首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Human apolipoprotein A-IV (apo A-IV) exhibits a genetic polymorphism with two common alleles, A-IV1 and A-IV2, in Caucasian populations. We have investigated this polymorphism in the Icelandic population. The frequencies of the two alleles are significantly different from middel European populations with a higher frequency of the A-IV2 allele (0.117 versus 0.077) occurring in Iceland. The alleles at the apo A-IV locus have significant effects on plasma high density lipoprotein cholesterol (HDL-C) and triglyceride levels. The average effect of the A-IV2 allele is to raise HDL-C by 4.9 mg/dl and to lower triglyceride levels by 19.4mg/dl. We estimate that the genetic variability at the apo A-IV gene locus accounts for 3.1% of the total variability of HDL-C and for 2.8% of the total variability of triglycerides in the population from Iceland. This confirms and extends our previous observations on apo A-IV allele effects in Tyroleans in an independent population.  相似文献   

2.
Variation at the apolipoprotein E (apo E) gene locus affects cholesterol concentrations, the risk for atherosclerosis and Alzheimer disease (AD), and is associated with longevity in Caucasians. We have determined apo E gene frequencies and effects on cholesterol levels in Khoi San (Bushmen) from South Africa. The frequency of the apo 4 allele (0.37), which confers dose-dependent susceptibility to atherosclerosis and AD in Caucasians, was twice as high, and apo E4 homozygotes were 3–5 fold more frequent in the Khoi San ( 10%) compared with Caucasians (2%–3%). No significant effect of apo E variation on cholesterol concentration was noted in this non-Westernized population with low plasma cholesterol (mean cholesterol 149 mg/dl). This suggests that Bushmen carry a heavy genetic burden for these late-onset disorders if exposed to a Western lifestyle.  相似文献   

3.
Apolipoprotein (apo)A-IV is synthesized in the small intestine during fat absorption and is incorporated onto the surface of nascent chylomicrons. In circulation, apoA-IV is displaced from the chylomicron surface by high density lipoprotein-associated C and E apolipoproteins; this exchange is critical for activation of lipoprotein lipase and chylomicron remnant clearance. The variant allele A-IV-2 encodes a Q360H polymorphism that increases the lipid affinity of the apoA-IV-2 isoprotein. We hypothesized that this would impede the transfer of C and E apolipoproteins to chylomicrons, and thereby delay the clearance of postprandial triglyceride-rich lipoproteins. We therefore measured triglycerides in plasma, S(f) > 400 chylomicrons, and very low density lipoproteins (VLDL) in 14 subjects heterozygous for the A-IV-2 allele (1/2) and 14 subjects homozygous for the common allele (1/1) who were fed a standard meal containing 50 gm fat per m(2) body surface area. All subjects had the apoE-3/3 genotype. Postprandial triglyceride concentrations in the 1/2 subjects were significantly higher between 2;-5 h in plasma, chylomicrons, and VLDL, and peaked at 3 h versus 2 h for the 1/1 subjects. The area under the triglyceride time curves was greater in the 1/2 subjects (plasma, P = 0.045; chylomicrons, P = 0.027; VLDL, P = 0.063). A post-hoc analysis of the frequency of the apoA-IV T347S polymorphism suggested that it had an effect on triglyceride clearance antagonistic to that of the A-IV-2 allele. We conclude that individuals heterozygous for the A-IV-2 allele display delayed postprandial clearance of triglyceride-rich lipoproteins.  相似文献   

4.
Application of uniform methods for measuring the apolipoprotein (apo) E polymorphism and plasma cholesterol levels in nine populations (Tyrolean, Sudanese, Indian, Chinese, Japanese, Hungarian, Icelandic, Finnish, and Malay) revealed significant heterogeneity among them in apo E type frequencies and mean cholesterol levels. The major apo E types in all populations were E3/2 (frequency range from 7.0% in Indians to 16.9% in Malays), E3/3 (frequency range from 39.8% in Sudanese to 72.1% in Japanese), and E3/4 (frequency range from 11.3% in Japanese to 35.9% in Sudanese). Mean cholesterol levels ranged from 144.2 mg/dl in the Sudanese to 228.5 mg/dl in the Icelandics. Two-way analysis of variance of the effect of population and apo E type on cholesterol levels showed no significantly interaction effect, indicating that the effects of apo E type on cholesterol levels do not differ significantly among the populations. The overall average excess for the epsilon 2 allele was -14.12 mg/dl (range -31.63 to -8.82 mg/dl); for the epsilon 3 allele, 0.04 mg/dl (range -1.87 to 1.58 mg/dl; and for the epsilon 4 allele, 8.14 mg/dl (range -1.71 to 13.31 mg/dl). Despite the apparent heterogeneity in these values, especially for the epsilon 4 allele, comparison of the average excesses by a method of repeated sampling with random permutations revealed no significant difference in effects among populations. These data indicate that a given apo E allele acts in a relatively uniform manner in different populations despite differences in genetic background and environmental factors.  相似文献   

5.
Apolipoprotein E (apoE) genotypes were determined in Inuit population samples from Nuuk on the south-west coast of Greenland (n = 100) and from the Ammassalik region on the south-east coast (n = 78). The ɛ2 allele was absent in the latter sample, and the ɛ4 allele frequency was relatively high, about 23%. As in most other populations, mean plasma lipoprotein-related variables, except high-density lipoprotein (HDL) cholesterol, were higher in both Inuit men and women with ɛ4 than in ɛ3ɛ3 genotypes (P < 0.05 for triglycerides in men, and for non-HDL cholesterol and apolipoprotein B in women). The estimated apoE allele frequencies were combined with data from other studies of aboriginal peoples to outline a world map of apoE allele frequencies. A recent study of non-human primates suggests that ɛ4, and not ɛ3, is the ancestral allele in humans and we have used the map to generate additional hypotheses regarding the history of the apoE polymorphism in humans. Received: 30 November 1995 / Revised: 15 June 1996  相似文献   

6.
The aims of this study were to detect polymorphic sites in the apolipoprotein (apo) A-IV gene, to establish their frequencies, to determine potential haplotypes, and to investigate the role of these polymorphisms in lipid metabolism. A sequencing study of four individuals led to the identification of two synonymous mutations (codons 9 and 54) and three nonsynonymous mutations (Val-8----Met, Gln360----His, and Thr347----Ser) and of a VNTR polymorphism within a series of three or four CTGT repeats in the noncoding region of exon 3. Frequencies of these polymorphisms were determined in 291 students by using naturally occurring (BstEII for the synonymous mutation in codon 54, HinfI for Thr347----Ser, and Fnu4HI for Gln360----His) or artificially introduced restriction-enzyme cutting sites (BstEII for the synonymous mutation in codon 9 and MamI for Val-8----Met), subsequent to PCR amplification. The four-base deletion/insertion polymorphism and its localization cis or trans to the mutations in codons 347 and 360 were studied by direct sequencing of PCR-amplified DNA from 87 students. Frequencies of the rarer alleles were .007 for apo A-IV-8:Met, .04 for the synonymous mutation in codon 9, .14 for the synonymous mutation in codon 54, .16 for apo A-IV347:Ser, .07 for apo A-IV360:His, and .39 for the four-base of insertion. Apo A-IV360:His in all cases was cis-localized to the (CTGT)3 repeat and apo A-IV347:Thr; and apo A-IV347:Ser was cis-localized to the (CTGT)4 repeat and apo A-IV360:Gln. Four haplotypes formed from these three polymorphic sites were thus found. The apo A-IV347:Ser allele was associated both with significantly lower plasma apo B concentrations in both sexes and with significantly lower LDL-cholesterol concentrations in men. Heterozygous carriers of apo A-IV360:His exhibited significantly higher concentrations of LDL-cholesterol and lower Lp(a) concentrations, compared with apo A-IV360:Gln homozygotes. We could not confirm the previously reported association of apo A-IV360:His with elevated HDL-cholesterol concentrations. In the population, the Val-8----Met polymorphism was not associated with significantly different lipid concentrations, but in a family study the Met-8 allele was associated with lower HDL-cholesterol and higher LDL-cholesterol concentrations. In conclusion, our results indicate an important role of the apo A-IV gene locus in the metabolism of apo B and, to a lesser extent, apo A-I containing lipoproteins.  相似文献   

7.
We have studied the lipoprotein distribution of human apo A-IV during cholesterol esterification by the action of endogenous lecithin-cholesterol acyltransferase. Using immunologic and radiotracer techniques at 4 degrees C, apo A-IV was found in two discrete monomeric and dimeric populations, unassociated with plasma lipoproteins. With incubation at 37 degrees C, apo A-IV initially associated with the high density lipoprotein-3 fraction, but thereafter dissociated from its surface, and reappeared as unbound protein and in association with a complex in the low density lipoprotein size range. Inclusion of LCAT inhibitors in the incubations abolished these changes. We conclude that the changes in lipoprotein distribution of human apo A-IV closely parallel the formation and exchange of plasma cholesteryl esters.  相似文献   

8.
Summary By isoelectric focusing of delipidated sera followed by immunoblotting we studied the apolipoprotein (apo) E polymorphism in 2018 randomly selected 35-years-old males from three different areas in the Netherlands. Comparison of the APOE allele (E*2, E*3, and E*4) frequencies estimated in this study with those reported for several other population samples showed that there are marked differences between the Dutch population and the populations of Japan, New Zealand, Finland, and the United States. These differences in APOE allele frequencies appeared to be mainly due to differences in frequencies of the E*2 allele (decreased in Japan and Finland; increased in New Zealand) and the E*4 allele (increased in Finland; decreased in Japan and the United States). No difference in APOE allele frequencies was found between the Dutch population and the populations of West Germany and Scotland. Measurements of plasma cholesterol and apo B and E concentrations showed that the E*4 allele is associated with elevated plasma cholesterol and apo B levels and with decreased apo E concentrations, whereas the opposite is true for the E*2 allele. In the Dutch population, the sum of average allelic effects of the common APOE alleles on plasma cholesterol and apo B levels is 6.8% and 14.2%, respectively, of the total population mean. The total average allelic effect on plasma apo E concentrations was more pronounced (50.1%), suggesting that the APOE alleles primarily affect apo E concentrations rather than plasma cholesterol and apo B levels. This hypothesis is sustained by the observation that for plasma apo E levels the genetic variance associated with the APOE gene locus contributed about 18% to the total phenotypic variance. For plasma cholesterol and apo B this contribution was only 1.4% and 2.3% and is relatively low as compared with that reported for other population samples.  相似文献   

9.
We have investigated the binding of human apolipoprotein A-IV (apo A-IV) to human hepatocellular plasma membranes. Addition of increasing concentrations of radiolabeled apo A-IV to hepatic plasma membranes, in the presence and absence of a 25-fold excess of unlabeled apo A-IV, revealed saturation binding to the membranes with a KD of 154 nM and a binding maximum of 1.6 ng/microgram of membrane protein. The binding was temperature-insensitive, partially calcium-dependent, abolished when apo A-IV was denatured by guanidine hydrochloride or when the membranes were treated with Pronase and decreased when apo A-IV was incorporated into phospholipid/cholesterol proteoliposomes. In displacement studies using purified apolipoproteins and isolated lipoproteins, only unlabeled apo A-IV, apo A-I and high-density lipoproteins effectively competed with radiolabeled apo A-IV for membrane binding sites. We conclude that human apo A-IV exhibits high-affinity binding to isolated human hepatocellular plasma membranes which is saturable, reversible and specific.  相似文献   

10.
We investigated the effect of the A-IV-2 allele, which encodes a Q360H substitution in apolipoprotein (apo) A-IV, and dietary fat on cholesterol absorption in humans. In three separate studies we compared fractional intestinal cholesterol absorption between groups of subjects heterozygous for the A-IV-2 allele (1/2) and homozygous for the common allele (1/1) receiving high cholesterol ( approximately 800 mg/day) diets with different fatty acid compositions. All subjects had the apoE 3/3 genotype. There was no difference in cholesterol absorption between the two genotype groups receiving a high saturated fat diet (33% of total energy as fat; 18% saturated, 3% polyunsaturated, 12% monounsaturated) or a low fat diet (22% of total energy as fat; 7% saturated, 7% polyunsaturated, 8% monounsaturated) diet. However, on a high polyunsaturated fat diet (32% of total energy as fat; 7% saturated, 13% polyunsaturated, 12% monounsaturated) mean fractional cholesterol absorption was 56. 7% +/- 1.9 in 1/1 subjects versus 47.5% +/- 2.1 in 1/2 subjects (P = 0.004). A post hoc analysis of the effect of the apoA-IV T347S polymorphism across all diets revealed a Q360H x T347S interaction on cholesterol absorption, and suggested that the A-IV-2 allele lowers cholesterol only in subjects with the 347 T/T genotype.We conclude that a complex interaction between apoA-IV genotype and dietary fatty acid composition modulates fractional intestinal cholesterol absorption in humans.  相似文献   

11.
In 76 supposedly healthy families, we investigated the familial resemblance of left and right carotid intima-media thickness (IMT) measured by B-mode ultrasonography and the impact of the common apolipoprotein E (apo E) polymorphism and the insertion/deletion polymorphism of the angiotensin-converting enzyme (ACE). Genetic factors accounted for about 30% of IMT variation. The insertion/deletion ACE polymorphism did not influence carotid IMT, whereas apoE polymorphism explained about 1.5% of only right carotid IMT variability independently of cholesterol levels. The apo ɛ2 and apo ɛ4 alleles were associated with lower right carotid IMT than was the apo ɛ3 allele. We conclude that genetic factors strongly contribute to IMT variability in healthy people and that the apo E polymorphism may be one of these factors. Received: 10 November 1997 / Accepted: 20 Match 1998  相似文献   

12.
Summary The frequencies of genetic apo E isoforms E2, E3 and E4 were determined in 523 patients with myocardial infarction and compared to those in a control group (1031 blood donors). A significant difference in the frequency of apo E4 was noted between patients and controls (0.05> P>0.025). No differences in the frequencies of isoforms E3 and E2 were observed. In particular, there was no significant difference between the two groups in the frequency of apo E2 homozygosity. a condition that is associated with type III hyperlipoproteinemia. However, all E2 homozygote survivors of myocardial infarction had hyperlipoproteinemia type III (cholesterol 269±29 mg/dl; triglyceride 419±150 mg/dl; age 54±14 years; N=5). On the contrary, E2 homozygote controls (all apo E-2/2 blood donors and their apo E-2/2 relatives who were from the same age range as the patients) had primary dysbetalipoproteinemia but normal or subnormal plasma cholesterol concentrations (cholesterol 184±28 mg/dl; triglyceride 151±52 mg/dl; age 56±13 years; N=11). This indicates that E2 homozygotes with hyperlipoproteinemia type III who occur rarely in the population but comprise about 1% of myocardial infarction patients have a markedly increase risk for coronary atherosclerosis, whereas the risk for E2 homozygotes with normal or subnormal plasma cholesterol (=primary dysbetalipoproteinemia) may be considerably lower than for the general population. The data illustrate the complex relationship between apo E genes, lipid levels, and risk for atherosclerosis.  相似文献   

13.
Human apolipoprotein E exhibits genetic polymorphism in all populations examined to date. By isoelectric focusing and immunoblotting, three common alleles have been demonstrated in 365 unrelated Nigerian blacks. Furthermore, the APO E genetic polymorphism's effect on quantitative levels of lipids and lipoproteins has been determined. The respective frequencies of the APO E*2, APO E*3, and APO E*4 alleles are .027, .677, and .296. The effect of APO E polymorphism is significant only on total cholesterol and low-density lipoprotein cholesterol. The average excesses of the APO E*2 allele are to lower total cholesterol and low-density lipoprotein cholesterol by 9.19 mg/dl and 11.11 mg/dl, respectively. The average excesses of the APO E*4 allele are to increase total cholesterol and low-density lipoprotein cholesterol by 5.64 mg/dl and 6.18 mg/dl, respectively. On the basis of the differences in (a) the distribution of APO E allele frequencies between the Nigerians and other populations and (b) dietary lipids, we propose a model that shows that lipid metabolism is influenced by the combined effects of the APO E polymorphism and environmental factors.  相似文献   

14.
Human apolipoprotein (apo) E is polymorphic. We have investigated the effect of the apo-E polymorphism on quantitative plasma levels of apo E, apo B, and total cholesterol in a sample of 563 blood-bank donors from Marburg and Giessen, West Germany. The relative frequencies of the epsilon 2, epsilon 3, and epsilon 4 alleles are .063, .793, and .144, respectively. The average effects of the epsilon 2 allele are to raise apo-E levels by 0.95 mg/dl, lower apo B levels by 9.46 mg/dl, and lower total cholesterol levels by 14.2 mg/dl. The average effects of the epsilon 4 allele are to lower apo-E levels by 0.19 mg/dl, to raise apo-B levels by 4.92 mg/dl, and to raise total cholesterol levels by 7.09 mg/dl. The average effects of the epsilon 3 allele are near zero for all three phenotypes. The apo-E polymorphism accounts for 20% of the variability of plasma apo-E levels, 12% of the variability of plasma apo-B levels, and 4% of the variability of total plasma cholesterol levels. The inverse relationship between the genotype-specific average apo-E levels and both the genotype-specific average apo-B and cholesterol levels is offset by a positive relationship between apo-E levels and both apo-B and cholesterol levels within an apo-E genotype. The apo-E polymorphism also has a direct effect on the correlation between apo-E and total cholesterol levels. The implication of these results on multivariate genetic analyses of these phenotypes is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Recently, we determined the apolipoprotein E (apoE) phenotype distribution in 2,000 randomly selected 35-year-old male individuals by slab gel isoelectric focusing of delipidated plasma samples, followed by immunoblotting using anti-apoE antiserum. These blots have been successfully re-used for immunovisualization of apoA-IV isoelectric focusing patterns. In a population sample of 1,393 individuals, four distinct apoA-IV isoforms were detected, encoded by the alleles A-IV*0, A-IV*1, A-IV*2, and A-IV*3 with gene frequencies of 0.002, 0.901, 0.079, and 0.018, respectively. The mean of plasma cholesterol, triglyceride, apoB and E levels did not differ significantly among the different apoA-IV phenotype groups. For these lipoprotein parameters, less than 0.1% of the total phenotypic variance could be accounted for by the APOA-IV gene locus. Our results did not show any effect of apoA-IV polymorphism on plasma apoA-I levels nor could we find any correlation between plasma levels of apoA-I and apoA-IV within the different apoA-IV phenotype groups. The plasma level of apoA-IV in subjects bearing the A-IV*3 allele is significantly lower than in subjects without the A-IV*3 allele (5 mg/dl versus 14 mg/dl). We therefore conclude that, in contrast to the apoE polymorphism, the polymorphism at the APOA-IV locus does not influence any of the levels of the lipoprotein parameters considered except apoA-IV.  相似文献   

16.
It is known that estrogens can influence the synthesis and catabolism of lipoproteins. We therefore investigated the changes in the apolipoproteins and lipids in the plasma of rats 30 days after ovariectomy. Using electroimmunoassay and sodium dodecyl sulfate/polyacrylamide gel electrophoresis, it was shown that apolipoproteins B, E and C were increased in the ovariectomized rat, whereas apo A-I and apo A-IV changed very little or not at all. Concentrations of plasma cholesterol and triglyceride increased after ovariectomy as well. It is postulated that the hyperlipoproteinemia observed with ovariectomy may be due to the lack of estrogen's influence on receptor uptake and catabolism of lipoproteins.  相似文献   

17.
Lipoprotein distribution in rat plasma determined after sequential ultracentrifugation (requiring 8 days of centrifugation to separate lipoproteins in five density classes), was compared to estimates based upon cumulative density ultracentrifugation (46 hr of ultracentrifugation). In general comparable values were obtained by the two methods with regard to protein, total cholesterol, cholesteryl ester, free cholesterol, and triacylglycerol distribution. However, the HDL3 protein concentration found by sequential ultracentrifugation was only about 50% of that found after the cumulative procedure. Apolipoproteins in lipoproteins isolated by the two methods were well separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Color of the stained bands was extracted and read photometrically. A linear standard curve was obtained with albumin. Absorbance corresponding to 1 microgram/ml was 0.057. Below d = 1.100 g/ml (HDL2b) the two ultracentrifugation methods gave comparable results for all apoproteins. In contrast to this the level of apo A-I, apo E, and apo A-IV in the more dense types of HDL was higher when estimated by cumulative than by sequential ultracentrifugation. In HDL3 isolated by sequential ultracentrifugation the apo A-IV, apo E, and apo A-I concentrations were 51, 31, and 45% respectively, of values found after cumulative ultracentrifugation. The results indicate that cumulative density ultracentrifugation, followed by colorimetric determination of apoproteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is a useful approach when studying lipoprotein distribution in rat plasma.  相似文献   

18.
In euthyroid dogs fed a diet rich in cholesterol and saturated fat, the cholesterol concentration in both plasma and peripheral lymph increased progressively with the appearance of HDLc (d 1.006-1.063). This HDLc fraction was heterogeneous and could be separated into 'slow' and 'fast' migrating fractions by Pevikon block electrophoresis. On SDS-polyacrylamide gel electrophoresis, plasma 'slow' HDLc was appreciably enriched in apolipoprotein (apo) E, while plasma and lymph 'fast' HDLc were apo E-poor. In contrast, no apo E was visible in lymph 'slow' HDLc in either plasma or lymph HDL2 fractions (d 1.087-1.21). The interstitial HDL fractions containing apo A-IV ('fast' HDLc and HDL2) were also rich in free cholesterol, implying that apo A-IV-containing particles are involved in reverse cholesterol transport. Plasma and peripheral lymph HDL2 and 'fast' HDLc cholesterol/protein ratios were not different, whereas lymph 'slow' HDLc was 24% that of plasma, indicating that interstitial 'slow' HDLc was poor in cholesterol compared to plasma. This marked reduction in lymph 'slow' HDLc cholesterol suggests that this particle was either selectively retarded from egress by the endothelial barrier, or that interstitial 'slow' HDLc represents a depleted particle involved in the delivery of cholesterol to peripheral tissues. These findings taken together support the hypothesis that interstitial 'slow' HDLc may represent a particle involved in cholesterol ester delivery, in contrast with HDL2 and 'fast' HDLc, which could serve as an efflux acceptor of tissue free cholesterol. This study demonstrates significant heterogeneity of interstitial peripheral lymph lipoproteins compared to plasma lipoproteins, and indicates selective distribution of these particles in the extravascular space.  相似文献   

19.
Apolipoprotein A-IV concentration was measured by a newly developed competitive enzyme immunoassay in sera from fasted human subjects (n = 105) whose triglyceride concentrations ranged from 20 to 474 mg/dl (total cholesterol below 260 mg/dl) and in which chylomicrons could not be detected. Mean (+/- SD) apolipoprotein A-IV concentration was 13.0 +/- 2.6 mg/dl in sera with triglyceride levels ranging from 20 to 100 mg/dl, 16.9 +/- 3.7 mg/dl in sera with triglyceride levels ranging from 101 to 250 mg/dl, and 22.7 +/- 6.7 mg/dl in sera with triglyceride levels ranging from 251 to 474 mg/dl. The differences among the three groups were highly significant (P less than 0.001). Moreover, variations of apolipoprotein A-IV concentrations according to the triglyceride levels were noted within the normo-triglyceridemic population. Apolipoprotein A-IV concentration was 12.8 +/- 2.1 mg/dl for triglyceride levels ranging from 20 to 75 mg/dl and 16.4 +/- 3.8 mg/dl for triglyceride levels ranging from 76 to 150 mg/dl (P less than 0.01). In the entire population that was studied there was a significant linear correlation (r = 0.61, P less than 0.001) between the concentrations of serum apolipoprotein A-IV and triglyceride. Although the hypothesis of an unknown factor independently influencing both very low density lipoproteins and apolipoprotein A-IV cannot be ruled out, and although no apolipoprotein A-IV was found in the triglyceride-rich lipoprotein fraction after separation by gel filtration, these data suggest that, in fasting subjects, the secretion of very low density lipoproteins could contribute to the plasma apolipoprotein A-IV level.  相似文献   

20.
Summary Human apolipoprotein (apo) A-IV is genetically polymorphic, the apo A-IV polymorphism being controlled by two common alleles, A-IV1 and A-IV2. We have developed a method for typing the apo A-IV polymorphism by Western blotting using polyclonal rabbit antiapo A-IV as the first and gold-labeled antirabbit IgG as the second antibody. Apolipoprotein phenotypes were determined in plasma samples from 473 tiroleans. The frequencies of the apo A-IV alleles in this sample were f(A-IV1)=0.919, f(A-IV2)=0.077, and f(A-IV3)=0.004. Although average triglyceride levels were lower in apo A-IV 2-1 heterozygotes, average total serum cholesterol and triglyceride levels were not significantly different among apo A-IV types. High density lipoprotein (HDL) cholesterol was significantly increased in individuals with the A-IV 2-1 phenotype. We estimate that genetic variation at the apo A-IV gene locus accounts for 11% of the total variability in HDL-cholesterol levels in Tiroleans. The effects of the apo A-IV polymorphism described here are consistant with, and may serve to enrich, our limited knowledge of the role of apo A-IV in lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号