首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fan H  Mark AE 《Proteins》2003,53(1):111-120
The relative stability of protein structures determined by either X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy has been investigated by using molecular dynamics simulation techniques. Published structures of 34 proteins containing between 50 and 100 residues have been evaluated. The proteins selected represent a mixture of secondary structure types including all alpha, all beta, and alpha/beta. The proteins selected do not contain cysteine-cysteine bridges. In addition, any crystallographic waters, metal ions, cofactors, or bound ligands were removed before the systems were simulated. The stability of the structures was evaluated by simulating, under identical conditions, each of the proteins for at least 5 ns in explicit solvent. It is found that not only do NMR-derived structures have, on average, higher internal strain than structures determined by X-ray crystallography but that a significant proportion of the structures are unstable and rapidly diverge in simulations.  相似文献   

2.
Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X‐ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well‐suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR‐derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state‐of‐the‐art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution.  相似文献   

3.
Structural genomics (SG) initiatives are currently attempting to achieve the high-throughput determination of protein structures on a genome-wide scale. Here we analyze the SG target data that have been publicly released over a period of 16 months to assess the potential of the SG initiatives. We use statistical techniques most commonly applied in epidemiology to describe the dynamics of targets through the experimental SG pipeline. There is no clear bottleneck among the key stages of cloning, expression, purification and crystallization. An SG target will progress through each of these steps with a probability of approximately 45%. Around 80% of targets with diffraction data will yield a crystal structure, and 20% of targets with HSQC spectra will yield an NMR structure. We also find the overlaps among SG targets: 61% of SG protein sequences share at least 30% sequence identity with one or more other SG targets. There is no significant difference in average structure quality among SG structures and other structures in the PDB determined by "traditional" methods, but on average SG structures are deposited to the PDB twice as quickly after X-ray data collection.  相似文献   

4.
We describe a comparative study of protein production from 96 Arabidopsis thaliana open reading frames (ORFs) by cell-based and cell-free protocols. Each target was carried through four pipeline protocols used by the Center for Eukaryotic Structural Genomics (CESG), one for the production of unlabeled protein to be used in crystallization trials and three for the production of 15N-labeled proteins to be analyzed by 1H-15N NMR correlation spectroscopy. Two of the protocols involved Escherichia coli cell-based and two involved wheat germ cell-free technology. The progress of each target through each of the protocols was followed with all failures and successes noted. Failures were of the following types: ORF not cloned, protein not expressed, low protein yield, no cleavage of fusion protein, insoluble protein, protein not purified, NMR sample too dilute. Those targets that reached the goal of analysis by 1H-15N NMR correlation spectroscopy were scored as HSQC+ (protein folded and suitable for NMR structural analysis), HSQC+/- (protein partially disordered or not in a single stable conformational state), HSQC- (protein unfolded, misfolded, or aggregated and thus unsuitable for NMR structural analysis). Targets were also scored as X- for failing to crystallize and X+ for successful crystallization. The results constitute a rich database for understanding differences between targets and protocols. In general, the wheat germ cell-free platform offers the advantage of greater genome coverage for NMR-based structural proteomics whereas the E. coli platform when successful yields more protein, as currently needed for crystallization trials for X-ray structure determination.  相似文献   

5.
Oligomeric proteins are important targets for structure determination in solution. While in most cases the fold of individual subunits can be determined experimentally, or predicted by homology‐based methods, protein–protein interfaces are challenging to determine de novo using conventional NMR structure determination protocols. Here we focus on a member of the bet‐V1 superfamily, Aha1 from Colwellia psychrerythraea. This family displays a broad range of crystallographic interfaces none of which can be reconciled with the NMR and SAXS data collected for Aha1. Unlike conventional methods relying on a dense network of experimental restraints, the sparse data are used to limit conformational search during optimization of a physically realistic energy function. This work highlights a new approach for studying minor conformational changes due to structural plasticity within a single dimeric interface in solution. Proteins 2015; 83:309–317. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
Periplasmic heme‐binding proteins (PBPs) in Gram‐negative bacteria are components of the heme acquisition system. These proteins shuttle heme across the periplasmic space from outer membrane receptors to ATP‐binding cassette (ABC) heme importers located in the inner‐membrane. In the present study, we characterized the structures of PBPs found in the pathogen Burkholderia cenocepacia (BhuT) and in the thermophile Roseiflexus sp. RS‐1 (RhuT) in the heme‐free and heme‐bound forms. The conserved motif, in which a well‐conserved Tyr interacts with the nearby Arg coordinates on heme iron, was observed in both PBPs. The heme was recognized by its surroundings in a variety of manners including hydrophobic interactions and hydrogen bonds, which was confirmed by isothermal titration calorimetry. Furthermore, this study of 3 forms of BhuT allowed the first structural comparison and showed that the heme‐binding cleft of BhuT adopts an “open” state in the heme‐free and 2‐heme‐bound forms, and a “closed” state in the one‐heme‐bound form with unique conformational changes. Such a conformational change might adjust the interaction of the heme(s) with the residues in PBP and facilitate the transfer of the heme into the translocation channel of the importer.  相似文献   

7.
In a crystallography experiment, a crystal is irradiated with X-rays whose diffracted waves are collected and measured. The reconstruction of the structure of the molecule in the crystal requires knowledge of the phase of the diffracted waves, information that is lost in the passage from the three-dimensional structure of the molecule to its diffraction pattern. It can be recovered using experimental methods such as heavy-atom isomorphous replacement and anomalous scattering or by molecular replacement, which relies on the availability of an atomic model of the target structure. This can be the structure of the target protein itself, if a previous structure determination is available, or a computational model or, in some cases, the structure of a homologous protein. It is not straightforward to predict beforehand whether or not a computational model will work in a molecular replacement experiment, although some rules of thumb exist. The consensus is that even minor differences in the quality of the model, which are rather difficult to estimate a priori, can have a significant effect on the outcome of the procedure. We describe here a method for quickly assessing whether a protein structure can be solved by molecular replacement. The procedure consists in submitting the sequence of the target protein to a selected list of freely available structure prediction servers, cluster the resulting models, select the representative structures of each cluster and use them as search models in an automatic phasing procedure. We tested the procedure using the structure factors of newly released proteins of known structure downloaded from the Protein Data Bank as soon as they were made available. Using our automatic procedure we were able to obtain an interpretable electron density map in more than half the cases.  相似文献   

8.
The structure of the BA42 protein belonging to the Antarctic flavobacterium Bizionia argentinensis was determined by nuclear magnetic resonance and X‐ray crystallography. This is the first structure of a member of the PF04536 family comprised of a stand‐alone TPM domain. The structure reveals a new topological variant of the four β‐strands constituting the central β‐sheet of the αβα architecture and a double metal binding site stabilizing a pair of crossing loops, not observed in previous structures of proteins belonging to this family. BA42 shows differences in structure and dynamics in the presence or absence of bound metals. The affinity for divalent metal ions is close to that observed in proteins that modulate their activity as a function of metal concentration, anticipating a possible role for BA42. Proteins 2014; 82:3062–3078. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
This paper describes the NMR screening of 141 small (<15 kDa) recombinant Thermotoga maritima proteins for globular folding. The experimental data shows that approximately 25% of the screened proteins are folded under our screening conditions, which makes this procedure an important step for selecting those proteins that are suitable for structure determination. A comparison of screening based either on 1D 1H NMR with unlabeled proteins or on 2D [1H,15N]-COSY with uniformly 15N-labeled proteins is presented, and a comprehensive analysis of the 1D 1H NMR screening data is described. As an illustration of the utility of these methods to structural proteomics, the NMR structure determination of TM1492 (ribosomal protein L29) is presented. This 66-residue protein consists of a N-terminal 3(10)-helix and two long alpha-helices connected by a tight turn centered about glycine 35, where conserved leucine and isoleucine residues in the two alpha-helices form a small hydrophobic core.  相似文献   

10.
In this article, we review the relevant results obtained during almost 60 years of research on a specific aspect of stereochemistry, namely handedness preference and switches between right‐handed and left‐handed helical peptide structures generated by protein amino acids or appropriately designed, side‐chain modified analogs. In particular, we present and discuss here experimental and theoretical data on three categories of those screw‐sense issues: (i) right‐handed/left‐handed α‐helix transitions underwent by peptides rich in Asp, specific Asp β‐esters, and Asn; (ii) comparison of the preferred conformations adopted by helical host–guest peptide series, each characterized by an amino acid residue (e.g. Ile or its diastereomer aIle) endowed with two chiral centers in its chemical structure; and (iii) right‐handed (type I)/left‐handed (type II) poly‐(Pro)n helix transitions monitored for peptides rich in Pro itself or its analogs with a pyrrolidine ring substitution, particularly at the biologically important position 4. The unique modular and chiral properties of peptides, combined with their relatively easy synthesis, the chance to shape them into the desired conformation, and the enormous chemical diversity of their coded and non‐coded α‐amino acid building blocks, offer a huge opportunity to structural chemists for applications to bioscience and nanoscience problems. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Class II Major Histocompatibility (MHC) molecules are cell surface heterodimeric glycoproteins that play a central role in the immune response by presenting peptide antigens for surveillance by T cells. Due to the inherent instability of the class II MHC heterodimer, and its dependence on bound peptide for proper assembly, the production of electrophoretically pure samples of class II MHC proteins in complex with specific peptides has been problematic. A soluble form of the murine class II MHC molecule, I-Ad, with a leucine zipper tail added to each chain to enhance dimer assembly and secretion, has been produced in Drosophila melanogaster SC2 cells. To facilitate peptide loading, a high affinity ovalbumin peptide was covalently engineered to be attached by a six-residue linker to the amino terminus of the I-Adbeta chain. This modified I-Ad molecule was purified using preparative IEF and one fraction, after removal of the leucine zipper tails, produced crystals suitable for X-ray crystallographic analysis. The protein engineering and purification methods described here should be of general value for the expression of I-A and other class II MHC-peptide complexes.  相似文献   

12.
Zhu Z  Boobis AR  Edwards RJ 《Proteomics》2008,8(10):1987-2005
17beta-Estradiol (E(2)) is a key regulatory steroid hormone that is involved in the control of a number of developmental and other functions. The aim of the present work was to identify estrogen-dependent proteomic changes by determining the levels of expressed proteins in MCF-7 human breast cancer cells following treatment with E(2). A number of methods exist for differential analysis of complex proteomic mixtures. Here, a label-free mass spectrometric approach comparing the ion intensities of tryptic peptides was adopted, which was combined with prefractionation of whole cell lysate proteins by 1-D SDS-PAGE. Using this approach, 60 proteins were found to be affected by E(2). These comprised 55 up-regulated and five down-regulated proteins. These proteins varied widely in their physiochemical properties with pIs of 4-12 and molecular weights of 9-500 kDa. Pathway analysis revealed that the majority of changes were related and together describe an up-regulated pathway consistent with the events of cell proliferation. The quantitative approach used here is relatively straightforward, avoids the use of costly labelling reagents, was reproducible within acceptable limits and has a linear response over a useful concentration range.  相似文献   

13.
PIER: protein interface recognition for structural proteomics   总被引:1,自引:0,他引:1  
Recent advances in structural proteomics call for development of fast and reliable automatic methods for prediction of functional surfaces of proteins with known three-dimensional structure, including binding sites for known and unknown protein partners as well as oligomerization interfaces. Despite significant progress the problem is still far from being solved. Most existing methods rely, at least partially, on evolutionary information from multiple sequence alignments projected on protein surface. The common drawback of such methods is their limited applicability to the proteins with a sparse set of sequential homologs, as well as inability to detect interfaces in evolutionary variable regions. In this study, the authors developed an improved method for predicting interfaces from a single protein structure, which is based on local statistical properties of the protein surface derived at the level of atomic groups. The proposed Protein IntErface Recognition (PIER) method achieved the overall precision of 60% at the recall threshold of 50% at the residue level on a diverse benchmark of 490 homodimeric, 62 heterodimeric, and 196 transient interfaces (compared with 25% precision at 50% recall expected from random residue function assignment). For 70% of proteins in the benchmark, the binding patch residues were successfully detected with precision exceeding 50% at 50% recall. The calculation only took seconds for an average 300-residue protein. The authors demonstrated that adding the evolutionary conservation signal only marginally influenced the overall prediction performance on the benchmark; moreover, for certain classes of proteins, using this signal actually resulted in a deteriorated prediction. Thorough benchmarking using other datasets from literature showed that PIER yielded improved performance as compared with several alignment-free or alignment-dependent predictions. The accuracy, efficiency, and dependence on structure alone make PIER a suitable tool for automated high-throughput annotation of protein structures emerging from structural proteomics projects.  相似文献   

14.
The low solubility of many proteins hinders large scale expression and purification as well as biophysical measurements. Here, we devised a general strategy to solubilize a protein by conjugating it at a solvent‐exposed position to a 6 kDa protein that was re‐engineered to be highly soluble. We applied this method to the CARD domain of Apoptosis‐associated speck‐like protein containing a CARD (ASC), which represents one member of a class of proteins that are notoriously prone to aggregation. Attachment of the tag to a cysteine residue, introduced by site‐directed mutagenesis at its self‐association interface, improved the solubility of the ASC CARD over 50‐fold under physiological conditions. Although it is not possible to use nuclear magnetic resonance (NMR) to obtain a high quality 2D correlation spectrum of the wild type domain under physiological conditions, we demonstrate that NMR relaxation parameters of the solubilized variant are sufficiently improved to facilitate virtually any demanding measurement. The method shown here represents a straightforward approach for dramatically increasing protein solubility, enabled by ease of labeling as well as flexibility in tag placement with minimal perturbation to the target. © 2013 The Protein Society  相似文献   

15.
TyrA is a member of the dye-decolorizing peroxidase (DyP) family, a new family of heme-dependent peroxidase recently identified in fungi and bacteria. Here, we report the crystal structure of TyrA in complex with iron protoporphyrin (IX) at 2.3 A. TyrA is a dimer, with each monomer exhibiting a two-domain, alpha/beta ferredoxin-like fold. Both domains contribute to the heme-binding site. Co-crystallization in the presence of an excess of iron protoporphyrin (IX) chloride allowed for the unambiguous location of the active site and the specific residues involved in heme binding. The structure reveals a Fe-His-Asp triad essential for heme positioning, as well as a novel conformation of one of the heme propionate moieties compared to plant peroxidases. Structural comparison to the canonical DyP family member, DyP from Thanatephorus cucumeris (Dec 1), demonstrates conservation of this novel heme conformation, as well as residues important for heme binding. Structural comparisons with representative members from all classes of the plant, bacterial, and fungal peroxidase superfamily demonstrate that TyrA, and by extension the DyP family, adopts a fold different from all other structurally characterized heme peroxidases. We propose that a new superfamily be added to the peroxidase classification scheme to encompass the DyP family of heme peroxidases.  相似文献   

16.
The Human Phosphate Binding Protein (HPBP) is a serendipitously discovered apolipoprotein from human plasma that binds phosphate. Amino acid sequence relates HPBP to an intriguing protein family that seems ubiquitous in eukaryotes. These proteins, named DING according to the sequence of their four conserved N-terminal residues, are systematically absent from eukaryotic genome databases. As a consequence, HPBP amino acids sequence had to be first assigned from the electronic density map. Then, an original approach combining X-ray crystallography and mass spectrometry provides the complete and a priori exact sequence of the 38-kDa HPBP. This first complete sequence of a eukaryotic DING protein will be helpful to study HPBP and the entire DING protein family.  相似文献   

17.
Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X‐ray crystallography and single‐particle cryo‐electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative‐staining, rotary‐shadowing and freeze‐etching EM, which are categorised here as ‘direct imaging EM methods’. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome–translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three‐dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo.  相似文献   

18.
Peptidoglycan deacetlyase (HP0310, HpPgdA) from the gram‐negative pathogen Helicobacter pylori, is the enzyme responsible for a peptidoglycan modification that counteracts the host immune response. In a recent study, we determined the crystallographic structure of the enzyme, which is a homo‐tetramer (Shaik et al., PloS One 2011;6:e19207). The metal‐binding site, which is essential for the enzyme's catalytic activity, is visible within the structure, but we were unable to identify the nature of the metal itself. In this study, we have obtained a higher‐resolution crystal structure of the enzyme, which shows that the ion bound is, in fact, zinc. Analysis of the structure of the four sites, one per monomer, and quantum chemical calculations of models of the site in the presence of different divalent metal ions show an intrinsic preference for zinc, but also significant flexibility of the site so that binding of other ions can eventually occur. Proteins 2014; 82:1311–1318. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Korndörfer IP  Beste G  Skerra A 《Proteins》2003,53(1):121-129
The artificial lipocalin FluA with novel specificity toward fluorescein was derived via combinatorial engineering from the bilin-binding protein, BBP by exchange of 16 amino acids in the ligand pocket. Here, we describe the crystal structure of FluA at 2.0 A resolution in the space group P2(1) with two protein-ligand complexes in the asymmetric unit. In both molecules, the characteristic beta-barrel architecture with the attached alpha-helix is well preserved. In contrast, the four loops at one end of the beta-barrel that form the entrance to the binding site exhibit large conformational deviations from the wild-type protein, which can be attributed to the sidechain replacements. Specificity for the new ligand is furnished by hydrophobic packing, charged sidechain environment, and hydrogen bonds with its hydroxyl groups. Unexpectedly, fluorescein is bound in a much deeper cavity than biliverdin IX(gamma) in the natural lipocalin. Triggered by the substituted residues, unmutated sidechains at the bottom of the binding site adopt conformations that are quite different from those observed in the BBP, illustrating that not only the loop region but also the hydrophobic interior of the beta-barrel can be reshaped for molecular recognition. Particularly, Trp 129 participates in a tight stacking interaction with the xanthenolone moiety, which may explain the ultrafast electron transfer that occurs on light excitation of the bound fluorescein. These structural findings support our concept of using lipocalins as a scaffold for the engineering of so-called "anticalins" directed against prescribed targets as an alternative to recombinant antibody fragments.  相似文献   

20.
Anopheles gambiae mosquitoes that transmit malaria are attracted to humans by the odor molecules that emanate from skin and sweat. Odorant binding proteins (OBPs) are the first component of the olfactory apparatus to interact with odorant molecules, and so present potential targets for preventing transmission of malaria by disrupting the normal olfactory responses of the insect. AgamOBP20 is one of a limited subset of OBPs that it is preferentially expressed in female mosquitoes and its expression is regulated by blood feeding and by the day/night light cycles that correlate with blood‐feeding behavior. Analysis of AgamOBP20 in solution reveals that the apo‐protein exhibits significant conformational heterogeneity but the binding of odorant molecules results in a significant conformational change, which is accompanied by a reduction in the conformational flexibility present in the protein. Crystal structures of the free and bound states reveal a novel pathway for entrance and exit of odorant molecules into the central‐binding pocket, and that the conformational changes associated with ligand binding are a result of rigid body domain motions in α‐helices 1, 4, and 5, which act as lids to the binding pocket. These structures provide new insights into the specific residues involved in the conformational adaptation to different odorants and have important implications in the selection and development of reagents targeted at disrupting normal OBP function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号