首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The JAK/STAT pathway is essential for organogenesis, innate immunity, and stress responses in Drosophila melanogaster. The JAK/STAT pathway and its associated regulators have been highly conserved in evolution from flies to humans. We have used a genome-wide RNAi screen in Drosophila S2 cells to identify regulators of the JAK/STAT pathway, and here we report the characterization of Not4 as a positive regulator of the JAK/STAT pathway. Overexpression of Not4 enhanced Stat92E-mediated gene responses in vitro and in vivo in Drosophila. Specifically, Not4 increased Stat92E-mediated reporter gene activation in S2 cells; and in flies, Not4 overexpression resulted in an 8-fold increase in Turandot M (TotM) and in a 4-fold increase in Turandot A (TotA) stress gene activation when compared to wild-type flies. Drosophila Not4 is structurally related to human CNOT4, which was found to regulate interferon-γ- and interleukin-4-induced STAT-mediated gene responses in human HeLa cells. Not4 was found to coimmunoprecipitate with Stat92E but not to affect tyrosine phosphorylation of Stat92E in Drosophila cells. However, Not4 is required for binding of Stat92E to its DNA recognition sequence in the TotM gene promoter. In summary, Not4/CNOT4 is a novel positive regulator of the JAK/STAT pathway in Drosophila and in humans.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
JAK/STAT signaling is essential for a wide range of developmental processes in Drosophila melanogaster. The mechanism by which the JAK/STAT pathway contributes to these processes has been the subject of recent investigation. However, a reporter that reflects activity of the JAK/STAT pathway in all Drosophila tissues has not yet been developed. By placing a fragment of the Stat92E target gene Socs36E, which contains at least two putative Stat92E binding sites, upstream of GFP, we generated three constructs that can be used to monitor JAK/STAT pathway activity in vivo. These constructs differ by the number of Stat92E binding sites and the stability of GFP. The 2XSTAT92E-GFP and 10XSTAT92E-GFP constructs contain 2 and 10 Stat92E binding sites, respectively, driving expression of enhanced GFP, while 10XSTAT92E-DGFP drives expression of destabilized GFP. We show that these reporters are expressed in the embryo in an overlapping pattern with Stat92E protein and in tissues where JAK/STAT signaling is required. In addition, these reporters accurately reflect JAK/STAT pathway activity at larval stages, as their expression pattern overlaps that of the activating ligand unpaired in imaginal discs. Moreover, the STAT92E-GFP reporters are activated by ectopic JAK/STAT signaling. STAT92E-GFP fluorescence is increased in response to ectopic upd in the larval eye disc and mis-expression of the JAK kinase hopscotch in the adult fat body. Lastly, these reporters are specifically activated by Stat92E, as STAT92E-GFP reporter expression is lost cell-autonomously in stat92E homozygous mutant tissue. In sum, we have generated in vivo GFP reporters that accurately reflect JAK/STAT pathway activation in a variety of tissues. These reporters are valuable tools to further investigate and understand the role of JAK/STAT signaling in Drosophila.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号