首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the inhibition mechanism of acetogenins, the most potent inhibitors of complex I, are useful to elucidate the structural and functional features of the terminal electron-transfer step of this enzyme. We synthesized acetogenin mimics that possess two alkyl tails without a gamma-lactone ring, named Deltalac-acetogenin, and examined their inhibitory action on bovine heart mitochondrial complex I. Unexpectedly, the Deltalac-acetogenin carrying two n-undecanyl groups (compound 3) elicited very potent inhibition comparable to that of bullatacin. The inhibitory potency of compound 3 markedly decreased with shortening the length of either or both alkyl tails, indicating that symmetric as well as hydrophobic properties of the inhibitor are important for the inhibition. Both acetylation and deoxygenation of either or both of two OH groups adjacent to the tetrahydrofuran (THF) rings resulted in a significant decrease in inhibitory potency. These structural dependencies of the inhibitory action of Deltalac-acetogenins are in marked contrast to those of ordinary acetogenins. Double-inhibitor titration of steady-state complex I activity showed that inhibition of compound 3 and bullatacin are not additive, though the inhibition site of both inhibitors is downstream of iron-sulfur cluster N2. Our results indicate that the mode of inhibitory action of Deltalac-acetogenins differs from that of ordinary acetogenins. Therefore, Deltalac-acetogenins can be regarded as a novel type of inhibitor acting on the terminal electron-transfer step of complex I.  相似文献   

2.
Modifications in the terminal alpha,beta-unsaturated gamma-methyl-gamma-lactone moiety or in the alkyl chain that links this terminal gamma-lactone with the alpha,alpha'-dihydroxylated THF system of the natural mono-tetrahydrofuranic acetogenins, annonacin and annonacinone, led to the preparation of eight semisynthetic derivatives. Their inhibitory effects on mitochondrial complex I is discussed and compared with that of the classical complex I inhibitor, rotenone.  相似文献   

3.
Some natural acetogenins are the most potent inhibitors of mitochondrial complex I. These compounds are characterized by two functional units [i.e. hydroxylated tetrahydrofuran (THF) and alpha, beta-unsaturated gamma-lactone ring moieties] separated by a long alkyl spacer. To elucidate which structural factors of acetogenins, including their active conformation, are crucial for the potent inhibitory activity we synthesized a novel bis-acetogenin and its analogues possessing two gamma-lactone rings connected to bis-THF rings by flexible alkyl spacers. The inhibitory potency of the bis-acetogenin with bovine heart mitochondrial complex I was identical to that of bullatacin, one of the most potent natural acetogenins. This result indicated that one molecule of the bis-acetogenin does not work as two reactive inhibitors, suggesting that a gamma-lactone and the THF ring moieties act in a cooperative manner on the enzyme. In support of this, either of the two ring moieties synthesized individually showed no or very weak inhibitory effects. Moreover, combined use of the two ring moieties at various molar ratios exhibited no synergistic enhancement of the inhibitory potency. These observations indicate that both functional units work efficiently only when they are directly linked by a flexible alkyl spacer. Therefore, some specific conformation of the spacer must be important for optimal positioning of the two units in the enzyme. Furthermore, the alpha,beta-unsaturated gamma-lactone, the 4-OH group in the spacer region, the long alkyl tail attached to the THF unit and the stereochemistry surrounding the hydroxylated bis-THF rings were not crucial for the activity, although these are the most common structural features of natural acetogenins. The present study provided useful guiding principles not only for simplification of complicated acetogenin structure, but also for further wide structural modifications of these molecules.  相似文献   

4.
To elucidate the inhibitory action of acetogenins, we synthesized an acetogenin derivative which possesses tetraol in place of the tetrahydrofuran ring and examined its inhibitory activity against bovine heart mitochondrial complex I. Our results indicate that these hydroxy groups are an essential structural factor though it is not effective as bis-THF hydroxy groups combination.  相似文献   

5.
Koji Sekiguchi 《BBA》2009,1787(9):1106-7891
125I-labeled (trifluoromethyl)phenyldiazirinyl acetogenin, [125I]TDA, a photoaffinity labeling probe of acetogenin, photo-cross-links to the ND1 subunit of bovine heart mitochondrial NADH-ubiquinone oxidoreductase (complex I) with high specificity [M. Murai, A. Ishihara, T. Nishioka, T. Yagi, and H. Miyoshi, (2007) The ND1 subunit constructs the inhibitor binding domain in bovine heart mitochondrial complex I, Biochemistry 46 6409-6416.]. To identify the binding site of [125I]TDA in the ND1 subunit, we carried out limited proteolysis of the subunit cross-linked by [125I]TDA using various proteases and carefully analyzed the fragmentation patterns. Our results revealed that the cross-linked residue is located within the region of the 4th to 5th transmembrane helices (Val144-Glu192) of the subunit. It is worth noting that an excess amount of short-chain ubiquinones such as ubiquinone-2 (Q2) and 2-azido-Q2 suppressed the cross-linking by [125I]TDA in a concentration-dependent way. Although the question of whether the binding sites for ubiquinone and different inhibitors in complex I are identical remains to be answered, the present study provided, for the first time, direct evidence that an inhibitor (acetogenin) and ubiquinone competitively bind to the enzyme. Considering the present results along with earlier photoaffinity labeling studies, we propose that not all inhibitors acting at the terminal electron transfer step of complex I necessarily bind to the ubiquinone binding site itself.  相似文献   

6.
Murai M  Ichimaru N  Abe M  Nishioka T  Miyoshi H 《Biochemistry》2006,45(32):9778-9787
We have revealed that Deltalac-acetogenins, a new class of inhibitors of bovine heart mitochondrial complex I (NADH-ubiquinone oxidoreductase), act differently from ordinary inhibitors such as rotenone and piericidin A [Ichimaru et al. (2005) Biochemistry 44, 816-825]. Since a detailed study of these unique inhibitors might provide new insight into the terminal electron transfer step of the enzyme, we further characterized their inhibitory action using the most potent Deltalac-acetogenin derivative (compound 1). Unlike ordinary complex I inhibitors, 1 had a dose-response curve for inhibition of the reduction of exogenous short-chain ubiquinones that was difficult to explain with a simple bimolecular association model. The inhibitory effect of 1 on ubiquinol-NAD(+) oxidoreductase activity (reverse electron transfer) was much weaker than that on NADH oxidase activity (forward electron transfer), indicating a direction-specific effect. These results suggest that the binding site of 1 is not identical to that of ubiquinone and the binding of 1 to the enzyme secondarily (or indirectly) disturbs the redox reaction of ubiquinone. Using endogenous and exogenous ubiquinone as an electron acceptor of complex I, we investigated the effect of 1 in combination with different ordinary inhibitors on the superoxide production from the enzyme. The results indicated that the level of superoxide production induced by 1 is significantly lower than that induced by ordinary inhibitors probably because of fewer electron leaks from the ubisemiquinone radical to molecular oxygen and that the site of inhibition by 1 is downstream of that by ordinary inhibitors. The unique inhibitory action of hydrophobic Deltalac-acetogenins may be closely associated with the dynamic function of the membrane domain of complex I.  相似文献   

7.
Verticipyrone has recently been isolated from the culture broth of Verticillium sp. and shown to inhibit NADH fumarate reductase, as well as NADH oxidoreductase (complex I) of the mitochondrial electron transport chain. In order to assess the structural elements in verticipyrone essential for complex I inhibitor, 15 structural analogues were prepared and analyzed for their effects on mitochondrial NADH oxidoreductase and NADH oxidase activities. Also measured were the abilities of several of the analogues to inhibit respiration as judged by a shift to glycolysis, and to inhibit the growth of several mammalian cell lines. The nature of the pyrone ring was shown to be important to potency of inhibition, as was the length and nature of substituents in the side chain of the analogues.  相似文献   

8.
The NADH:ubiquinone oxidoreductase (complex I) of the mitochondrial respiratory chain is by far the largest and most complicated of the proton-translocating enzymes involved in the oxidative phosphorylation. Many clues regarding the electron pathways from matrix NADH to membrane ubiquinone and the links of this process with the translocation of protons are highly controversial. Different types of inhibitors become valuable tools to dissect the electron and proton pathways of this complex enzyme. Therefore, further knowledge of the mode of action of complex I inhibitors is needed to understand the underlying mechanism of energy conservation. This study presents for the first time a detailed exploration of the inhibitory action of the Annonaceous acetogenins, the most powerful inhibitors of the mammalian enzyme, taking as the head-series rolliniastatin-1, rolliniastatin-2, and corossolin. Despite their close chemical resemblance, each of them inhibits the complex I with different kinetic features reflecting differential binding to the enzyme.  相似文献   

9.
To elucidate the role of the hydrophobic alkyl tail of acetogenins in the inhibitory action, we synthesized an acetogenin derivative possessing the shortest tail (i.e., methyl group) and examined its inhibitory activity against bovine heart mitochondrial complex I. Our results indicated that the alkyl tail, which is one of the common structural features of natural acetogenins, is not an essential structural factor required for the potent inhibition.  相似文献   

10.
Annonaceous acetogenins (ACG) are a wide group of cytotoxic compounds isolated from plants of the Annonaceae family. Some of them are promising candidates to be a future new generation of antitumor drugs due to the ability to inhibit the NADH:ubiquinone oxidoreductase of the respiratory chain (mitochondrial complex I), main gate of the energy production in the cell. ACG are currently being tested on standard antitumor trials although little is known about the structure activity relationship at the molecular level. On recent studies, the relevance of several parts of the molecule for the inhibitory potency has been evaluated. Due to the great diversity of skeletons included in this family of natural products, previous studies on the presence and distribution of oxygenated groups along the alkyl chain only covered the compounds with different bis-tetrahydrofuranic (bis-THF) relative configurations. Therefore, we have investigated the inhibitory action of all the mono-tetrahydrofuranic (mono-THF) acetogenins available, which differ in the oxygenated arrangements along the molecule. Our results show that the hydroxyl and carbonyl groups, placed in the aliphatic chain that links the initial gamma-lactone moiety with the dihydroxylated tetrahydrofuranic ring system, significantly contribute for modulating the inhibitory potency of the ACG through specific effects.  相似文献   

11.
Amilorides, well-known inhibitors of Na+/H+ antiporters, have also shown to inhibit bacterial and mitochondrial NADH-quinone oxidoreductase (complex I). Since the membrane subunits ND2, ND4, and ND5 of bovine mitochondrial complex I are homologous to Na+/H+ antiporters, amilorides have been thought to bind to any or all of the antiporter-like subunits; however, there is no direct experimental evidence in support of this notion. Photoaffinity labeling is a powerful technique to identify the binding site of amilorides in bovine complex I. Commercially available amilorides such as 5-(N-ethyl-N-isopropyl)amiloride are not suitable as design templates to synthesize photoreactive amilorides because of their low binding affinities to bovine complex I. Thereby, we attempted to modify the structures of commercially available amilorides in order to obtain more potent derivatives. We successfully produced two photoreactive amilorides (PRA1 and PRA2) with a photolabile azido group at opposite ends of the molecule.  相似文献   

12.
To study the relevance of the terminal alpha,beta-unsaturated gamma-methyl-gamma-lactone moiety of the antitumoral acetogenins of Annonaceae for potent mitochondrial complex I inhibition, we have prepared a series of semisynthetic acetogenins with modifications only in this part of the molecule, from the natural rolliniastatin-1 (1) and cherimolin-1 (2). Some of the hydroxylated derivatives (1b, 1d and 1e) in addition to two infrequent natural beta-hydroxy gamma-methyl gamma-lactone acetogenins, laherradurin (3) and itrabin (4), are more potent complex I inhibitors than any other known compounds.  相似文献   

13.
Natural antibiotic polyene amides such as myxalamides are potent inhibitors of mitochondrial complex I. Because of the significant instability of this series of compounds due to an extended pi-conjugation skeleton, a detailed characterization of their inhibitory action has not been performed. To elucidate the action mechanism as well as binding manner of polyene amides with complex I, identification of the roles of each functional group in the inhibitory action is needed. We here synthesized a series of amide analogues and carried out structure-activity studies with bovine heart mitochondrial complex I. With respect to the left-hand portion, the natural pi-conjugation skeleton common to many natural products is not required for the inhibition and can be substituted with a simpler substructure such as a conjugated diene. The geometry and shape of the left-hand portion were shown to be important for the inhibition, suggesting that this portion may bind to a narrow hydrophobic pocket in the enzyme rather than merely partitioning into the lipid membrane phase. Concerning the right-hand portion of the inhibitor, the presence of the 2-methyl, amide NH, and (S)-1'-methyl groups was crucial for the activity, suggesting that both methyl groups neighboring the amide group finely adjust the hydrogen-bonding ability of the amide group. In contrast, modifications of the 2'-OH group did not significantly influence the activity, suggesting that the role of this functional group is not to serve as a hydrogen bond donor to the enzyme but to act as a hydrophilic anchor directing the right-hand portion at or near the membrane surface. Detailed characterization of the action mechanism indicated that the polyene amides share a common binding domain with other complex I inhibitors, though their binding position (or manner) within the domain may differ considerably from that of other inhibitors.  相似文献   

14.
15.
Some natural acetogenins are the most potent inhibitors of bovine heart mitochondrial complex I. These compounds are characterized by two functional units (i.e. hydroxylated tetrahydrofuran (THF) and alpha,beta-unsaturated gamma-lactone ring moieties) separated by a long alkyl spacer. To elucidate which structural factors of acetogenins including their active conformation are crucial for the potent inhibitory effect, we synthesized a series of novel acetogenin analogues possessing bis-THF rings. The present study clearly demonstrated that the natural gamma-lactone ring is not crucial for the potent inhibition, although this moiety is the most common structural unit among a large number of natural acetogenins and has been suggested to be the only reactive species that directly interacts with the enzyme (Shimada et al., Biochemistry 37 (1998) 854-866). The presence of free hydroxy group(s) in the adjacent bis-THF rings was favorable, but not essential, for the potent activity. This was probably because high polarity (or hydrophilicity), rather than hydrogen bond-donating ability, around the bis-THF rings is required to retain the inhibitor in the active conformation. Interestingly, length of the alkyl spacer proved to be a very important structural factor for the potent activity, the optimal length being approximately 13 carbon atoms. The present study provided further strong evidence for the previous proposal (Kuwabara et al., Eur. J. Biochem. 267 (2000) 2538-2546) that the gamma-lactone and THF ring moieties act in a cooperative manner on complex I with the support of some specific conformation of the spacer.  相似文献   

16.
(Artemia) nauplii was used to asses the toxicity of rotenone, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), MP+ (1-methyl-4-phenylpyridinium) and the effect of L-DOPA co-treatment with rotenone. Rotenone had a dose dependent effect on mortality (LC??: 0.37 ± 0.04 μM mean ± S E, n = 24), while MPTP and MP+ proved to be toxic in millimolar range (LC??: 0.21 ± 0.09 mM and 0.20 ± 0.08 mM, respectively, n = 4). L-DOPA (50-200 μM) co-treatment increased the survival of the rotenone-treated animals (LC??: 0.51 ± 0.23 μM, 1.03 ± 0.66 μM, and 0.76 ± 0.52 μM, respectively). In the whole body tissue homogenates of Artemia, sublethal (up to 0.3 μM) concentrations of rotenone increased the glutathione S-transferase (GST) activity by up to 50 about percent (LC??: 53.3 ± 6.8 nM/min/mg protein, against 34.7 ± 3.6 nM/min/mg protein, n = 4). Nauplii treated in 100 mM L-DOPA and rotenone together showed further increase of GST activity all across the range of rotenone concentrations. These results on Artemia nauplii show similarities with other animal models, when complex I inhibitors were tested. Biochemical measurements suggest a protective role of L-DOPA by increasing the GST activity as part of the intracellular defences during toxin-evoked oxidative stress.  相似文献   

17.
The antitumoral activity of a series of acetylated bis-tetrahydrofuranic acetogenins with a threo/trans/threo/trans/erythro relative configuration was characterized by four new natural and two semisynthetic, 15,24,30-trioxygenated acetogenins that were found to inhibit mitochondrial complex I enzyme as well as growth of several tumor cell lines. Placement of acetyl groups along the alkyl chain modulated the potency of the bis-tetrahydrofuranic acetogenins and could be important for future utilization of these compounds as chemotherapeutic agents.  相似文献   

18.
The mode of action of Deltalac-acetogenins, strong inhibitors of bovine heart mitochondrial complex I, is different from that of traditional inhibitors such as rotenone and piericidin A [Murai, M., et al. (2007) Biochemistry 46 , 6409-6416]. As further exploration of these unique inhibitors might provide new insights into the terminal electron transfer step of complex I, we drastically modified the structure of Deltalac-acetogenins and characterized their inhibitory action. In particular, on the basis of structural similarity between the bis-THF and the piperazine rings, we here synthesized a series of piperazine derivatives. Some of the derivatives exhibited very potent inhibition at nanomolar levels. The hydrophobicity of the side chains and their balance were important structural factors for the inhibition, as is the case for the original Deltalac-acetogenins. However, unlike in the case of the original Deltalac-acetogenins, (i) the presence of two hydroxy groups is not crucial for the activity, (ii) the level of superoxide production induced by the piperazines is relatively high, (iii) the inhibitory potency for the reverse electron transfer is remarkably weaker than that for the forward event, and (iv) the piperazines efficiently suppressed the specific binding of a photoaffinity probe of natural-type acetogenins ([ (125)I]TDA) to the ND1 subunit. We therefore conclude that the action mechanism of the piperazine series differs from that of the original Deltalac-acetogenins. The photoaffinity labeling study using a newly synthesized photoreactive piperazine ([ (125)I]AFP) revealed that this compound binds to the 49 kDa subunit and an unidentified subunit, not ND1, with a frequency of approximately 1:3. A variety of traditional complex I inhibitors as well as Deltalac-acetogenins suppressed the specific binding of [ (125)I]AFP to the subunits. The apparent competitive behavior of inhibitors that seem to bind to different sites may be due to structural changes at the binding site, rather than occupying the same site. The meaning of the occurrence of diverse inhibitors exhibiting different mechanisms of action is discussed in light of the functionality of the membrane arm of complex I.  相似文献   

19.
20.
The effect of amphiphilic cationic drugs on the channel activity of the mitochondrial inner membrane was examined with patch-clamp techniques. The therapeutic drugs amiodarone, propranolol and quinine reduced the probability of being open for the multiconductance channel (MCC) activity (levels from 30 pS to over 1 nS). While amiodarone decreased the probability of being open for the voltage dependent approximately 100 pS channel, it increased the conductance 42 +/- 20% (mean +/- SD, n = 6) with no significant change in mean open time. Similar results were obtained with propranolol. These data indicate that the approximately 100 pS channel is distinct from MCC activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号