首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The taxonomy of the Old World bat genus Otomops (Chiroptera: Molossidae) has been the subject of considerable debate. The failure of classical morphological studies to provide consistent patterns regarding interspecific relationships within Otomops has limited any understanding of the evolutionary history of the genus. We used traditional and geometric morphometric approaches to establish the species limits of taxa from sub‐Saharan Africa, the Arabian Peninsula, and Madagascar. Morphometric data supported the recent recognition of three distinct Afrotropical taxa: Otomops madagascariensis from Madagascar; Otomops martiensseni s.s. from southern, eastern, central, and western Africa; and an undescribed taxon from north‐east Africa and the Arabian Peninsula. Analyses of craniodental measurements and landmark‐based data showed significant cranial size and shape divergence between the three taxa. Cranial size and shape variation within Afro‐Arabian Otomops were strongly influenced by altitude, seasonality of precipitation, and precipitation in the driest month. Based on morphometric patterns and molecular divergence estimates, we suggest that morphological evolution within Afro‐Arabian Otomops occurred in response to the fluctuating climate during the Pleistocene on the one hand, and the increasing aridity and seasonality over north‐eastern Africa on the other. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, •• , ••–••.  相似文献   

2.
Mountain‐associated species, which exhibit allopatric distributions associated with elevation, endemisms and complex evolutionary histories, pose challenging evolutionary scenarios in which to discern the diversification of species. The Peromyscus mexicanus mice group, distributed along mountains in southern Mexico and Central America, is morphometrically variable, a key rationale for the ongoing controversy regarding its species delimitation. Based on the recognized 15 mitochondrial lineages for the group, we analysed external and craniodental morphometric variables to test whether lineages can be differentiated morphometrically and allow for the delimitation of species. We also aimed to test the prediction that the phylogenetic structure of the morphometric data is concordant with that of the molecular information. Based on 19 craniodental measurements from 521 specimens, multivariate and discriminant analyses showed that lineages are morphometrically discernible, representing distinct phenotypes, and that overall size and mandible measurements are significant features that discriminate lineages, supporting hypotheses about differences in feeding habits between species. Also, a pattern of increasing size with elevation was observed, further supported by specific morphological differences exhibited between highland and lowland lineages inhabiting the same mountain. Our results demonstrate that P. mexicanus is both genetically and morphometrically variable, where most highland montane species are differentiated from lowland species; also, a significant correlation between mitochondrial and morphometric information is indicative of phenetic concordance, altogether in agreement with a recent taxonomic proposal for the group. We suggest that the group's intricate diversification responds to ecological diversification and adaptation to a variety of mountain habitats and Pleistocene biogeographic climatic dynamics.  相似文献   

3.
Recent interest in testing the river–refugia effect has prompted an evolutionary investigation of the ground skink (Scincella lateralis) to diagnose instances of the riverine barrier hypothesis and thus, Pleistocene climate change refugia. This taxon, characterized by limited vagility, presents itself as a model organism in understanding patterns in Gulf Coast squamate evolution and biogeography. Here, we use geometric morphometric techniques to assess whether changes in head shape characterize diverging molecular lineages. We analysed head shape variation for diagnostic morphology by population and hypothesized that clades recovered as monophyletic by previous molecular studies will be more similar to each other than distantly related lineages. Dorsal and lateral head shape analyses indicated strong divergence for one clade (mitochondrial Clade I) in association with mtDNA divergence, exhibiting cranial narrowing and elongation relative to all other clades, and weak divergence of another clade (mitochondrial Clade N), which exhibited similar shape divergence from consensus. Both of these clades are Gulf Coast lineages and our results suggest convergence in head shape towards a regional phenotype.  相似文献   

4.
Understanding the processes underlying morphological diversification is a central goal in ecology and evolutionary biology and requires the integration of information about phylogenetic divergence and ecological niche diversity. In the present study, we use geometric morphometrics and comparative methods to investigate morphological diversification in Neotropical spiny rats of the family Echimyidae. Morphological diversification is studied as shape variation in the skull, comprising a structure composed of four distinct units: vault, base, orognathofacial complex, and mandible. We demonstrate association among patterns of variation in shape in different cranial units, levels of phylogenetic divergence, and ecological niche diversification. At the lower level of phylogenetic divergence, there is significant and positive concordance between patterns of phylogenetic divergence and cranial shape variation in all cranial units. This concordance may be attributable to the phylogenetic and shape distances being calculated between species that occupy the same niche. At higher phylogenetic levels of divergence and with ecological niche diversity, there is significant concordance between shape variation in all four cranial units and the ecological niches. In particular, the orognathofacial complex revealed the most significant association between shape variation and ecological niche diversity. This association may be explained by the great functional importance of the orognathofacial complex.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 646–660.  相似文献   

5.
Delimitation of species is an important and controversial area within evolutionary biology. Many species boundaries have been defined using morphological data. New genetic approaches now offer more objective evaluation and assessment of the reliability of morphological variation as an indicator that speciation has occurred. We examined geographic variation in morphology of the continuously distributed skink Chalcides mionecton from Morocco and used Bayesian analyses of nuclear and mitochondrial DNA (mtDNA) loci to examine: (i) their concordance with morphological patterns, (ii) support for species delimitation, (iii) timing of speciation, and (iv) levels of gene flow between species. Four digit individuals were found at sites between Cap Rhir (in the south) and the northern extreme of the range, whereas five‐digit individuals were found in two disjunct areas: (i) south of Cap Rhir and (ii) the north of the range where they were often syntopic with four‐digit individuals. The pattern of variation in generalized body dimensions was largely concordant with that in digit number, suggesting two general morphotypes. Bayesian analyses of population structure showed that individuals from sites south of Cap Rhir formed one genetic cluster, but that northern four‐ and five‐digit individuals clustered together. Statistical support for delimitation of these genetic clusters into two species was provided by a recent Bayesian method. Phylogenetic–coalescent dating with external time calibrations indicates that speciation was relatively recent, with a 95% posterior interval of 0.46–2.66 mya. This postdates equivalent phylogenetic dating estimates of sequence divergence by approximately 1 Ma. Statistical analyses of a small number of independent loci provide important insights into the history of the speciation process in C. mionecton and support delimitation of populations into two species with distributions that are spatially discordant with patterns of morphological variation.  相似文献   

6.
Abstract Patterns of genetic variation and covariation strongly affect the rate and direction of evolutionary change by limiting the amount and form of genetic variation available to natural selection. We studied evolution of morphological variance-covariance structure among seven populations of house finches (Carpodacus mexicanus) with a known phylogenetic history. We examined the relationship between within- and among-population covariance structure and, in particular, tested the concordance between hierarchical changes in morphological variance-covariance structure and phylogenetic history of this species. We found that among-population morphological divergence in either males or females did not follow the within-population covariance patterns. Hierarchical patterns of similarity in morphological covariance matrices were not congruent with a priori defined historical pattern of population divergence. Both of these results point to the lack of proportionality in morphological covariance structure of finch populations, suggesting that random drift alone is unlikely to account for observed divergence. Furthermore, drift alone cannot explain the sex differences in within- and among-population covariance patterns or sex-specific patterns of evolution of covariance structure. Our results suggest that extensive among-population variation in sexual dimorphism in morphological covariance structure was produced by population differences in local selection pressures acting on each sex.  相似文献   

7.
Comparative phylogenetic and phylogeographic analyses have revealed a pervasive midpeninsular divergence in the mitochondrial genealogies of numerous vertebrate taxa distributed on the Baja California Peninsula. In this study, we extend the investigation of regional vicariance in Baja California to an arthropod taxon by examining patterns of phylogenetic and morphological divergence in the spider genus Homalonychus (Araneae, Homalonychidae). We analyzed data from two mtDNA genes (16S rRNA and NADH dehydrogenase subunit (1) and a nuclear gene (28S rRNA) using maximum parsimony and Bayesian phylogenetic analyses, and also conducted geometric morphometric analyses employing landmark data on male and female genitalia. Genes and morphology both reveal a deep split across the Colorado River and Gulf of California, separating Homalonychus selenopoides on the east side of river from its congener Homalonychus theologus on the west side of the river, including the Baja California Peninsula. Along the north-south axis of the Baja Peninsula, an apparently more recent midpeninsular phylogenetic break is evident within H. theologus in the mitochondrial genome and in female genitalia. However, there is no measurable divergence between northern and southern populations in either nuclear DNA or male genitalia. We suggest that this discordance between datasets reflects either a difference in rates of evolution between male versus female systems, or that male-based nuclear gene flow is obscuring a phylogenetic split that is fixed in the female-based systems. Our findings provide additional support for a midpeninsular Baja divergence event, although the timing and geological evidence for such an event remain elusive.  相似文献   

8.
Oliver JC  Shapiro AM 《Molecular ecology》2007,16(20):4308-4320
Species exist as biological entities with patterns of discontinuous phenotypic variation. However, the distinctness of taxa is called into question when morphological intermediates exist in areas of sympatry, reflecting either gene flow among variants of a species or hybridization between different species. Studying the partitioning of genetic variation provides a means to discern between the two possibilities. We used genetic and morphometric approaches to investigate the degree of isolation among the three members of the Lycaena xanthoides species group. Lycaena xanthoides, L. editha, and L. dione are predominantly allopatric and have been treated both as three separate species and as a single polytypic species. Using 618 bp of the mitochondrial gene COII, we found little phylogenetic resolution, but significant among-taxa genetic variance partitioning. Divergence among these taxa has been relatively recent, as evidenced by relatively low pairwise sequence divergence. Also, the existence of two well-supported clades within L. xanthoides sensu stricto, concordant with the Transverse Ranges of southern California, indicates divergence within this taxon, and a possible cryptic species. Significant morphological differentiation between L. editha and L. xanthoides supports the hypothesis that these taxa represent separate gene pools. Populations occurring in a narrow zone where the two species' ranges approach are characterized by intermediate morphology, suggesting incomplete morphological divergence or recent hybridization. These findings highlight the utility of genetic data in inferring species boundaries and the identification of cryptic lineages.  相似文献   

9.
Population differentiation is one of the main topics in evolutionary biology. Except the exploration of color variation, few studies focused on morphological divergences among populations of coral reef fishes. In this work, we studied morphological and genetic differentiation among populations of the damselfish, Pomacentrus coelestis, in the northwestern Pacific Ocean. The shapes of the mandible and the premaxilla were explored using geometric morphometric methods and the genetic structure was investigated using microsattelites. Various tests revealed significant shape variation among most P. coelestis populations for both skeletal units. Morphological variation of the mandible accompanies a genetic break between populations of mainland Japan and Okinawa-Taiwan. However, Mantel and Procrustes tests revealed no congruence between morphological and genetic structures. We illustrate that phenotypic plasticity and adaptive divergence are potential evolutionary mechanisms underlying shape difference among P. coelestis populations. An ecomorphological approach suggests that various diet could be related to shape variation of oral jaws.  相似文献   

10.
Molecular surveys using mtDNA sequences have been used to identify cryptic species in sigmodontine rodents. However, where sampling is uneven, a critical appraisal of further evidence is pivotal to test whether genetic discontinuity represents different species. In order to investigate geographical variation in the Neotropical rodent Thaptomys nigrita, we analyzed patterns of morphological variation in qualitative and morphometric data, and compared our results with recent information on karyological and molecular diversity reported for the monotypic genus. Two subtle morphometric groups of populations, corresponding to karyomorphs 2n = 50 and 2n = 52, were revealed, but no qualitative aspect of craniodental morphology unambiguously distinguished them. A positive and significant association between geographical and both morphological and genetic distances suggest that the distinction between the two groups of population follows an isolation by distance model. This result, coupled with phylogeographic and karyotypic breaks coincident to a sampling gap extending for 540 km, and with the low phylogenetic resolution of molecular clades, does not allow rejecting the hypothesis that the divergent samples constitute polymorphic populations of a widely distributed species. We discuss possible determinants of these patterns and emphasize the need for an integrative approach in future efforts to disclose the evolutionary relationships of small mammals in situations of uneven sampling.  相似文献   

11.
We analysed Caucasian wood mice from Georgia (n = 60) and supplementary reference material of theApodemus/Sylvaemus species group to evaluate the reliability of taxon identification. Traditional “expert knowledge” plus three different methodological approaches were employed and combined to perceive their discriminatory power for a reliable taxon assignment. Graphs of principal component scores derived from the analysis of 14 skull metrics displayed taxon membership of individuals. Individual multi--locus (L = 18) electrophoretic profiles were used to re-assess specimens to a specific genepool by an assignment test based on allele frequencies indicative of populational taxon samples of the respective sampling locations. Genotyped individuals were re-allocated to those taxa, for which they yielded the highest probability score. Genetic distances among the taxa were computed and clustered in a neighbour-joining tree. PCR-fragments of 1074bp amplified from the mitochondrial cytochromeb gene were cut with 2 six- and 4 four-cutter restriction enzymes, and resulting RFLP patterns were analysed phenetically to classify the specimens according to their molecular similarity. Partial cytochromeb sequences were used to construct a phylogenetic tree by computing neighbour-joining clusters from a matrix of percent nucleotide differences. The power of the combined classification approaches and their congruence is discussed. It is concluded that the joint application of traditional, morphometric and biochemical or genetic techniques for taxon allocation of specimens of wood mice encountered problems in species delimitation. The mtDNA topology obtained was not congruent with protein polymorphism that indicated differential historical and/or recent introgression and incomplete lineage sorting in substructured populations. Cytochromeb sequence DNA data analysed were not as adequate as expected to resolve phylogenetic relationships among Caucasian and European members of theApodemus-Sylvaemus complex. Altogether, morphometric, biochemical and sequence data sets did not support the hypothesis of the evolutionary independence of European and Caucasian lineages of wood mice. Nonetheless, extended combined morphological and genetic analyses are considered necessary prerequisites to an in-depth study of the evolutionary lineages of theApodemus/Sylvaemus group. More sequence data of a variety of genes (and plenty of nuclear markers) are needed to resolve the various levels of differentiation of the extant lineages.  相似文献   

12.

Background

Uniquely among hominoids, gibbons exist as multiple geographically contiguous taxa exhibiting distinctive behavioral, morphological, and karyotypic characteristics. However, our understanding of the evolutionary relationships of the various gibbons, especially among Hylobates species, is still limited because previous studies used limited taxon sampling or short mitochondrial DNA (mtDNA) sequences. Here we use mtDNA genome sequences to reconstruct gibbon phylogenetic relationships and reveal the pattern and timing of divergence events in gibbon evolutionary history.

Methodology/Principal Findings

We sequenced the mitochondrial genomes of 51 individuals representing 11 species belonging to three genera (Hylobates, Nomascus and Symphalangus) using the high-throughput 454 sequencing system with the parallel tagged sequencing approach. Three phylogenetic analyses (maximum likelihood, Bayesian analysis and neighbor-joining) depicted the gibbon phylogenetic relationships congruently and with strong support values. Most notably, we recover a well-supported phylogeny of the Hylobates gibbons. The estimation of divergence times using Bayesian analysis with relaxed clock model suggests a much more rapid speciation process in Hylobates than in Nomascus.

Conclusions/Significance

Use of more than 15 kb sequences of the mitochondrial genome provided more informative and robust data than previous studies of short mitochondrial segments (e.g., control region or cytochrome b) as shown by the reliable reconstruction of divergence patterns among Hylobates gibbons. Moreover, molecular dating of the mitogenomic divergence times implied that biogeographic change during the last five million years may be a factor promoting the speciation of Sundaland animals, including Hylobates species.  相似文献   

13.
Zones of secondary contact between closely related species provide a rare opportunity to examine evidence of evolutionary processes that reinforce species boundaries and/or promote diversification. Here, we report on genetic and morphological variation in two sister species of woodrats, Neotoma fuscipes and N. macrotis, across a 30-km transition zone in the Sierra Nevada of California. We assessed whether these lineages readily hybridize, and whether their morphology suggests ecological interactions favoring phenotypic diversification. We combined measurements of body size and 11 craniodental traits from nine populations with genetic data to examine patterns of variation within and between species. We used phylogenetic autocorrelation methods to estimate the degree to which phenotypic variation in our dataset arose from independent evolution within populations versus phylogenetic history. Although no current sympatry or hybridization was evident, craniodental morphology diverged in both lineages near their distributional limits, whereas body size converged. The shift in craniodental morphology arose independently within populations whereas body size retained a strong phylogenetic signal, yet both patterns are consistent with expectations of phenotypic change based on different models of resource competition. Our findings demonstrate the importance of examining a suite of morphological traits across contact zones to provide a more complete picture of potential ecological interactions: competition may drive both diversification and convergence in different phenotypic traits.  相似文献   

14.
Both extinct and extant crocodilians have repeatedly diversified in skull shape along a continuum, from narrow‐snouted to broad‐snouted phenotypes. These patterns occur with striking regularity, although it is currently unknown whether these trends also apply to microevolutionary divergence during population differentiation or the early stages of speciation. Assessing patterns of intraspecific variation within a single taxon can potentially provide insight into the processes of macroevolutionary differentiation. For example, high levels of intraspecific variation along a narrow‐broad axis would be consistent with the view that cranial shapes can show predictable patterns of differentiation on relatively short timescales, and potentially scale up to explain broader macroevolutionary patterns. In the present study, we use geometric morphometric methods to characterize intraspecific cranial shape variation among groups within a single, widely distributed clade, Caiman crocodilus. We show that C. crocodilus skulls vary along a narrow/broad‐snouted continuum, with different subspecies strongly clustered at distinct ends of the continuum. We quantitatively compare these microevolutionary trends with patterns of diversity at macroevolutionary scales (among all extant crocodilians). We find that morphological differences among the subspecies of C. crocodilus parallel the patterns of morphological differentiation across extant crocodilians, with the primary axes of morphological diversity being highly correlated across the two scales. We find intraspecific cranial shape variation within C. crocodilus to span variation characterized by more than half of living species. We show the main axis of intraspecific phenotypic variation to align with the principal direction of macroevolutionary diversification in crocodilian cranial shape, suggesting that mechanisms of microevolutionary divergence within species may also explain broader patterns of diversification at higher taxonomic levels.  相似文献   

15.
Differential rates of nucleotide substitution among different gene segments and between distinct evolutionary lineages is well documented among mitochondrial genes and is likely a consequence of locus-specific selective constraints that delimit mutational divergence over evolutionary time. We compared sequence variation of 18 homologous loci (15 coding genes and 3 parts of the control region) among 10 mammalian mitochondrial DNA genomes which allowed us to describe different mitochondrial evolutionary patterns and to produce an estimation of the relative order of gene divergence. The relative rates of divergence of mitochondrial DNA genes in the family Felidae were estimated by comparing their divergence from homologous counterpart genes included in nuclear mitochondrial DNA (Numt, pronounced "new might"), a genomic fossil that represents an ancient transfer of 7.9 kb of mitochondrial DNA to the nuclear genome of an ancestral species of the domestic cat (Felis catus). Phylogenetic analyses of mitochondrial (mtDNA) sequences with multiple outgroup species were conducted to date the ancestral node common to the Numt and the cytoplasmic (Cymt) mtDNA genes and to calibrate the rate of sequence divergence of mitochondrial genes relative to nuclear homologous counterparts. By setting the fastest substitution rate as strictly mutational, an empirical "selective retardation index" is computed to quantify the sum of all constraints, selective and otherwise, that limit sequence divergence of mitochondrial gene sequences over time.   相似文献   

16.
Gerbilliscus has been in recent years the subject of new molecular and karyological investigations that shed new light on the evolutionary processes of this taxon. However, the patterns of phenotypic diversification of Gerbilliscus remain poorly understood. Furthermore, the molecular phylogenetic analyses posed new questions concerning the systematics and taxonomy of the whole genus and revealed the possible occurrence of cryptic species and hence the need to carry out a taxonomic revision.We used geometric morphometrics to investigate the adaptive value of morphological changes and to elucidate the systematic relationships and taxonomic status of the Gerbilliscus species of east Africa.Our results show concordance between morphological and genetic species boundaries. However, the observed morphological differences appear not only related to hereditary characters. In fact, the correlation with the climatic variables suggests an adaptive value of shape changes related to different trophic resources availability.Finally, discriminant analysis of the eastern Africa Gerbilliscus species highlight the distinctiveness of G. vicinus, clearly separated from G. robustus and G. nigricaudus.  相似文献   

17.
The aim of this study is to determine the origin, genetic relationships and morphological differences between diploid and hexaploid cytotypes of Aster amellus aggregate (Asteraceae) at their contact zone in the Czech Republic. We collected data on morphological and isozyme variation in a range of populations of the two cytotypes. We also studied the plasticity of the morphological traits in a common garden. The results suggest that hexaploid individuals of Aster amellus aggregate are of autopolyploid origin. The isozyme data indicate that diploids and hexaploids have different evolutionary histories. This, together with previous detailed cytological and ecological analyses, suggests that there is a secondary contact zone between the two cytotypes in the Czech Republic. The results of multivariate morphometric analyses and data on plasticity of the morphological traits indicate that it is not possible to distinguish the two cytotypes morphologically. The previously published morphological distinction between the cytotypes is thus not supported.  相似文献   

18.
Previous analyses of extant catarrhine craniodental morphology have often failed to recover their molecular relationships, casting doubt on the accuracy of hominin phylogenies based on anatomical data. However, on the basis of genetic, morphometric and environmental affinity patterns, a growing body of literature has demonstrated that particular aspects of cranial morphology are remarkably reliable proxies for neutral modern human population history. Hence, it is important to test whether these intra-specific patterns can be extrapolated to a broader primate taxon level such that inference rules for understanding the morphological evolution of the extinct hominins may be devised. Here, we use a matrix of molecular distances between 15 hominoid taxa to test the genetic congruence of 14 craniomandibular regions, defined and morphometrically delineated on the basis of previous modern human analyses. This methodology allowed us to test directly whether the cranial regions found to be reliable indicators of population history were also more reliable proxies for hominoid genetic relationships. Cranial regions were defined on the basis of three criteria: developmental-functional units, individual bones, and regions differentially affected by masticatory stress. The results found that all regions tested were significantly and strongly correlated with the molecular matrix. However, the modern human predictions regarding the relative congruence of particular regions did not hold true, as the face was statistically the most reliable indicator of hominoid genetic distances, as opposed to the vault or basicranium. Moreover, when modern humans were removed from the analysis, all cranial regions improved in their genetic congruence, suggesting that it is the inclusion of morphologically-derived humans that has the largest effect on incongruence between morphological and molecular estimates of hominoid relationships. Therefore, it may be necessary to focus on smaller intra-generic taxonomic levels to more fully understand the effects of neutral and selective evolutionary processes in generating morphological diversity patterns.  相似文献   

19.
Integration of molecular genetic techniques and geometric morphometrics represent a valuable tool in the resolution of taxonomic uncertainty and the identification of significant units for conservation. We combined mitochondrial DNA cytochrome c oxidase subunit II gene sequence data and geometric morphometric analysis to examine taxonomic status and identify units for conservation in four species of the hypogean beetle Duvalius (Coleoptera, Trechinae) using mainly museum specimens collected in central Italy. Previous taxonomic studies based on morphological traits described several subspecies often inhabiting geographically distinct caves. Phylogenetic analysis identified two well supported monophyletic lineages and a number of different clades with relatively small genetic differences, suggesting a short divergence time in line with known geological history of the study area. Geometric morphometrics, on the other hand, recovered a high level of distinctiveness among specimens. Both genetic and morphometric analyses did not entirely corroborate former taxonomic nomenclature, suggesting possible rearrangements and the definition of evolutionary significant units. Beetles of the genus Duvalius are protected by regional laws and the majority of taxa considered in this study inhabit caves located outside protected areas. Our study advocates the importance of devoting protection efforts to networks of cave ecosystems rather than single locations or species.  相似文献   

20.
A new genus and species of eutherian mammal, Acristatherium yanensis gen. et sp. nov., is described from the Early Cretaceous Jehol biota, China. The new taxon is based on a partial skull that is preserved in three dimensions from the Lujiatun bed of the Yixian Formation and dated 123.2±1.0 Ma. Its right upper and lower dentitions are nearly complete and it has a dental formula 4.1.5.3/3.1.5.3. The new mammal reveals several craniodental characteristics of Early Cretaceous eutherians previously unknown in fossil records of therians, such as a possible vestige of the septomaxilla. The craniodental features of the new taxon are compared with those of relevant Early Cretaceous eutherians and therians. Phylogenetic analyses based on a data matrix containing 70 taxa and 408 characters place A. yanensis as the most basal eutherian in the selected group. The morphological differences between Acristatherium and Eomaia indicate that eutherians already had a significant degree of generic diversification ca 125 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号