nM), an M(1) specific antagonist (pirenzepine, 50 nM) or an M(1)-M(3) specific antagonist (4-DAMP, 5 nM). However, during a facilitatory stimulation paradigm (10 Hz or 40 Hz, 100 shocks) atropine and pirenzepine, but not 4-DAMP inhibited the release of ACh in bladders from spinal intact rats, indicating an M(1) receptor-mediated facilitation. In spinal cord transected rats, 2 Hz stimulation-induced release was significantly inhibited by atropine or 4-DAMP but not by pirenzepine indicating that a pre-junctional facilitatory mechanism mediated via M(3) muscarinic receptors could be induced by a non-facilitatory stimulation paradigm after spinal injury. In bladders of spinal cord transected rats, 10 Hz stimulation-evoked release of ACh was also inhibited by atropine and 4-DAMP (5 nM) but not by pirenzepine (50 nM). These results indicate that pre-junctional muscarinic receptors at cholinergic nerve endings in the bladder change after chronic spinal cord injury. It appears that low affinity M(1) muscarinic receptors are replaced by high affinity M(3) receptors. This change in modulation of ACh release may partly explain the bladder hyperactivity after chronic spinal cord injury.  相似文献   

11.
It has been recognized for many years that central cholinergic neurons are susceptible to inhibition by opiates and that during withdrawal their firing rates are enhanced. Nevertheless, classical nonselective muscarinic receptor antagonists have not been demonstrated to provide consistent inhibition of withdrawal symptoms in humans or in animal models. The purpose of this study was to determine whether selective blockade of central M1 or M2 muscarinic receptor subtypes could provide inhibition of naloxone precipitated withdrawal symptoms in morphine dependent rats. As with earlier human studies, both cardiovascular and behavioral measures of withdrawal were quantitated. The selective M2 receptor antagonist 4-DAMP was significantly more effective than the M1 antagonist pirenzepine in reducing both cardiovascular and behavioral symptoms. These results are consistent with a role for cholinergic neurons in the expression of certain morphine withdrawal symptoms and suggest that future therapies might be targeted towards central M2 receptors.  相似文献   

12.
Pirenzepine, McN-A-343 and oxotremorine were used to determine the subtypes of muscarinic receptors involved in the secretion of catecholamines from the isolated perfused adrenal gland of the rat. In the presence of 0.1 microM pirenzepine, the concentration-secretion curve for muscarine was shifted in parallel to the right by almost one log unit. With 0.5 microM the shift was over two log units. The apparent dissociation constant for pirenzepine was about 1.12 X 10(-8) M. Perfusion with McN-A-343 (1-30 microM) did not evoke the secretion of catecholamines. A further increase to very high concentrations (100-1000 microM) caused only a modest secretion (about 50 ng/5 min with 300 microM as compared to the same amount of secretion obtained with 1 microM muscarine). Secretion evoked by nicotine was significantly reduced (30%) by 3 microM McN-A-343, and the inhibition increased (90%) with higher concentrations (100 microM). McN-A-343 also produced concentration-dependent inhibition of catecholamine secretion evoked by muscarine. A significant effect was observed at 30 microM and reached a maximum level at 300 microM. Oxotremorine, like McN-A-343 was a partial agonist on the muscarinic receptors; but unlike McN-A-343, did not block the stimulatory effects of nicotine. Although the pirenzepine data suggest that M1 receptors are responsible for the secretion of catecholamines in the rat adrenal medulla, this conclusion is not supported by the results obtained with the M1-receptor agonist, McN-A-343, which proved to be an effective blocker of muscarinic as well as nicotinic receptors.  相似文献   

13.
H Shi  H Wang  Z Wang 《Life sciences》1999,64(21):PL251-PL257
Growing body of evidence indicates that the functional responses of cells to muscarinic acetylcholine receptors (mAChRs) are mediated by multiple receptor subtypes. It is commonly thought that the M2 receptor is the only functional mAChR subtype in the heart and little data regarding the potential roles of other subtypes in cardiac tissues has been reported. In the present study, we provide functional evidence for the presence and physiological function of an M3 receptor in canine atrial myocytes. Using whole-cell patch-clamp techniques, we consistently found that pilocarpine, an mAChR agonist, induced a K+ current similar to but distinct from the classical delayed rectifier K+ current. Same observations were obtained when choline or tetramethylammonium (TMA) was applied to the bath. The currents were abolished by 1 microM atropine. Antagonists selective to M1 (pirenzepine, 100 nM), M2 (methoctramine 100 nM), or M4 (tropicamide 200 nM) receptors failed to alter the currents. Conversely, three different M3-selective inhibitors, p-F-HHSiD (20-200 nM), 4-DAMP methiodide (2-10 nM) and 4-DAMP mustard (4-20 nM), all produced concentration-dependent suppression of the currents. A cDNA fragment representing the M3 receptor was isolated from dog atrial RNA and the mRNA level of this construct was 0.7 +/- 0.1 pg/microg total RNA, as quantified by the competitive RT-PCR methods. Our data strongly suggested that an M3 receptor exists and is coupled to a K+ channel in the heart.  相似文献   

14.
GTPase activity has been measured in synaptic membranes from bovine retina, with and without muscarinic receptor stimulation. Maximal stimulation above basal levels was achieved with 5 microM oxotremorine and 100 microM carbachol. (4-Hydroxy-2-butynyl)-1-trimethylammonium m-chlorocarbanilate chloride, which is selective for the M1 muscarinic receptor, failed to stimulate GTPase activity. 4-Diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) inhibition of oxotremorine stimulation demonstrated the presence of two populations of receptors, a low-affinity site (IC50 +/- SEM, 0.63 +/- 0.18 microM) which accounted for 63% of the inhibition and a high-affinity site (IC50 less than 1 nM) which accounted for the remaining 37%. When carbachol-stimulated GTPase activity was assayed, a single 4-DAMP inhibitory site was apparent (IC50 +/- SEM, 2.0 +/- 0.9 microM). Pirenzepine inhibited GTPase activity at a single site (IC50 values +/- SEM, 46.9 +/- 11 and 25.4 +/- 6.5 microM against oxotremorine and carbachol, respectively). Methoctramine was equipotent against carbachol and oxotremorine stimulation (IC50 values, 4.2 +/- 1.8 and 6.2 +/- 1.5 microM). Inhibition of maximal carbachol and oxotremorine stimulation by muscarinic antagonists at the major site had a rank order of potency of 4-DAMP = methoctramine greater than pirenzepine. Thus, the major site for muscarinic stimulation of GTPase activity in bovine retinal membranes is pharmacologically similar to M2 receptors.  相似文献   

15.
The muscarinic agonist oxotremorine-M produced a concentration-dependent increase in phosphoinositide hydrolysis in bovine pial arteries. The maximal effect was 5.9 +/- 0.89 fold over basal levels, and the EC50 for oxotremorine-M was 8.9 x 10(-6) M. The phosphoinositide response in arteries with the luminal endothelium removed was similar to the response in intact arteries. The specific muscarinic antagonists pirenzepine, 4-DAMP and methoctramine produced parallel shifts of the concentration-response curve to oxotremorine-M, with the following order of potency (pKB): 4-DAMP (8.59 +/- 0.10) greater than pirenzepine (8.12 +/- 0.11) greater than methoctramine (6.77 +/- 0.20). These results indicate that muscarinic stimulation activates phosphoinositide hydrolysis in cerebral arteries, and that the muscarinic receptors mediating this increase are similar to the M1 subtype.  相似文献   

16.
The direct effect of acetylcholine on the activation of the corpora allata (CA) was investigated in the adult male loreyi leafworm, Mythimna loreyi. Acetylcholine, in the presence of the choline esterase inhibitor physostigmine (50 microM), elicited a stimulatory effect on juvenile hormone acids (JHAs) release from the CA. Maximum effect was obtained at concentrations of 10 and 50 microM. Repeated administration of 10 microM acetylcholine on the same CA did not elicit similar stimulatory effect. Since JHA release can be significantly activated by carbachol and not by nicotine, this cholinergic effect is likely to belong to the muscarinic type. The effect of acetylcholine was significantly antagonized by gallamine triethiodide (M(2) antagonist) and 4-DAMP (M(3) antagonist), pirenzepine (M(1) antagonist), and tropicamide (M(4) antagonist) were ineffective. It is concluded that in the adult male M. loreyi, the cholinergic regulation of CA is most likely via M(2) and M(3) muscarinic receptors.  相似文献   

17.
The subtype of muscarinic receptor which mediates cAMP attenuation is not established. Therefore, several selective muscarinic antagonists were used to characterize the subtype of muscarinic receptor coupled to the inhibition of hormone-stimulated cAMP accumulation using NG108-15 neuroblastoma x glioma hybrid cells. These cells were prelabeled with [2-3H]-adenine, washed, and resuspended in a culture medium containing the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.5 mM). The labeled cells were preincubated with the different antagonists 12-15 min. before they were challenged with agonists. The formation of [3H]-cAMP was activated by PGE1 (1 microM) or forskolin (1 microM). In all cases, [3H]-cAMP formed was separated and measured. Carbachol (100 microM) and McN-A343 (10 mM) were used as standard muscarinic agonists. These studies gave the following results: a) McN-A343 (10 mM), an M1 receptor agonist, was only a partial agonist causing 40% inhibition of cAMP accumulation indicating that this effect was not mediated by an M1 receptor; b) The M1-selective antagonist, pirenzepine, exhibited low affinity (pA2 6.2) further suggesting that an M1 receptor was not coupled to the attenuation of cAMP accumulation; c) Two selective M2 antagonists (AF-DX 116 and methoctramine) and M3 antagonist (HHSiD) were used to further characterize these muscarinic receptors. The order of all antagonists based on their affinities (pA2 values) could be arranged in the following order: atropine (9.0) > methoctramine (7.6) > HHSiD (6.9) > AF-DX 116 (6.6) > pirenzepine (6.2). HHSiD exhibits the same degree of affinity to M2 receptors of other tissues as it does to those of NG cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Isolated mouse islets were used to identify the muscarinic receptor subtype present in pancreatic B-cells. We thus compared the inhibitory potencies of atropine (non-specific), of pirenzepine (specific for M1 receptors) and of compound AF-DX 116 (specific for cardiac M2 receptors) on acetylcholine-induced insulin release, 86Rb+ efflux and 45Ca2+ efflux. The three antagonists inhibited all effects of acetylcholine, but EC50 values were markedly different: atropine = 1.5-5 nM, pirenzepine = 0.6-1.7 microM and AF-DX 116 = 1.7-11 microM. The results did not suggest that the various effects of ACh could result from the activation of different subtypes of receptors. It is concluded that muscarinic receptors of pancreatic B-cells belong to an M2 subtype distinct from the cardiac M2 receptors.  相似文献   

19.
The M1-selective (high affinity for pirenzepine) muscarinic acetylcholine receptor (mAChR) antagonist pirenzepine displaced both N-[3H]methylscopolamine [( 3H]NMS) and [3H]quinuclidinylbenzilate from intact human SK-N-SH neuroblastoma cells with a low affinity (Ki = 869-1,066 nM), a result indicating the predominance of the M2 or M3 (low affinity for pirenzepine) receptor subtype in these cells. Whereas a selective M2 agent, AF-DX 116 [11-2[[2-[(diethylamino)methyl]-1-piperidinyl]- acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one) bound to the mAChRs with a very low affinity (Ki = 6.0 microM), 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP), an agent that binds with high affinity to the M3 subtype, potently inhibited [3H]NMS binding (Ki = 7.2 nM). 4-DAMP was also 1,000-fold more effective than AF-DX 116 at blocking stimulated phosphoinositide (PPI) hydrolysis in these cells. Covalent labeling studies (with [3H]propylbenzilycholine mustard) suggest that the size of the SK-N-SH mAChR (Mr = 81,000-98,000) distinguishes it from the predominant mAChR species in rat cerebral cortex (Mr = 66,000), an M1-enriched tissue. These results provide the first demonstration of a neural M3 mAChR subtype that couples to PPI turnover.  相似文献   

20.
Parasympathetic system plays an important role in insulin secretion from the pancreas. Cholinergic effect on pancreatic beta cells exerts primarily through muscarinic receptors. In the present study we investigated the specific role of muscarinic M1 and M3 receptors in glucose induced insulin secretion from rat pancreatic islets in vitro. The involvement of muscarinic receptors was studied using the antagonist atropine. The role of muscarinic M1 and M3 receptor subtypes was studied using subtype specific antagonists. Acetylcholine agonist, carbachol, stimulated glucose induced insulin secretion at low concentrations (10−8–10−5 M) with a maximum stimulation at 10−7 M concentration. Carbachol-stimulated insulin secretion was inhibited by atropine confirming the role of muscarinic receptors in cholinergic induced insulin secretion. Both M1 and M3 receptor antagonists blocked insulin secretion induced by carbachol. The results show that M3 receptors are functionally more prominent at 20 mM glucose concentration when compared to M1 receptors. Our studies suggest that muscarinic M1 and M3 receptors function differentially regulate glucose induced insulin secretion, which has clinical significance in glucose homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号