首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Combined with preparative high-performance liquid chromatography, high-speed counter-current chromatography was employed for isolation and purification of saponins from Gypsophila paniculata L. n-Hexane-n-butanol-methanol-0.02% TFA (1:9:1:9, v/v) was employed as solvent system and 210 nm was chosen as the wavelength of ultraviolet detection for the first time. The research tried to compare HSCCC with prep-HPLC, and further integrated their advantages to improve separation efficiency. Five known triterpene saponins were identified by 13C NMR and ESI-MS and their purities were all above 96%. The results demonstrated that adopted method was a feasible, economical and efficient technique for rapid preparative isolation of saponins.  相似文献   

2.
Following an initial clean-up step on silica gel, high-speed counter-current chromatography (HSCCC) was used to separate cyclic peptides from an extract of the seeds of Vaccaria segetalis. The two-phase solvent system used for HSCCC separation was composed of petroleum ether-ethyl acetate-methanol-water at an optimized volume ratio of 0.5:3.5:1:5. From 190 mg of crude extract, 38.0 mg of segetalin B and 28.5 mg of segetalin A were obtained with purities of 98.1% and 95.6% as determined by HPLC, respectively. The chemical structures of the target compounds were confirmed by high resolution electrospray ionization time of flight MS (HRESI-TOF-MS) and (1)H NMR analyses.  相似文献   

3.
高速逆流色谱用于天然产物分离和指纹图谱构建   总被引:17,自引:0,他引:17  
利用国产高速逆流色谱分离纯化雪莲黄酮类成分和丹参醌类成分。雪莲分离选用氯仿 甲醇 水 (10∶7∶3)体系 ,固定相保留率 72 % ,仪器参数 80 0r min 2mL min ,采用一步洗脱法 ,7h内得到 14个组分 ;丹参分离选用正己烷 乙醇 水 (10∶5 5∶4 5 )体系 ,固定相保留率达到 78 8% ,采用分步洗脱 ,3个产地丹参在 13h内各分离得到 12个洗脱组分。HSCCC洗脱图谱可以表现出不同产地丹参的差别 ,并且各对应洗脱峰保留时间的相对标准偏差 <3% ,因此提出将HSCCC作为构建中药指纹图谱的方法之一 ,其可行性需要通过与常规的指纹图谱构建方法比较之后做出评价。  相似文献   

4.
A method which involves the combination of pH-zone-refining counter-current chromatography (pH-zone-refining CCC) and conventional high-speed counter-current chromatography (HSCCC) was established for the preparative separation of alkaloids from the crude extracts of Stephania kwangsiensis. pH-zone-refining CCC was first performed with the solvent system composed of n-hexane-ethyl acetate-methanol-water (3:7:1:9, v/v), where triethylamine (10 mM) was added to the upper organic stationary phase as a retainer and hydrochloric acid (5 mM) to the aqueous mobile phase as an eluter. From 2.0 g of crude extract, 370 mg of sinoacutine and 600 mg of a mixture of three other alkaloids were obtained. Then, the mixture was further separated by conventional HSCCC with the solvent system composed of n-hexane-ethyl acetate-methanol-water (7:3:6:4, v/v), yielding 42 mg of (-)-crebanine, 50 mg of (-)-stephanine and 30 mg of l-romerine from 150 mg mixture of three other alkaloids, respectively. The purities of the four compounds were all over 98% as determined by HPLC, and the chemical structures of the four compounds were confirmed by positive ESI-MS and (1)H NMR data. Results of the present study successfully indicated that this method was efficient for the preparative separation of alkaloids from natural plants.  相似文献   

5.
A method for extraction and preparative separation of tanshinones from Salvia miltiorrhiza Bunge was successfully established in this paper. Tanshinones from Salvia miltiorrhiza Bunge were extracted using ethyl acetate as the extractant under reflux. The extracts were then purified by high speed counter-current chromatography (HSCCC) with light petroleum-ethyl acetate-methanol-water (6:4:6.5:3.5, v/v) as the two phase solvent system. The upper phase was used as the stationary phase and the lower phase as the mobile phase. 8.2mg of dihydrotanshinone I, 5.8 mg of 1,2,15,16-tetrahydrotanshiquinone, 26.3mg of cryptotanshinone, 16.2mg of tanshinone I, 25.6 mg of neo-przewaquinone A, 68.8 mg of tanshinone IIA and 9.3mg of miltirone were obtained from 400mg of extracts from Salvia miltiorrhiza Bunge in one-step HSCCC separation, with the purity of 97. 6%, 95.1%, 99.0%, 99.1%, 93.2%, 99.3% and 98.7%, respectively, as determined by HPLC area normalization method. Their chemical structures were identified by 1H NMR.  相似文献   

6.
Z-Ligustilide was separated and purified from the traditional Chinese medicinal plant Angelica sinensis by high-speed counter-current chromatography (HSCCC). Analytical HSCCC was first used for the systematic selection of the two-phase solvent system. Preparative HSCCC separation was performed with a two-phase solvent system composed of petroleum ether (60-90 degrees C)-ethanol-water at an optimum volume ratio of 10:17:10 (v/v). A total of 38 mg Z-ligustilide at 98.8% purity was obtained in one step from 200 mg crude extract as determined by HPLC analysis. The structure of the target compound was identified by electron impact ionisation mass spectrometry.  相似文献   

7.
Fluorescent Cybesin (Cypate-Bombesin Peptide Analogue Conjugate) was synthesized from Indocyanine Green (ICG) and the bombesin receptor ligand as a contrast agent for detecting pancreas tumors. However, the LC-MS analysis indicated that the target compound was only a minor component in the reaction mixture. Since preparative HPLC can hardly separate such a small amount of the target compound directly from the original crude reaction mixture without a considerable adsorptive loss onto the solid support, high-speed counter-current chromatography (HSCCC) was used for purification since the method uses no solid support and promises high sample recovery. A suitable two-phase solvent system composed of hexane/ethyl acetate/methanol/methyl t-butyl ether/acetonitrile/water) at a volume ratio of 1:1:1:4:4:7 was selected based on the partition coefficient of Cybesin (K≈0.9) determined by LC-MS. The separation was performed in two steps using the same solvent system with lower aqueous mobile phase. From 400 mg of the crude reaction mixture the first separation yielded 7.7 mg of fractions containing the target compound at 12.8% purity, and in the second run 1 mg of Cybesin was obtained at purity of 94.0% with a sample recovery rate of over 95% based on the LC-MS analysis.  相似文献   

8.
A microwave-assisted extraction (MAE) method is presented for the extraction of xanthones, α-mangostin and γ-mangostin from Garcinia mangostana. The MAE conditions including extraction temperature, liquid/solid ratio, extraction time and concentration of ethanol were optimized with an orthogonal test, and 5 g sample was extracted with the optimized conditions. The crude extraction of MAE was successfully isolated and purified by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of petroleum ether-ethyl acetate-methanol-water (0.8:0.8:1:0.6, v/v) in one-step separation. The separation yielded 75 mg of α-mangostin at 98.5% purity, and 16 mg of γ-mangostin at 98.1% purity from 360 mg crude extract of G. mangostana in less than 7h. The purity of the two xanthones was determined by HPLC. Their structures were further identified by ESI-MS, (1)H NMR and (13)C NMR.  相似文献   

9.
Water-soluble salvianolic acid A (Sal A) and salvianolic acid B (Sal B) were successfully isolated and purified from the crude extract of Salvia miltiorrhiza by high-speed counter-current chromatography (HSCCC). The solvent system was n-hexane–ethyl acetate–methanol–water (3:6:6:10, v/v/v/v). 4.27 mg of Sal A and 32.09 mg of Sal B were obtained from 260 mg of the crude sample. The purities of Sal A and Sal B were 96.67% and 97.43%, respectively. Their structures were identified by 1H NMR and 13C NMR. Antioxidant activities of Sal A and Sal B were also evaluated and compared by the methods of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) radical cation decolourisation assay. Both Sal A and Sal B showed high radical scavenging activities with their EC50 values being 1.43 ± 0.09 and 1.81 ± 0.01 μg/ml in DPPH radical method. The ABTS results showed that Sal A and Sal B exhibited high total antioxidant activities, their EC50 values were 1.35 ± 0.00 and 1.43 ± 0.01 μg/ml, respectively.  相似文献   

10.
High-speed counter-current chromatography methods, combined with resin chromatography were applied to the separation and purification of flavonoid glycosides from the Chinese medicinal herb, Radix Astragali. Five flavonoid glycosides, namely calycosin-7-O-β-d-glucoside, ononin, (6aR, 11aR)-9,10-dimethoxypterocarpan-3-O-β-d-glucoside, (3R)-2′-hydroxy-3′,4′-dimethoxyisoflavan-7-O-β-d-glucoside and calycosin-7-O-β-d-glucoside-6′′-O-acetate, were obtained. Among them, calycosin-7-O-β-d-glucoside-6′′-O-acetate was preparatively separated from Radix Astragali for the first time. Their structures were identified by ESI–MS, 1H NMR, 13C NMR, and 2D NMR.  相似文献   

11.
High-speed counter-current chromatography (HSCCC) was successfully used for the isolation and purification of 1,2,3,4,6-penta-O-galloyl-beta-D-glucose from the ethyl acetate extract of the leaves of Acer truncatum Bunge using a two-phase system composed of n-hexane-ethyl acetate-methanol-water at a volume ratio of (0.25:5:1:5, v/v/v/v) for the first time. Each injection of 80 mg crude extract yielded 7.25 mg of pure 1,2,3,4,6-penta-O-galloyl-beta-D-glucose. High-performance liquid chromatography (HPLC) analyses of the CCC fraction revealed that the purity of 1,2,3,4,6-penta-O-galloyl-beta-D- glucose was over 95%.  相似文献   

12.
Seven lignans including (-)-maglifloenone, futoenone, magnoline, cylohexadienone, fargesone C, fargesone A and fargesone B were isolated and purified from Magnolia sprengeri Pamp. using high-speed counter-current chromatography (HSCCC) with two-step separation. In the first step, a stepwise elution mode with the two-phase solvent system composed of petroleum ether-ethyl acetate-methanol-water (1:0.8:0.6:1.2, 1:0.8:0.8:1, v/v) was used and 15.6 mg of (-)-maglifloenone, 19.2 mg of futoenone, 10.8 mg of magnoline, 14.7 mg of cylohexadienone and 217 mg residues were obtained from 370 mg crude extract. In the second step, the residues were successfully separated by HSCCC with the solvent system composed of petroleum ether-ethyl acetate-methanol-water (1:0.8:1.2:0.6, v/v), yielding 33.2 mg of fargesone C, 47.5 mg of fargesone A and 17.7 mg of fargesone B. The purities of the separated compounds were all over 95% determined by HPLC. The chemical structures of these compounds were confirmed by (1)H NMR, (13)C NMR and ESI-MS.  相似文献   

13.
We developed an ionic liquid based ultrasonic assisted extraction (ILUAE) method for the extraction of the three isoflavones, namely tectoridin, iristectorin B and iristectorin A from Iris tectorum Maxim of the Iridaceae family. Three kinds of 1-alkyl-3-methylimidazolium ionic liquids with different alkyl chain and anion were investigated. The results indicated that ionic liquids (ILs) showed remarkable effects on the extraction yield of isoflavones. In addition, the ILUAE, including several ultrasonic parameters, such as the concentration, extraction time and solvent to solid ratio have been optimized. Under these optimal conditions (e.g., with 30 min extraction time and the solvent to solid ratio of 30 ml/g), this approach gained the highest extraction yields of tectoridin (37.45 mg/g), iristectorin B (2.88 mg/g) and iristectorin A (5.28 mg/g). Meanwhile, tectoridin, iristectorin B and iristectorin A in the ILUAE extract were separated and purified successfully through the high-speed counter-current chromatography (HSCCC) with a two-phase solvent system consisting of n-butanol-water (1:1, v/v). The additional advantage of this approach is that 60.21 mg tectoridin, 4.33 mg iristectorin B and 8.24 mg iristectorin A with more than 95.0% purities have been obtained from 400 mg ILUAE extract of I. tectorum within 5 h and one-step elution under the most optimized conditions (e.g., a flow rate of 2.0 ml/min, 900 rpm and the wavelengh of 280 nm). The obtained fractions were successfully analyzed by HPLC and identified by (1)H-NMR and (13)C-NMR.  相似文献   

14.
The bioactive component harpagoside was successfully separated from the crude extract of Scrophularia ningpoensis Hemsley by one-step purification using high-speed counter-current chromatography (HSCCC). A two-phase solvent system containing n-butanol:ethyl acetate:water (1:9:10) was selected following consideration of the partition coefficient of the target compound. A 276 mg quantity of the crude extract was loaded onto a 250 mL HSCCC column and yielded 11 mg harpagoside at over 97% purity. The chemical structure of harpagoside was determined by HPLC-ESI/MS and 1H-NMR.  相似文献   

15.
A high yield of betulinic acid (up to 17% from the ethanolic extract) was found in the leaves of Eugenia florida collected in south-eastern Brazil, making this species a potential commercial source of the title compound. Extracts of E. florida were subjected to solvent partition, and rapid high-speed counter-current chromatography (HSCCC) was applied to the semi-crude extracts to afford betulinic acid in high purity. The mobile and stationary phases were derived from the two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (10:5:2.5:1). The developing solvent system (stationary and mobile phases) for optimum HSCCC separation was chosen by dissolving the fraction to be chromatographed in the proposed solvent mixture and determining the amount of betulinic acid in each phase by densitometric TLC. Purified betulinic acid was characterized by 13C-NMR, GC-MS and co-injection of its methyl ester with standards in GC-FID. The HSCCC technique is commonly employed to isolate triterpene glycosides, but is applied in this study to an aglycone.  相似文献   

16.
Bacterial resistance to antibiotics has become a serious problem of public health that concerns almost all currently used antibacterial agents and that manifests in all fields of their application. To find more antibacterial agents from natural resources is all the time considered as an important strategy. Sophora flavescens is a popularly used antibacterial herb in Chinese Medicine, from which prenylated flavones were reported as the antibacterial ingredients but with a major concern of toxicity. In our screening on the antibacterial activities of various chemicals of this herb, 18 fractions were obtained from 8 g of 50% ethanol extract on a preparative high-speed counter-current chromatography (HSCCC, 1000 ml). The system of n-hexane/ethyl acetate/methanol/water (1:1:1:1) was used as the two-phase separation solvent. A chalcone named kuraridin was isolated from the best anti-MRSA fraction, together with sophoraflavanone G, a known active ingredient of S. flavescens. Their structures were elucidated by analysis of the NMR spectra. Both compounds exhibited significant anti-MRSA effects, compared to baicalein that is a well known anti-MRSA natural product. More important, kuraridin showed no toxicity on human peripheral blood mononuclear cells (PBMC) at the concentration up to 64 μg/ml while sophoraflavanone G inhibited over 50% of cellular activity at 4 μg/ml or higher concentration. These data suggested that opening of ring A of the prenylated flavones might decrease the toxicity and remain the anti-MRSA effect, from a viewpoint of structure-activity relationship.  相似文献   

17.
Punicalagin, the main ingredient of pomegranate (Punica granatum L.) husk, is a high molecular weight polyphenolic compound. It has shown remarkable pharmacological activities attributed in the presence of dissociable OH groups. To isolate punicalagin, previous methods included labor intensive and expensive solid phase extractions by column chromatography (C-18, polyamides, dellulose, Sephadex Lipophilic LH-20, Diaion HP20). High-speed countercurrent chromatography (HSCCC) was used for isolation and purification of punicalagin from pomegranate husk. Using preparative HSCCC about a 350 mg amount of the crude extract was separated, yielding 105 mg of punicalagin at a high-purity of over 92%. Eighty milligrams of gallic acid was simultaneously separated as another product, at a purity of 75%.  相似文献   

18.
In this paper, five isoquinoline alkaloids were successfully separated from a crude extract of Stephania yunnanensis using pH-zone-refining counter-current chromatography in single-step. With a two-phase solvent system composed of methyl-tert-butyl ether (MtBE)–acetonitrile–water (2:2:3, v/v) where triethylamine (10 mM) was added to the upper organic phase as a retainer and hydrochloric acid (5 mM) to the aqueous mobile phase as an eluter. From 1.4 g crude extract, 68.7 mg isocorydine, 78.2 mg corydine, 583.4 mg tetrahydropalmatine, 36.3 mg N-methylasimilobine, and 47.3 mg anonaine were separated with purities over 90%. Their structures were identified by 1H NMR, 13C NMR, ESI-MS data.  相似文献   

19.
Monacolin K from red yeast rice was extracted by accelerated solvent extraction (ASE). The effects of various extraction parameters including extraction temperature, static extraction time and cycle index on yield were investigated using a DIONEX ASE 300 system to select the optimal conditions by an orthogonal test design L9 (3)3. The optimum extraction conditions were determined as follows: extraction temperature 120 °C, static extraction time 7 min, and cycle index 3. Under the optimal conditions, the yield of ASE extract and monacolin K was 5.35% and 9.26 mg/g of dry red yeast rice, respectively. A separation and purification method of monacolin K was then established using high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane–ethyl acetate–methanol–water (8:2:5:5, v/v/v/v). From 300 mg of crude extract, 51.2 mg of monacolin K was obtained with the purity of 98.7%. The chemical structure of isolated compound was identified by UV, ESI-MS and 1H NMR.  相似文献   

20.
Aconitum coreanum (Lèvl.) Rapaics (Guanbaifu in Chinese) is a widely used, centuries-old Chinese herb. A preparative high-speed counter-current chromatography (HSCCC) coupled with evaporative light scattering detection (ELSD) method was employed for isolation and purification of alkaloids from the crude extract of Aconitum coreanum (Lèvl.) Rapaics using ethyl acetate-n-butanol-methanol-0.2 m HCl (7:2:2:7, v/v) as a two-phase solvent system. Six alkaloids, including GFO, GFQ, GFZ, hetisinone, hetisine and GFAA, were obtained in one-step separation. The purity of these compounds was 97.6, 93.8, 91.8, 91.9, 96.2 and 91.1%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号