首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
The content of alkenyl-acyl, alkyl-acyl and diacyl types of the three major myelin glycerophospholipids such as PtdCho, PtdEtn and PtdSer was determined in myelin fractions prepared from sciatic nerve segments of rats at 12, 25 and 45 days after birth, and of adult rats (6-month-old) 90 days after crush injury. The biosynthesis and metabolic heterogeneity of lipid classes and types were also studied by incubation with [1-14C] acetate of nerve segments of young rats at different ages as well as crushed and sham-operated control nerve segments of adult rats. The analysis of composition and positional distribution in major individual molecular species extracted from light myelin and myelin-related fraction suggest that the metabolism of alkenyl-acyl-glycerophosphorylethanolamines and unsaturated species of PtdCho and PtdSer may not be regulated in the same manner during peripheral nerve myelination of developing rat and remyelination of regenerating nerve in the adult animal. The14C-radioactivity incorporation into lipid classes and alkyl and acyl moieties of the three major phospholipids of sciatic nerve segments during the developmental period investigated revealed that Schwann cells were capable of synthesizing acyl-linked fatty acids in both myelin fractions at a decreasing rate and with different patterns during development. In regenerating sciatic nerve of adult animals the labeling of myelin lipid classes and types of remyelinating nerve segment distal to the crush site was markedly higher than that of sham-operated normal one; however, the magnitude and the pattern of the specific radioactivity never approached those observed during active myelination of the nerve in young animals. These observations show that the remyelinating process of injured nerve during regeneration seems not to recapitulate nerve myelin ensheathment occurring during development.Abbreviations used PtdEtn Phosphatidylethanolamine - PtdCho Phosphatidylcholine - PtdSer Phosphatidylserine - GPE Glycero(3)phosphoethanolamine - GPC Glycero(3)phosphocholine - GPS Glycero(3)phosphoserine - DG-acetates 1,2-diradyl-3-acetyl-sn-glycerols - HPLC High performance liquid chromatography - TLC Thin-layer chromatography - BHT 2,6-di-tert-butyl-4-methylphenol  相似文献   

2.
Abstract— Brain, spinal cord and sciatic nerve from rats at different ages were incubated for 2 h in a medium containing [14C]acetate and [14C]leucine as the precursors for synthesis of lipids and proteins. Myelin was purified from the incubated tissues and the specific and total radioactivites of myelin lipids and protein were determined. The uptake of radioactive precursors decreased with increasing age up to 6 months of postnatal age, the decrease following the same pattern for the three types of myelin. After age 6 months the uptake of the protein and lipid precursors reached a plateau that persisted up to 18 months, the oldest postnatal age studied. The amount of myelin isolated and the total myelin lipids extracted from both the central and peripheral nervous systems increased continuously from age 25 days to 18 months after birth. Consequently we suggest that myelination is a process that continues during the whole life of the rat.
The metabolic activity of peripheral nerve myelin was higher than myelin from the CNS at all ages studied. Although myelination in the sciatic nerve begins before that in brain and spinal cord, the three types of myelin apparently reach maturity at the same age. Lecithin exhibited the highest metabolic activity of the individual myelin lipids at all ages in both the central and peripheral nervous system. The metabolic activity of cholesterol in myelin from the 25-day-old rats was similar to that of lecithin but decreased to very low levels in myelin from the 18-month-old rats.  相似文献   

3.
Changes in the incorporation of 14C-amino acids into proteins in vitro were followed under conditions of ischemia induced by abdominal aorta ligature and subsequent recirculation in dogs. Cell saps isolated from L-S spinal cord, spinal ganglia, the sciatic nerve and medulla oblongata were added to the incorporation mixture composed of ribosomes and an enzymatic system from intact brains. Cytosols isolated from ischemic animals affected the rate of in vitro protein synthesis moderately, while repeated ischemia caused a profound decrease in the incorporation of amino acids into proteins. Cytosols from L-S spinal cord and especially from spinal ganglia after three days of recirculation substantially enhanced incorporation thus indicating a massive response of these tissues to ischemic injury. Cell saps from the medulla oblongata increased amino acid incorporation into proteins in vitro in all experimental groups.  相似文献   

4.
MYELIN PROTEINS FROM DIFFERENT REGIONS OF THE CENTRAL NERVOUS SYSTEM   总被引:10,自引:6,他引:4  
—The protein composition of myelin prepared from specific anatomical regions of the bovine brain and spinal cord was studied by a modification of the method of Gonzalez -Sastre (1970). Spinal cord myelin contained lesser amounts of chloroform-methanol soluble protein and proteolipid protein and had a lower activity of the enzyme 2′,3′-cyclic nucleotide 3′-phosphohydrolase than did myelin from subcortical white matter. There was no difference, however, in the protein composition of myelin from the various levels of the spinal cord. The amino acid composition of both proteolipid and basic protein showed no significant regional differences. Myelin preparations from both brain and spinal cord contained DM-20 protein.  相似文献   

5.
Injured axons in mammalian peripheral nerves often regenerate successfully over long distances, in contrast to axons in the brain and spinal cord (CNS). Neurite growth-inhibitory proteins, including the recently cloned membrane protein Nogo-A, are enriched in the CNS, in particular in myelin. Nogo-A is not detectable in peripheral nerve myelin. Using regulated transgenic expression of Nogo-A in peripheral nerve Schwann cells, we show that axonal regeneration and functional recovery are impaired after a sciatic nerve crush. Nogo-A thus overrides the growth-permissive and -promoting effects of the lesioned peripheral nerve, demonstrating its in vivo potency as an inhibitor of axonal regeneration.  相似文献   

6.
A survey of differences in composition and metabolism of myelin from five areas of the central nervous system was made in brain and spinal cord slices of the rat from 20 days to 20 months postnatal age. Purified myelin from the forebrain areas showed a composition characteristic of immaturity longer than did myelin from the hindbrain and spinal cord. The trend of chemical maturity is in agreement with the anatomical observations that myelination begins in the hindbrain and proceeds rostrally. Myelin recovery per 100-mg slice increased continually from 20 days to 20 months of age, while the uptake of [1-(14)C]acetate into myelin lipid and of [1-(14)C]leucine into myelin protein decreased precipitously with age. Taking into account the continuous increase in myelin during maturation, a calculation was made of the total amount of incorporation of labeled material into lipids or proteins per 100-mg slice for each region at each age. The metabolic characteristics of myelin from the cerebral cortex (including the corpus callosum), the thalamic area, and the cerebellum were very similar, while myelin from brainstem and spinal cord was metabolically more active, especially at the early ages. Synthesis of lipid in the myelin sheath represents about 50% of the lipid synthesis of the whole brain and about 75% of that of the spinal cord. The proportion of myelin-related protein synthesis is much less, probably less than 10% of the protein synthesis occurring in whole brain and about 15% of that in the spinal cord except at early ages.  相似文献   

7.
Abstract— A modification of the available methods was used for preparation of nerve and glia cell-enriched fractions from rabbit brain and spinal cord. The rate of incorporation of tritiated leucine and the turnover rates of protein during 10 days was studied in the bulkprepared cell fractions. The rate of incorporation into the nerve cell fraction was approximately three times greater than in the glia fraction. The nerve cells had one rapid and one slow phase in decline of radioactivity, while the glial cells were characterized by a more uniform decline. The soluble radioactivity was followed in whole tissue of brain and spinal cord and certain differences between the two were observed.  相似文献   

8.
Characterization of a cloned cDNA encoding rabbit myelin P2 protein   总被引:2,自引:0,他引:2  
Myelin P2 is a 14,800-Da cytosolic protein found in rabbit sciatic nerves. It belongs to a family of fatty acid binding proteins and shows a 72% amino acid sequence similarity to aP2/422, the adipocyte lipid binding protein, a 58% sequence similarity to rat heart fatty acid binding protein, and a 40% sequence similarity to cellular retinoic acid binding protein. In order to isolate cDNA clones representing P2, a cDNA library was constructed from poly(A+) RNA isolated from sciatic nerves of 10-day-old rabbit pups. By use of a mixed synthetic oligonucleotide probe based on the rabbit P2 amino sequence, 12 cDNA clones were selected from about 25,000 recombinants. Four of these were further characterized. They contained an open reading frame, which when translated, agreed at 128 out of 131 residues with the known rabbit P2 amino acid sequence. These cDNAs recognize a 1.9-kilobase mRNA present in sciatic nerve, spinal cord, and brain, but not present in liver or heart. The levels of P2 mRNA parallel myelin formation in sciatic nerve and spinal cord with maximal amounts being detected at about 15 postnatal days. This initial study will allow characterization of the P2 gene and its regulation, as well as further studies into the role of P2, the first metabolically active myelin-specific protein to be characterized at the genetic level.  相似文献   

9.
The composition of the myelin proteins of the central nervous system   总被引:7,自引:2,他引:5  
Abstract— The amino acid composition of human, monkey and bovine centrum ovale myelin, of bovine optic nerve myelin, and of bovine spinal cord white matter myelin has been determined. In general, the amino acid patterns of the centrum ovale myelin of these species and the optic nerve myelin are identical. Differences are noted when these are compared to the spinal cord white matter myelin. It is shown that the amino acid composition of myelin cannot be duplicated by any combination of the Folch–Lees proteolipid protein and the basic protein fraction of myelin. It is necessary to postulate the existence of a third protein fraction that is rich in dicarboxylic amino acids.  相似文献   

10.
Sciatic nerve lesion in newborn rats is known to cause degeneration of a large number of axotomized motoneurones and spinal ganglion cells. Some of the surviving motoneurones exhibit abnormal firing properties and the projection pattern of central terminals of sensory neurones is altered. We report here on long-term changes in spinal cord reflexes in adult rats following neonatal nerve crush. In acutely spinalized and anaesthetized adult rats 4-6 months old in which the sciatic nerve had been crushed on one side at birth, the tibial nerve, common peroneal nerve or sural nerve were stimulated on the reinnervated and control side and reflex responses were recorded from the L5 ventral spinal roots. Ventral root responses (VRRs) to tibial and peroneal nerve stimulation on the side of the nerve lesion were significantly smaller in amplitude representing only about 15% of the mean amplitude of VRRs on the control side. The calculated central delay of the first, presumably monosynaptic component of the VRR potential was 1.6 ms on the control side while the earliest VRR wave on the side of the nerve lesion appeared after a mean central latency of 4.0 ms that seems too long to be of monosynaptic origin. These results suggest that neonatal sciatic nerve injury markedly alters the physiological properties and synaptic connectivity in spinal cord neurones and causes a marked depression of spinal cord responses to peripheral nerve stimulation.  相似文献   

11.
Phospholipid metabolism was studied in rat sciatic nerve during Wallerian degeneration induced by crush injury. Portions of crushed sciatic nerve, incubated with labeled substrates, showed significantly higher phosphatidylcholine synthesis than normal nerve, prior to any measurable alterations of phospholipid composition. Maximum synthesis occurred 3 days after crush injury, at which time the metabolism of other phospholipids was unchanged. After a rapid decrease in biosynthetic activity, a second phase of enhanced phosphatidylcholine synthesis occurred, beginning 6 days after crush injury. Increased incorporation of [33P]phosphate, [2-3H]glycerol, and [Me-14C]choline indicated stimulation of de novo synthesis of phosphatidylcholine 3 days after injury. Neither base exchange reactions nor sequential methylation of ethanolamine phospholipids contributed significantly to phosphatidylcholine synthesis. Assay of certain key enzymes under optimal conditions in subcellular fractions of sciatic nerve revealed higher activities of cholinephosphate cytidyltransferase, choline phosphotransferase, and acyl-CoA:lysophosphatidylcholine acyltransferase in injured nerve, while choline kinase activity remained unchanged. This indicates that stimulation of phosphatidylcholine synthesis occurs via the cytidine nucleotide pathway, as well as by increased acylation of lysophosphatidylcholine. Although the cause of stimulated phosphatidylcholine synthesis remains unexplained, it is possible that trace amounts of lysophospholipids or other metabolites produced by injury-enhanced phospholipase activity may be responsible.  相似文献   

12.
Abstract— (1) Two myelin fractions of bovine peripheral nerve and spinal cord have been studied comparatively. Cholesterol as well as cerebroside content per mg of protein in the peripheral nerve myelin was less than that in the spinal cord myelin, while no significant difference in the total phospholipid content was noted.
(2) The basic proteins in myelin fractions were quantitatively estimated by disc gel electrophoresis. Around one-fourth of the total myelin protein in the bovine peripheral nerve was a basic protein with a mobility of 1.07 relative to lysozyme by Reisfeld's disc gel electrophoresis.
(3) The myelin proteins in the peripheral nerve were less completely solubilized than those of the spinal cord by treatment with deoxycholate as well as by Triton-salt solution. The protein fractions obtained from the peripheral nerve myelin by techniques similar to that for obtaining the proteolipids from the spinal cord myelin, contained different types of protein.
(4) 2',3'-Cyclic nucleotide 3'-phosphohydrolase activity in the peripheral nerve myelin was only one tenth of that in the spinal cord myelin. The Triton-salt insoluble fraction showed remarkable high activity among subfractions of the spinal cord myelin.
(5) By immunological studies, it may be concluded that an antigenic substance for experimental allergic neuritis was localized in the peripheral nerve myelin, but not in its basic protein.  相似文献   

13.
1. Washed guinea-pig cerebral-cortex mitochondria incorporate [(14)C]leucine into their protein at a rate comparable with the rates reported for liver or heart mitochondria only if the mitochondria are separated from myelin and nerve endings by density-gradient centrifugation. 2. The non-mitochondrial components (myelin and nerve endings) of brain mitochondrial preparations incorporated [(14)C]leucine at a negligible rate. 3. The mitochondria do not require an exogenous supply of energy or a full supply of amino acids to support the process. 4. The incorporation rate was linear up to 2hr. aerobic incubation at 30 degrees and was inhibited by chloramphenicol, only slightly by actinomycin D and not by penicillin or pretreatment with ribonuclease. The observed incorporation is considered to be unlikely to be due to contaminating cytoplasmic ribosomes or bacteria. 5. The process was also studied in mitochondrial preparations from rabbit cerebral cortex and spinal cord.  相似文献   

14.
PROTEIN SYNTHESIS IN THE ISOLATED MAUTHNER NERVE FIBRE OF GOLDFISH   总被引:2,自引:0,他引:2  
Abstract— Mauthner nerve fibres isolated from the spinal cord of goldfish were incubated, in the presence of radioactive amino acids for varying periods of time. It was found that the Mauthner fibre synthesizes proteins in the absence of cell nuclei. Amino acid incorporation showed sensitivity to puromycin and to acetoxycycloheximide but resistance to chloramphenicol. Only slight inhibition was caused by actinomycin-D. The contribution of the denuded axon to the total protein synthesis was about 30 per cent per unit length Mauthner fibre. The remaining activity was due to the myelin sheath compartment. Fractionation experiments showed that the incorporation in the sheath was due to components other than the myelin lamellae. The subcellular distribution of newly synthesized proteins in the isolated and incubated Mauthner fibre was compared to that found in the incubated spinal cord. The results strongly suggested the existence in the Mauthner fibre of a primary microsomal, rather than a mitochondrial, protein synthesizing system.  相似文献   

15.
The metabolism of myelin undergoing breakdown as a result of edema induced by chronic administration of triethyl tin (TET) dissolved in the drinking water (10 mg/l.) was examined. The spinal cord showed more edema and loss of myelin than the brain. Uptake in vitro of [1-14C]acetate into myelin lipids of slices of brain or spinal cord from TET-treated rats was depressed until 4–5 weeks after the beginning of the regime, then rose to above normal levels. The uptake of [l-14C]leucine into myelin protein rose within several weeks of TET treatment to levels averaging over 300 per cent of normal and remained high even after the TET was removed. The high levels of [l-14C]leucine incorporation were inhibited by cycloheximide and were not explained by an increase in the size of the free amino acid pool. The three classes of myelin proteins, basic, proteolipid protein, and Wolfgram protein shared in the increased incorporation. Spinal cord myelin showed the greatest metabolic response, brain stem myelin less, and myelin from the forebrain was minimally affected by the TET treatment. Myelin prelabelled by intracisternal injection of [l-14C]acetate and [l-14C]leucine before the onset of TET administration showed faster turnover in myelin proteins in relation to the myelin lipids than the control in the most severely affected animals, but not in others less affected. A ‘floating fraction’ was observed floating on 10.5% (w/v) sucrose during the myelin purification. This fraction showed metabolic characteristics typical of myelin, and myelin-labelling studies at various stages of the animal's development showed it to be derived from recently synthesized myelin. The floating fraction from the brain contained less cerebroside and more lecithin than myelin, while the spinal cord floating fraction composition was much like that of myelin. The floating fractions contained less protein typical of myelin (basic and proteolipid protein) and more highmolecular-weight protein which may have been derived from contaminating microsomes. The floating fraction was presumed to be partially deproteinated myelin. The use of TET-treatment as model for demyelination as a result of edema and proceeding in the absence of macrophages is discussed.  相似文献   

16.
Schwann cell biosynthesis of the major myelin glycoprotein, P0, was investigated in the crush-injured adult rat sciatic nerve, where there is myelin assembly, and in the permanently transected nerve, where there is no myelin assembly. Endoneurial fractions from desheathed rat sciatic nerves distal to the crush were compared with similar fractions from the permanently transected nerves at 7, 14, 21, 28, and 35 days after injury. The Schwann cell expression of this asparagine-linked glycoprotein was evaluated after sodium dodecyl sulfate-pore gradient electrophoresis by Coomassie Blue and silver stain and by autoradiography after direct overlay of radioiodinated lectins [wheat germ agglutinin, gorse agglutinin, and concanavalin A (Con A)]. As evaluated by these parameters, the concentration of P0 after crush decreased and subsequently increased as a function of time after injury, corresponding to the events of demyelination and remyelination. After permanent transection, the P0 concentration decreased following the same time course found after crush. At subsequent time points, P0 could not be detected with Coomassie Blue stain, silver stain, or wheat germ agglutinin. Both gorse agglutinin and Con A, however, showed binding to P0. Radioactive precursor incorporation studies with [3H]fucose or [3H]-mannose into endoneurial slices at 35 days posttransection revealed active oligosaccharide processing of P0 glycoprotein by Schwann cells in this permanent transection model. Compared with other Schwann cell glycoproteins in the transected nerve, the highest level of incorporation of [3H]mannose was found in P0 which accounted for 42.7% of the incorporated label. In contrast, incorporation of [3H]mannose into endoneurial slices at 35 days after crush accounted for only 13.3% in P0. In addition, higher levels of Con A binding were observed in P0 in the transected nerve compared with the contralateral control or the crushed nerve. Both the [3H]fucose incorporation and gorse agglutinin binding to P0 in the transected nerve suggest posttranslational processing of this glycoprotein in the Golgi apparatus; however, the absence of wheat germ agglutinin binding, the high level of mannose incorporation, and the high level of binding by Con A imply that additional processing steps are required prior to its assembly into myelin.  相似文献   

17.
The appearance and in vivo phosphorylation of the 210 kDalton (kD) neurofilament protein (NF210K) in newborn rat brain, spinal cord, and sciatic nerve were invetigated. Electron microscopic examination of neurofilaments isolated from newborn rat brain and spinal cord demonstrated morphologically distinct filaments which contained cross-bridging side arms. Neurofilament proteins, phosphorylated in vivo, were separated by sodium dodecyl sulfate slab gel electrophoresis and were transferred from acrylamide gels to nitrocellulose sheets. The nitrocellulose sheets were treated with antiserum to the 70 kD, 145 kD and 210 kD neurofilament proteins by the immunoblot technique. The three neurofilament proteins were found to be present in newborn brain, spinal cord and sciatic nerve. The presence of NF210K in newborn rat brain was further confirmed by 2-dimensional gel electrophoresis followed by indentification of this protein by the immunoblot technique. Exposure of the immunostained nitrocellulose sheets to x-ray film revealed that the NF210K, NF145K, and NF70K proteins were phosphorylated in filaments prepared from newborn rat central and peripheral nervous systems. These results suggest that the synthesis and posttranslational modification of the neurofilament proteins may be synchronized or developmentally regulated. It is feasible that phosphorylation of the NF210K subunit may be a prerequisite for the formation of neurofilament cross-bridging elements which are necessary for radial growth of axons.  相似文献   

18.
The fraction floating on 0.32 M sucrose was isolated from normal mammalian spinal cord and analyzed with regard to protein and lipid composition. Comparisons were made with the myelin fraction isolated from the same spinal cord. A close relationship between the two fractions was indicated by a similar protein banding on SDS-polyacrylamide gel electrophoresis. The relative amounts of various proteins however were different and some high molecular weight proteins appeared unique to the floating fraction. The phospho- and galactolipid patterns, as revealed by thin-layer chromatography, were similar in the floating and the myelin fractions. The proportion of hydrophobic lipids, such as sterols and isoprenyl derivatives, was higher in the floating fraction. Bands co-migrating with cholesterol esters were detected only in the floating fraction from guinea pigs. Marchi-positive material of possible paranodal origin is enriched in the floating fraction. The present findings of a biochemical composition of the floating fraction closely resembling that of myelin is in line with the view that myelin turnover includes a step of degradation localized to the paranodal regions.  相似文献   

19.
An experimental crush injury to the sciatic nerve, with a crush force of 49.2 N (pressure p=1.98x10(8) Pa), was inflicted in 30 male rats (Wistar). A control group (sham), with the same number of rats, was also operated upon exactly as the experimental group but without the crush injury. We tested the sensory and motor recovery of the sciatic nerve with Hargreaves method, using an apparatus from Ugo Basile, Italy. Testing was continued for both legs of each rat, injured and uninjured, starting preoperatively (0 day), and then 1, 7, 14, 21, and 28 days postoperatively. The same experiment was run simultaneously with the sham group. The Plantar test showed recovery of the sensory and motor function of the sciatic nerve, though not complete recovery, by 28 days. An immunohistochemical experiment was run in parallel with the plantar test on L3-L6 segments of the spinal cord from where the sciatic nerve extends. We used antibodies for Myelin-associated glycoprotein (MAG), and gangliosides GD1a and GT1b on the aforesaid part of the spinal cord. The immunohistochemical methods showed changes in sensory and motor axons in the spinal cord segment L3-L6 which suggest correspondence with the results of the Plantar test, in terms of recovery of the sensory and motor function after injury of the sciatic nerve. The immunohistochemical results also show ipsilateral and contralateral changes following injury. Results of the plantar test are suggestive that the rat shows compensation for an injury in its contralateral leg.  相似文献   

20.
Changes in nerve biochemistry, anatomy, and function following injuries to the contralateral nerve have been repeatedly reported, though their significance is unknown. The most likely mechanisms for their development are either substances carried by axoplasmic flow or electrically transmitted signals. This study analyzes which mechanism underlies the development of a contralateral change in protein metabolism. The incorporation of labelled amino acids (AA) into proteins of both sciatic nerves was assessed by liquid scintillation after an unilateral section. AA were offered locally for 30 min to the distal stump of the sectioned nerves and at homologous levels of the intact contralateral nerves. At various times, from 1 to 24 h, both sciatic nerves were removed and the proteins extracted with trichloroacetic acid (TCA). An increase in incorporation was found in both nerves 14–24 h after section. No difference existed between sectioned and intact nerves, which is consistent with the contralateral effect. Lidocaine, but not colchicine, when applied previously to the nerves midway between the sectioning site and the spinal cord, inhibited the contralateral increase in AA incorporation. It is concluded that electrical signals, crossing through the spinal cord, are responsible for the development of the contralateral effect. Both the nature of the proteins and the significance of the contralateral effect are matters for speculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号