首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dispersion properties of ordinary surface cyclotron waves in a semiinfinite nonuniform plasma are investigated. The waves propagate across the external magnetic field directed along the plasma surface in a metal waveguide the internal surface of which is covered with a dielectric. The problem is solved analytically in the framework of a kinetic model for plasma particles under the assumption of weak spatial dispersion. The influence of the parameters of the dielectric layer separating the plasma from the metal wall, the shape of the plasma density profile, and the value of the external magnetic field on the dispersion properties of surface cyclotron waves is studied both numerically and analytically.  相似文献   

2.
The evolution of initial perturbations in a spatially inhomogeneous cold electron plasma in the absence of an external magnetic field is considered. The excitation of both continuous-spectrum bulk plasma waves and surface plasma waves with a discrete frequency spectrum is investigated. Analytic solutions are obtained in the long-wavelength limit, and the excitation of waves of arbitrary length is analyzed numerically. The local, integral, and spatial spectra are calculated, as well as the field structures and dispersion properties of waves in waveguides filled nonuniformly with a plasma. It is shown that, in a plasma with a smooth boundary, there also exist surface waves with a discrete spectrum (although with somewhat different properties as compared to those in a plasma with a sharp boundary), which are excited together with continuous-spectrum bulk waves during the evolution of the initial perturbation.  相似文献   

3.
A plasma microwave amplifier based on a relativistic electron beam in an electrodynamic system in the form of a coaxial waveguide with a thin tubular plasma in a strong external magnetic field has been considered. Dispersion relations for determining the spectra of plasma and beam waves in the coaxial waveguide, as well as the general dispersion relation describing beam-plasma interaction, have been obtained in the linear approximation. The frequency dependences of the spatial growth rates for different plasma radii and different plasma frequencies, as well as the characteristic frequencies of the plasma amplifier, have been obtained by numerically and analytically solving the dispersion relations. The parameters of the plasma amplifier and generator with the coaxial electrodynamic system have been estimated for their experimental implementation.  相似文献   

4.
A diagnostic method for determining plasma density from the dispersion of surface waves guided by a discharge channel in an axial magnetic field is discussed. The diagnostic characteristics that are the easiest to record experimentally are determined by analyzing the theoretical dispersion curves, and the ways of exploiting these characteristics for plasma diagnostics are suggested. To determine the slowing-down factor of a probing wave in a plasma channel, it is proposed to use diagnostic-signal resonances that occur when the wavelength of the slowed wave becomes equal to the length of the emitting or receiving antenna. The dependence of the plasma density averaged over the cross section of the plasma column on the strength of the external magnetic field is determined for a discharge channel formed as a result of the ionization self-channeling of plasma (lower hybrid) waves and whistlers.  相似文献   

5.
A theory of weakly nonlinear slow waves in magnetic flux tubes is developed in the ideal MHD approximation. Fairly simple approximate dispersion relations are derived that are valid for waves of arbitrary wavelength. These dispersion relations make it possible to obtain a number of new model evolutionary equations for body and surface slow waves in magnetic flux tubes. It is established that there are two families of exact analytic solutions to the equations for weakly nonlinear slow waves. It is found that both the body and surface solitary waves can be in the form of either contractions or bulges running along the tube. A model Korteweg-de Vries-Burgers equation is derived and generalized to waves of arbitrary wavelength. It is shown that exact analytic solutions to these equations correspond to shock waves and hydraulic jumps (or bores) with nonoscillating fronts.  相似文献   

6.
The electrodynamics of a circular waveguide with a dielectric rod surrounded by a magnetized plasma layer is considered. A general dispersion relation for azimuthally asymmetric perturbations is derived, and its solutions describing slow waves—specifically, electromagnetic and plasma modes, as well as (and primarily) hybrid waves that combine the properties of both mode types—are investigated numerically. For the fundamental waveguide mode of the system—the HE11 mode—the parameters of the plasma layer are determined at which the mode cannot be subject to Cherenkov interaction with a relativistic electron beam at a given frequency. For both waveguide and plasma modes, the radial profiles of the longitudinal components of the electric field and Poynting vector, the fractions of RF power carried within the dielectric and plasma regions and vacuum gap, and the coupling impedance are calculated as functions of the parameters of the plasma layer. The evolution of the field structure during the formation of asymmetric hybrid waves is traced. The results of calculating the dispersion and coupling impedance are analyzed as applied to an antenna-amplifier—a relativistic traveling-wave tube operating on the HE11 mode of the dielectric rod: specifically, the implementability of the concept in the presence of a plasma at the rod surface is estimated, and the possible role of azimuthally asymmetric and symmetric plasma modes is examined.  相似文献   

7.
The transverse and longitudinal dielectric permittivities of isotropic quantum plasma are calculated in the quantum plasma models based on the Dirac and Pauli equations. The dispersion relations for transverse-longitudinal waves in quantum particle beams are derived. Relativistic longitudinal and transverse waves in cold isotropic quantum plasma in models based on the Klein-Gordon and Dirac equations, as well as spin waves in the model based on the Pauli equation, are considered. Conditions for wave-particle resonance interactions in relativistic quantum plasma are analyzed.  相似文献   

8.
Effective boundary conditions for the electromagnetic field of the slow surface waves of a thinwalled annular plasma in a metal waveguide are derived and justified. With the boundary conditions obtained, there is no need to solve field equations in the plasma region of the waveguide, so that the dispersion properties of plasma waveguides can be investigated analytically for an arbitrary strength of the external magnetic field. Examples are given that show how to use the effective boundary conditions in order to describe surface waves with a normal and an anomalous dispersion. The boundary conditions are then employed to construct a theory of the radiative Cherenkov instabilities of a thin-walled annular electron beam in a waveguide with a thinwalled annular plasma. The single-particle and collective Cherenkov effects associated with low-and high-frequency surface waves in an arbitrary external magnetic field are studied analytically. The method of the effective boundary conditions is justified in the context of application to the problems of plasma relativistic microwave electronics.  相似文献   

9.
A theoretical study is made of the dispersion properties of electromagnetic surface waves with arbitrary azimuthal mode numbers and with a small axial wavenumber in cylindrical metal waveguides entirely filled with a radially inhomogeneous, cold, magnetized plasma. The frequency ranges in which the extraordinary polarized waves under analysis can exist are found, and the conditions for their resonant interaction with an ordinary bulk wave are determined. The eigenfrequency of these surface waves is investigated as a function of the plasma parameters, the axial wavenumber, and the azimuthal mode number. Simple analytic expressions are derived for the eigenfrequencies of the surface waves under study propagating in a homogeneous plasma waveguide.  相似文献   

10.
Debatable aspects of the theory of nonpotential surface waves propagating along the boundary of a dissipative medium with frequency dispersion are discussed. On the basis of the known theoretical results and theoretical analysis carried out in this work, a theory of surface waves that is valid for any dissipation of the perturbation energy in the medium is developed. It is shown that, if dissipation is sufficiently strong, there can be surface waves the physical nature and dispersion law of which differ radically from those of ordinary surface waves. The damping rate of such waves is low even at large dissipation in the medium, and their group and phase velocities exceed the speed of light. In particular, surface waves on the interface between vacuum and cold collisional electron plasma are considered. The existence of such surface waves for different media of laboratory and natural origin is discussed.  相似文献   

11.
A study is made of the dispersion properties of surface waves at a plasma-metal interface under thermodynamically nonequilibrium conditions such that a space charge sheath forms at the plasma boundary. In the simplest model, the sheath is described as a dielectric with a given permittivity. The wave parameters in a highly collisional plasma are discussed. The effect of interaction between waves propagating near the opposite plasma boundaries is considered, in particular, for space charge sheaths of different thicknesses. Conditions are determined under which the parameters of surface waves are substantially altered by the plasma-sheath geometric resonance.  相似文献   

12.
The spectra of electromagnetic waves propagating perpendicular to the axis of a plasma-filled metal waveguide in a magnetic field are studied with allowance for the effects exerted upon the wave frequency by the radial plasma density variation and by the emission of waves through a narrow axial slit in a waveguide wall. The case of wave propagation along the boundary between a plasma and a cylindrical metal waveguide wall with a periodically varying radius of curvature is also considered. The electromagnetic properties of the plasma are described by a dielectric tensor in the hydrodynamic approximation. The spatial distribution of the wave field is determined by the method of successive approximations. Results are presented from both analytical and numerical investigations. Analytical expressions for the corrections to the wave frequency due to the emission of the wave energy from the waveguide and due to the slight corrugation of the waveguide wall are obtained. The rates of wave damping due to the emission of the wave energy through a narrow axial slit and due to collisions between the plasma particles are found. The correction to the frequency that comes from the periodic variation of the radius of curvature of the plasma surface is calculated to within terms proportional to the square of the small parameter describing the azimuthal corrugation of the waveguide wall. The effect of the radial plasma density variation on the dispersion of the surface modes is examined both analytically and numerically.  相似文献   

13.
A study is made of the dispersion properties of nonlinear surface waves propagating along a plasma-metal interface under conditions corresponding to the formation of a space charge sheath that equalizes the electron and ion fluxes to the wall. Oscillations of the plasma boundary under the action of the surface wave field are taken into account. It is shown that these oscillations are the main nonlinear mechanism for generating wave field harmonics and are analogous to the nonlinearity in the current-voltage characteristic of the space charge sheath. The effect of the nonlinearity on the dispersion properties of surface waves due to the relationship between the sheath thickness and wave amplitude is calculated with allowance for harmonic generation. The energy transported by surface waves under conditions typical of RF and microwave discharges is calculated.  相似文献   

14.
A theoretical study is made of the propagation of a packet of surface electromagnetic waves with a zero axial wavenumber in a circular-cross-section cylindrical metal waveguide partially filled with plasma in an axial magnetic field. The cross section of the plasma column is assumed to be noncircular. The effect of the noncircular shape of the plasma cross section on the dispersion properties of azimuthal surface modes is investigated by the method of successive approximations. The fields of the waves and their eigenfrequencies are determined to second order in a small parameter.  相似文献   

15.
A nonlinear theory is constructed that describes steady-state ion-acoustic waves in an ideal plasma in which the electron component is a degenerate Fermi gas and the ion component is a classical gas. The parameter ranges in which such a plasma can exist are determined, and dispersion relations for ion-acoustic waves are obtained that make it possible to find the linear ion-acoustic velocity. Analytic gas-dynamic models of ion sound are developed for a plasma with the ion component as a cold, an isothermal, or an adiabatic gas, and moreover, the solutions to the equations of all the models are brought to a quadrature form. Profiles of a subsonic periodic and a supersonic solitary wave are calculated, and the upper critical Mach numbers of a solitary wave are determined. For a plasma with cold ions, the critical Mach number is expressed by an explicit exact formula.  相似文献   

16.
The characteristics of a high-current electron beam-driven microwave amplifier—a dielectric Cherenkov maser—are investigated in the framework of linear theory for the case of a plasma layer present at the surface of the maser slow-wave structure. The dispersion relation for axisymmetric perturbations is obtained for the conventional configuration (a circular dielectric-lined waveguide and a thin annular beam propagating within the vacuum region inside the annular plasma) in the model of a fully magnetized plasma and beam. The results of numerically solving the dispersion relation for different beam and plasma parameters are presented, and an analysis based on these results is given with regard to the features of the beam interaction with the hybrid waves of the system (both hybrid waveguide and hybrid plasma modes). For the hybrid waveguide mode, the dependences of the spatial growth rate on the frequency demonstrate an improvement in the gain at moderate plasma densities, along with narrowing the amplification band and shifting it toward higher frequencies. For the hybrid plasma mode, the interaction with a mildly relativistic (200–250 keV) beam, when the wave phase velocity is close to the speed of light in the dielectric medium, is most interesting and, therefore, has been studied in detail. It is shown that, depending on the beam and plasma parameters, different regimes of the hybrid plasma mode coupling to the hybrid waveguide mode or a usual, higher order plasma mode take place; in particular, a flat gain vs. frequency dependence is possible over a very broad band. The parameters at which the ?3-dB bandwidth calculated for the 30-dB peak gain exceeds an octave are found.  相似文献   

17.
A study is made of the generation of ion-acoustic and magnetoacoustic waves in a discharge excited in an external magnetic field by an electromagnetic wave in the whistler frequency range (ωLH ? ω ? ωHe, where ωLH = $\sqrt {\omega _{He} \omega _{Hi} } $ and ωHe and ωHi are the electron and ion gyrofrequencies, respectively). The excitation of acoustic waves is attributed to the decay of a high-frequency hybrid mode forming a plasma waveguide into low-frequency acoustic waves and new high-frequency waves that satisfy both the decay conditions and the waveguide dispersion relations. The excitation of acoustic waves is resonant in character because the conditions for the generation of waveguide modes and for the occurrence of the corresponding nonlinear wave processes should be satisfied simultaneously. An unexpected effect is the generation of magnetoacoustic waves by whistlers. A diagnostic technique is proposed that allows one to determine the thermal electron velocity by analyzing decay conditions and dispersion relations for waves in the discharge channel.  相似文献   

18.
The evolution of a Langmuir wave in a weakly inhomogeneous relativistic plasma with a positive density gradient is considered. It is shown that, at relativistic phase velocities, the wave evolution even at the tail of the electron distribution, where it is close to linear in the nonrelativistic case, results in the wave transformation into a hybrid of two waves with different spatial periods. Nonlinear dispersion relations for different stages of the wave evolution are derived.  相似文献   

19.
Excitation of surface waves by a relativistic electron beam propagating over a conducting cylindrical medium (metal or highly ionized plasma) is investigated theoretically. Dispersion relations describing the linear interaction of surface electromagnetic waves with a monoenergetic electron beam are derived, and the growth rates and spatial amplification factors of excited waves are determined. Condition for the nonlinear trapping of the beam electrons by a surface wave is used to determine the maximum amplitude of the excited wave and the optimal radiator length. The electric field of a surface wave excited by an electron beam is estimated for a particular case.  相似文献   

20.
The dispersion law and collisionless damping rate of quasi-potential waves in the plasma formed upon tunnel ionization of gas atoms in the field of a short pulse of circularly or linearly polarized radiation are found. It is shown how the frequency and damping rate of quasi-potential waves depend on the wave propagation direction relative to the symmetry axis of the photoelectron distribution. It is established that, in plasma with a toroidal photoelectron velocity distribution, weakly damped waves with a linear dispersion law and frequency above the electron plasma frequency can propagate in a wide range of angles. In the case of a bi-Maxwellian photoelectron distribution, the frequency of weakly damped waves is comparable with the electron plasma frequency and the anisotropy of electron motion manifests itself in relatively small corrections to the dispersion law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号