首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Caryopses of Avena fatua L. are dormant after harvest and germinate poorly at 20 °C. Dormancy was released by after-ripening the dry caryopses in the dark at 25 °C for 3 months. Karrikinolide (butenolide, 3-methyl-2H-furo[2,3-c]pyran-2-one, KAR1), in contrast to exogenous ethylene and the precursor of ethylene biosynthesis 1-aminocyclopropane-1-carboxylic acid (ACC), completely overcame dormancy. The effect of KAR1 was not affected by aminoethoxyvinylglycine (AVG), α-aminoisobutyric acid (AIB) and CoCl2, inhibitors of ACC synthase and oxidase, respectively. 2,5-Norbornadiene (NBD), a reversible inhibitor of ethylene binding to its receptor, counteracted the stimulatory effect of KAR1. Ethylene, ethephon and ACC counteracted and AVG reinforced inhibition caused by norbornadiene. Inhibition due to norbornadiene, applied during the first 3 days of imbibition in the presence of KAR1, disappeared after transfer to air or ethylene. The obtained results confirm that KAR1 breaks dormancy and indicate that ethylene alone plays no role in releasing dormancy of Avena fatua caryopses. KAR1 probably did not relieve dormancy via the stimulation of ethylene biosynthesis. Some level of endogenous ethylene is probably required for ethylene action, which might be required for releasing dormancy by KAR1 or for subsequent germination of caryopses after removing dormancy.  相似文献   

2.
A natural feature of freshly harvested Avena fatua L. caryopses is primary dormancy which, however, was relieved partially by putrescine (Put) (10?2 M) and completely by karrikinolide (KAR1) (3 × 10?9 M) or gibberellic acid (GA3) (10?5 M). The sensitivity of A. fatua caryopses to these stimulators was adversely affected by supraoptimal temperature (SOT) (30 °C). A reduced germinability of caryopses due to high temperature even after transferring them to lower temperatures (10 or 20 °C) indicated the induction of thermodormancy. The maintenance of relatively constant levels of abscisic acid (ABA) in embryos but not surrounding tissues during SOT treatment was observed. The application of Put either during the SOT treatment or afterwards counteracted the effects of high temperature but had no significant impact on ABA content. The action of exogenous Put in alleviating the loss of responsiveness to KAR1 and GA3 imposed by SOT treatment in A. fatua PD caryopses is discussed in reference to the interconnection between ABA and GA metabolism and signaling pathways.  相似文献   

3.
Freshly harvested, dormant seeds of Amaranthus retroflexus were unable to germinate at 25 and 35 °C. To release their dormancy at the above temperatures, the seeds were stratified at a constant temperature (4 °C) under laboratory conditions or at fluctuating temperatures in soil or by outdoor burial in soil. Fully dormant, or seeds stratified or buried (2006/2007 and 2007/2008) for various periods were treated with exogenous gibberellic acid (GA3), ethephon and abscisic acid (ABA). Likewise, the effects of these regulators, applied during stratification, on seed germination were determined. The results indicate that A. retroflexus seed dormancy can be released either by stratification or by autumn–winter burial. The effect of GA3 and ethylene, liberated from ethephon, applied after various periods of stratification or during stratification, depends on dormancy level. GA3 did not affect or only slightly stimulated the germination of non-stratified, fully dormant seeds at 25 and 35 °C respectively. Ethylene increased germination at both temperatures. Seed response to GA3 and ethylene at 25 °C was increased when dormancy was partially removed by stratification at constant or fluctuating temperatures or autumn–winter burial. The response to GA3 and ethylene increased with increasing time of stratification. The presence of GA3 and ethephon during stratification may stimulate germination at 35 °C. Thus, both GA3 and ethylene can partially substitute the requirement for stratification or autumn–winter burial. Both hormones may also stimulate germination of secondary dormant seeds, exhumed in September. The response to ABA decreased in parallel with an increasing time of stratification and burial up to May 2007 or March 2008. Endogenous GAn, ethylene and ABA may be involved in the control of dormancy state and germination of A. retroflexus. It is possible that releasing dormancy by stratification or partial burial is associated with changes in ABA/GA and ethylene balance and/or sensitivity to these hormones.  相似文献   

4.
Dormant, intact Avena fatua L. (wild oat) seeds germinate poorly at 20 °C. Removing the hulls slightly increased germination. Treatment with smoke solutions increased the germination of both intact seeds and caryopses. Exogenous GA3, alone or in the presence of smoke solution, increased the germination of caryopses, while ACC shows a tendency to increase germination of caryopses only when applied in combination with smoke solution. Results suggest that GA3 and ethylene, but not smoke solutions, are involved in the regulation of α-amylase activity during germination. However, the participation of smoke solutions in the control of ACC oxidase activity cannot be excluded.  相似文献   

5.
Plant-derived smoke, its water extract—the smoke water (SW), and karrikin (KAR1) present in the smoke stimulate seed germination in plants from fire-prone and fire-free areas, including weeds and cultivated plants. There are also plants, the seeds of which can respond only to smoke, but not to KAR1, and vice versa. Smoke and/or KAR1 can be applied in horticulture, agriculture, and revegetation. This review describes effects of smoke and KAR1 on weed seed germination and focuses mainly on the recent knowledge about the physiological role of these factors in dormancy release and germination of Avena fatua caryopses. The involvement of gibberellins, ethylene, and abscisic acid (ABA) in the response to smoke or KAR1 is discussed. Effects of smoke or KAR1 on the contents of reactive oxygen species (ROS), non-enzymatic antioxidants, and activity of the enzymes participating in ROS removal are presented. Cell cycle activity in the response to SW and KAR1 is also considered. Effects of KAR1 on thermodormancy release in A. fatua caryopses are highlighted, as well.  相似文献   

6.
《Plant science》1987,51(1):37-41
Application of gibberellic acid (GA3) to dormant Avena fatua L. caryopses resulted in the termination of dormancy within 24 h as indicated by germination between 24 and 48 h. During the period of imbibition from 0 to 24 and 24 to 48 h changes occurred in protein and carbohydrate metabolism in GA-treated and untreated caryopses. Germination did not occur in untreated caryopses, therefore physiological changes in these caryopses were not associated with the termination of dormancy. GA-treatment increased the concentration of soluble and SDS-extractable protein in the endosperm tissue by 4 and 5%, respectively, over the 24 h untreated material; no changes were apparent when the protein profiles of GA-treated and untreated tissues were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 0, 24 and 48 h after imbibition. The concentration of hexose and sucrose in the GA-treated endosperm tissue increased 189 and 151 μmol, respectively, over the untreated material at 24 h. Gibberellic acid had no effect on starch metabolism in the endosperm tissue in the first 24 h, the period associated with the termination of dormancy. The concentration of hexose increased by 57 μmol and starch decreased by 80 μmol in the GA-treated embryo tissue within 24 h. Our results demonstrate that exogenously applied GA influences sucrose and hexose metabolism in the endosperm tissue. The specific effect of GA on starch and hexose metabolism in the dormant A. fatua caryopsis embryo tissue may be associated with the termination of dormancy.  相似文献   

7.
8.
Promotion of asparagus shoot and root growth by growth retardants   总被引:1,自引:0,他引:1  
Plantlets regenerated from shoot-tip culture of Asparagus officinalis L. possessed weak shoots and roots. Various combinations of auxins and cytokinins did not improve the plantlets. Incorporation of a number of growth retardants, viz. ancymidol, B-995, phosfon, Amo 1618, cycocel and paclobutrazol, promoted growth of stronger shoots and roots. The effectiveness of the growth retardants varied, with ancymidol being most effective and cycocel least effective.The response to ancymidol was prevented by exogenous GA3 and GA4/7. GA1/3 and GA4/7-like activities were detected in asparagus shoot-tip culture and these activities were reduced by the presence of the growth retardants ancymidol, Amo-1618, and cycocel.  相似文献   

9.
A quantitative cytochemical analysis of glucose-6-phosphatedehydrogenase activity of deeply dormant seeds of Avena fatuashowed that although the enzyme activity is present in mostcell types of the embryo and seed, it is only in the embryothat activity is increased on treatment with GA3 to break dormancy.This would appear to happen prior to any measurable embryonicaxis growth, and supports the idea that activation of the pentosephosphate pathway is an early event in dormancy break. A similar,though less marked, change occurred in less dormant seeds ofA. fatua, but could not be detected in dormant seeds of Lactucasaliva. Dry seeds of L. sativa and weakly dormant A. fatua containedtwice the activity seen in seeds imbibed with either water orGA3, indicating that this might be a marker of low levels ofdormancy. Avena fatua, Lactuca sativa, seeds, dormancy, pentose phosphate pathway, cytochemistry, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase  相似文献   

10.
  • In degraded dryland systems, native plant community re‐establishment following disturbance is almost exclusively carried out using seeds, but these efforts commonly fail. Much of this failure can be attributed to the limited understanding of seed dormancy and germination traits.
  • We undertook a systematic classification of seed dormancy of 26 species of annual and perennial forbs and shrubs that represent key, dominant genera used in restoration of the Great Basin ecosystem in the western United States. We examined germination across a wide thermal profile to depict species‐specific characteristics and assessed the potential of gibberellic acid (GA3) and karrikinolide (KAR1) to expand the thermal germination envelope of fresh seeds.
  • Of the tested species, 81% produce seeds that are dormant at maturity. The largest proportion (62%) exhibited physiological (PD), followed by physical (PY, 8%), combinational (PY + PD, 8%) and morphophysiological (MPD, 4%) dormancy classes. The effects of chemical stimulants were temperature‐ and species‐mediated. In general, mean germination across the thermal profile was improved by GA3 and KAR1 for 11 and five species, respectively. We detected a strong germination response to temperature in freshly collected seeds of 20 species. Temperatures below 10 °C limited the germination of all except Agoseris heterophylla, suggesting that in their dormant state, the majority of these species are thermally restricted.
  • Our findings demonstrate the utility of dormancy classification as a foundation for understanding the critical regenerative traits in these ecologically important species and highlight its importance in restoration planning.
  相似文献   

11.
Gibberellin A1 (GA1) was identified by combined gas chromatographymass spectrometry as the major biologically active gibberellin (GA) in seeds of wild oat (Avena fatua L.) regardless of the depth of dormany or stage of imbibition. Both unimbibed dormant and nondromant seeds contained similar amounts of GA1 as estimated by the d5-maize bioassay. During imbibition, the level of GA1 declined in both dormant and non-dormant seeds, although the decline was more rapid in dormant seeds. Only in imbibing nondormant seeds did the GA biosynthesis inhibitor, 2-chloroethyltrimethyl ammonium chloride (CCC), cause a reduction in the level of GA1 from that observed in control seeds. These results are interpreted as an indication that while afterripening does not cause a direct change in the levels of GAs during dry storage, it does induce a greater capacity for GA biosynthesis during imbibition.

Nondormant seeds imbibed in the presence of 50 millimolar CCC germinated equally as well as untreated seeds. When wild oat plants were fed CCC throughout the entire life cycle, viable seeds were produced that lacked detectable GA-like substances. These seeds afterripened at a slightly slower rate than the controls. Moreover, completely afterripened (nondormant) seeds from plants fed CCC continuously contained no detectable GA-like substances, and when these seeds germinated, dwarf seedlings were produced, indicating GA biosynthesis was inhibited during and after germination. In total, these results suggest that the increased capacity for GA biosynthesis observed in imbibing nondormant seeds is not a necessary prerequisite for germination. It is therefore possible that GA biosynthesis in imbibing nondormant seeds is one of many coordinated biochemical events that occur during germination rather than an initiator of the processes leading to germination.

  相似文献   

12.
At concentrations of 0.01–1 mM, five synthetic multiring analogs of strigol were effective germination stimulants of intact and dehulled wild oat (Avena fatua L.) seeds. The effect was concentration-dependent and equaled or exceeded that produced by equimolar gibberellic acid (GA3). The most effective strigol analog treatments induced 55–80% germination within 7 days in intact wild oat seeds and resulted in 63–86% germination and normal seedling growth over 14 days. Intact wild oat controls germinated 14% after 14 days. The stimulation of wild oat germination by these synthetic strigol analogs demonstrates that these compounds, initially developed as germination stimulants for the seeds of the parasitic weed, witchweed (Striga asiatica L. Kuntz.), have bioregulatory activity in dormant seeds of monocots, as well as dicots. None of the compounds tested significantly affected the germination of nondormant cultivated oat seeds (Avena sativa L.). The commonly used dispersal agent, Tween 20 (0.1%), was found to inhibit germination of cultivated oats, alone and in the presence of 2% acetone.  相似文献   

13.
The effects of after‐ripening (storage under warm, dry conditions) on seed germination was examined in six plant species from the arid zone of Western Australia with the aim of improving germination and germination rate for rehabilitation objectives. Study species (Acanthocarpus preissii, Anthocercis littorea, Dioscorea hastifolia, Eremophila oldfieldii, Thryptomene baeckeacea and Zygophyllum fruticulosum) were selected based on diverse plant habits, seed types and requirements for rehabilitation. After‐ripening was investigated by adjusting seed moisture content to 13 and 50 equilibrium relative humidity (eRH) at 23 °C and storing seeds at two temperatures (30 and 45 °C) from 1 to 18 months. Following storage, seeds were incubated in water, gibberellic acid (GA3) or karrikinolide (KAR1; the butenolide, 3‐methyl‐2H‐furo[2,3‐c]pyran‐2‐one). All after‐ripening conditions increased germination percentage and rate of A. littorea and D. hastifolia, with A. littorea only germinating when treated with GA3 or KAR1. The germination of Z. fruticulosum was dependent on after‐ripening temperature and seed moisture content. After‐ripening had a limited effect on the remaining three species. The restoration implications of the findings are discussed. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161 , 411–421.  相似文献   

14.
Amaranthus retroflexus seeds were dormant at 25 °C in the darkness and in the light, and also at 35 °C in the darkness. GA3 and ethylene partially removed dormancy at 35 °C in the darkness and at 25 °C in the light. Dormancy was removed by 1–5 days of treatment with nitric oxide or cyanide. The effect of NO and HCN was inhibited by cPTIO, thus the effect of HCN was NO dependent. Dry storage for 16 weeks could partially release dormancy only at 35 °C, but not at 25 °C. Dry storage increased the response to light, GA3 and ethylene. The response to GA3 and ethylene at 25 °C was enhanced with increasing storage temperature. GA3, ethylene and nitric oxide could substitute dry storage and stratification in partially dormant seeds.  相似文献   

15.
Germination of lettuce seeds has obvious thermoinhibition, but the mechanism for thermoinhibition of seed germination is poorly understood. Here, we investigated the interactions of nitrate, abscisic acid (ABA) and gibberellin on seed germination at high temperatures to understand further the mechanism for thermoinhibition of seed germination. Our results showed that lettuce (Lactuca sativa L. ‘Jianye Xianfeng No. 1’) seeds exhibited notable thermoinhibiton of germination at ≥17°C in darkness, and at ≥23°C in light, but the thermoinhibited seeds did not exhibit secondary dormancy. Thermoinhibition of seed germination at 23 or 25°C in light was notably decreased by 5 and 10 mM nitrate, and the stimulatory effects were markedly prevented by nitric oxide (NO) scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The sensitivity of seed germination to exogenous ABA increased with increasing temperature. Thermoinhibition of seed germination was markedly decreased by fluridone (an inhibitor of ABA biosynthesis) and GA3, and was increased by diniconazole (an inhibitor of the ABA-catabolizing enzyme ABA 8′-hydroxylase) and paclobutrazol (an inhibitor of GA biosynthetic pathway). The effect of fluridone in decreasing thermoinhibition of seed germination was obviously antagonized by paclobutrazol, and that of GA3 was notably added to by fluridone, and that of nitrate was antagonized by paclobutrazol, diniconazole and ABA and was added to by GA3 and fluridone. Our data show that thermoinhibition of lettuce seed germination is decreased by nitrate in a NO-dependent manner, which is antagonized by ABA, diniconazole and paclobutrazol and added by fluridone.  相似文献   

16.
Germination of Triticum durum Desf. ‘Cappelli’ caryopsesstored in hermetically-sealed containers at 10°C or -20°Cwas analysed. Caryopses were maintained in laboratory conditions(20 ± 4°C) prior to controlled storage, which began5 d, 240 d and 7 years after harvesting. In addition, after9 years of storage, one 10°C stored batch of caryopses andtwo -20°C stored batches were returned to laboratory conditions.Germination over time and seed longevity were investigated.Results showed that: (1) under laboratory conditions, caryopsesin relative (primary) dormancy at the beginning of storage hadlost dormancy after 45 d and germination ability was lost bythe end of year 7. (2) When stored at 10°C, relative dormancyin caryopses was lost within 1 year, but 100% germination abilitywas retained after 23 years of storage. (3) When stored at -20°C,caryopses that were dormant at the beginning of storage (5 dafter harvesting) maintained this condition for 23 years whilecaryopses which were placed in storage 240 d after harvesting,when relative dormancy had already been broken, maintained 100%germination ability. Caryopses returned to laboratory conditionsafter 9 years of storage at 10°C or -20°C showed thesame trend as caryopses maintained exclusively in laboratoryconditions since the time of harvesting. Caryopses removed from-20°C overcame relative dormancy in 50 d and maintainedgermination ability for roughly 7 years, while those removedfrom 10°C lost the ability to germinate by the end of thefifth year. Copyright 2000 Annals of Botany Company Germination, longevity, low-temperature-storage, Triticum durum, viability  相似文献   

17.
The effect of smoke and smoke-derived butenolide in releasing dormancy of caryopses (referred to as seeds) of the economically important weed Avena fatua L. was studied. Seeds of A. fatua are dormant after harvest. Both smoke-water and butenolide, applied continuously, removed dormancy in darkness at 15, 20 and 25°C and slightly at 30°C. Butenolide was very active at a concentration of 10−8 M. Butenolide at 10−8 M was also able to remove dormancy at 20°C when applied for 12 or 24 h at 4°C or for 3 to 24 h at 20°C. Sensitivity to butenolide decreased with longer preincubation times in water. This compound was less effective in releasing dormancy in the light than in darkness. Dormancy release by butenolide involves induction of cell-cycle activity just before coleorhiza protrusion. Stimulatory effects of smoke-water and butenolide were also observed in respect of seedling growth and vigor.  相似文献   

18.
A comparative study of protein synthesis has been carried out with embryos excised from dormant (D) and non-dormant (ND) caryopses of the wild oat. Although D embryos imbibed in water or ND embryos imbibed in abscisic acid do not germinate, they incorporate [14C]leucine into TCA-insoluble material for the first 48 h as readily as embryos that do germinate (ND embryos imbibed in water, or D embryos imbibed in gibberellic acid). Pulsechase experiments with [14]leucine show that in both D and ND embryos the proteins associated with the membranes undergo turnover. The rates of decay of incorporated radioactivity are similar in both dormant and germinating embryos up to 98 h following embryo excision. Fractionation of the membrane proteins in SDS-polyacrylamide gels indicates that the different polypeptides have different rates of turnover. It is concluded that membrane proteins in imbibed D embryos are in a state of constant turnover, and that this is a part of the replacement processes necessary to maintain the integrity of hydrated cells. The continuation of such synthetic events could account for long term survival of dormant Avena fatua in the imbibed state.Abbreviations CCRSE cytochrome relative stain equivalents - D dormant - ND nondormant - ABA abscisic acid - GA gibberellic acid GA3  相似文献   

19.
The influence of seed coat modification and light quality onwater uptake and distribution in caryopses of dormant and non-dormantlines of wild oat (Avena fatua L.) was determined using NMRmicroimaging. Non-dormant seeds absorbed water more rapidlythan dormant seeds during imbibition on distilled water. Thiseffect was detected first in the embryo-scutellar region (8h) and later in the proximal endosperm (12 h). Cutting the testaand pericarp close to the embryo or scarification with KOH promotedrapid embryo/scutellum hydration and germination. Cutting atthe middle part of the caryopsis did not enhance embryo hydrationnor did it greatly improve germination. The sensitivity of waterdistribution to the phytochrome germination effect was examined.Significant differences in imbibitional water uptake by embryos-scutellumtissue were detected by 18 h following red-light (germinationpromoter) compared with far-red (germination inhibitor) treatment.The results indicated that both the rate and the sequence ofembryo/scutellum hydration were important in initiating germinationin dormant seeds. A refinement of the model that describes waterimbibition in wild oat seeds during the early stages of germinationis discussed. Key words: Water uptake, water distribution, Avena fatua, seed coat modification, light quality, dormant and non-dormant seeds  相似文献   

20.

Background and Aims

The smoke-derived chemical karrikinolide (KAR1) shows potential as a tool to synchronize the germination of seeds for weed management and restoration. To assess its feasibility we need to understand why seeds from different populations of a species exhibit distinct responses to KAR1. Environmental conditions during seed development, known as the parental environment, influence seed dormancy so we predicted that parental environment would also drive the KAR1-responses of seeds. Specifically, we hypothesized that (a) a common environment will unify the KAR1-responses of different populations, (b) a single population grown under different environmental conditions will exhibit different KAR1-responses, and (c) drought stress, as a particular feature of the parental environment, will make seeds less dormant and more responsive to KAR1.

Methods

Seeds of the weed Brassica tournefortii were collected from four locations in Western Australia and were sown in common gardens at two field sites, to test whether their KAR1-responses could be unified by a common environment. To test the effects of drought on KAR1-response, plants were grown in a glasshouse and subjected to water stress. For each trial, the germination responses of the next generation of seeds were assessed.

Key Results

The KAR1-responses of seeds differed among populations, but this variation was reduced when seeds developed in a common environment. The KAR1-responses of each population changed when seeds developed in different environments. Different parental environments affected germination responses of the populations differently, showing that parental environment interacts with genetics to determine KAR1-responses. Seeds from droughted plants were 5 % more responsive to KAR1 and 5 % less dormant than seeds from well-watered plants, but KAR1-responses and dormancy state were not intrinsically linked in all experiments.

Conclusions

The parental environment in which seeds develop is one of the key drivers of the KAR1-responses of seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号