首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discharge of wastewater from electroplating and leather industries is a major concern for the environment due to the presence of toxic Cr6+ and other ions, such as sulfate, nitrate, phosphate, etc. This study evaluated the potential of Tradescantia pallida, a plant species known for its Cr bioaccumulation, for the simultaneous removal of Cr6+, SO42?, NO3?, and PO43?. The effect of different co-ions on Cr6+ removal by T. pallida was examined following the Plackett-Burman design of experiments carried out under batch hydroponics conditions. The results revealed a maximum removal of 84% Cr6+, 87% SO42?, 94% NO3? and 100% PO43? without any phytotoxic effect on the plant for an initial Cr6+ concentration in the range 5–20 mg L?1. SO42? and NO3? enhanced Cr uptake at a high initial Cr concentration (20 mg L?1), whereas PO43? did not affect Cr uptake both at high and low initial Cr concentrations. The Cr6+ removal kinetics in the presence of different ions was well described by the pseudo-second-order kinetic model which revealed that both biosorption and bioaccumulation of the metal played an important role in Cr6+ removal. Increase in the total carbohydrate and protein content of the plant following Cr6+ and co-ions exposure indicated a good tolerance of the plant toward Cr6+ toxicity. Furthermore, enhancement in the lipid peroxidation and catalase activity in T. pallida upon Cr6+ exposure revealed a maximum stress-induced condition in the plant. Overall, this study demonstrated a very good potential of the plant T. pallida for Cr6+ removal from wastewater even in the presence of co-ions.  相似文献   

2.
Phytoremediation is an efficient method for the removal of heavy metals from contaminated systems. A productive disposal of metal accumulating plants is a major concern in current scenario. In this work, Cr(VI) accumulating Tradescantia pallida plant parts were investigated for its reuse as a biosorbent for the removal of Cr(VI) ions. The effect of pH, contact time, sorbent dosage, Cr(VI) concentration and temperature was examined to optimize these process parameters. Results showed that Cr(VI) exposed/unexposed T. pallida leaf biomass could remove 94% of chromium with a sorption capacity of 64.672 mg g?1. Whereas the kinetics of Cr(VI) biosorption was well explained by the pseudo second-order kinetic model, the Langmuir model better described the data on Cr(VI) sorption isotherm compared with the Freundlich model. The changes in the free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) were found to be ?5.276 kJ mol?1, 0.391 kJ mol?1 K?1 and 11.346 kJ mol?1, respectively, which indicated the process to be spontaneous, feasible and endothermic in nature. FTIR spectra of T. pallida leaf biomass revealed the active participation of ligands, such as ?NH, amide, hydroxyl and sulphonate groups present in the biomass for Cr(VI) binding, SEM analysis revealed a porous structure of the biosorbent for an easy uptake of Cr(VI).  相似文献   

3.
4.
The dark-adapted Photosystem II efficiency of field-grown pear leaves, estimated by the variable to maximum chlorophyll fluorescence ratio, was little affected by moderate and severe iron deficiency. Only extremely iron-deficient leaves showed a decreased Photosystem II efficiency after dark adaptation. Midday depressions in Photosystem II efficiency were still found after short-term dark-adaptation in iron-deficient leaves, indicating that Photosystem II down-regulation occurred when the leaves were illuminated by excessive irradiance. The actual Photosystem II efficiency at steady-state photosynthesis was decreased by iron deficiency both early in the morning and at midday, due to closure of Photosystem II reaction centers and decreases of the intrinsic Photosystem II efficiency. Iron deficiency decreased the amount of light in excess of that which can be used in photosynthesis not only by decreasing absorptance, but also by increasing the relative amount of light dissipated thermally by the Photosystem II antenna. When compared to the controls, iron-deficient pear leaves dissipated thermally up to 20% more of the light absorbed by the Photosystem II, both early in the morning and at midday. At low light iron-deficient leaves with high violaxanthin cycle pigments to chlorophyll ratios had increases in pigment de-epoxidation, non-photochemical quenching and thermal dissipation. Our data suggest that pH could be the major factor controlling thermal energy dissipation, and that large (more than 10-fold) changes in the zeaxanthin plus antheraxanthin to chlorophyll molar ratio caused by iron deficiency were associated only to moderate increases in the extent of photoprotection.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

5.
《BBA》1985,807(2):118-126
The influence of light quality and temperature on the distribution of the absorbed quanta between Photosystem I (PS I) and Photosystem II (PS II) in spinach leaves has been studied from the characteristics of chlorophyll fluorescence at 77 K. Leaves were preilluminated at different temperatures with either PS I light (to establish State 1) or with PS II light (to establish State 2), then cooled to 77 K and measured for fluorescence. In State 1, energy distribution appeared to be unaffected by temperature. A transition to State 2 resulted in an increase in PS I fluorescence and a decrease in the PS II fluorescence, indicating that a larger fraction of energy becomes redistributed to PS I. However, the extent of this redistribution varied: it was only small at 5°C to 20°C, but it largely increased at temperatures exceeding 20°C. This variation in the extent was related to a change in the mechanism of the state transition: at 15°C only the ‘initial’ distribution of energy was affected, while at 35°C an additional increase in the spill-over constant, kT (II → I), was included. It is assumed that under physiological conditions kT (II → I) is under the control of temperature rather than of light quality, whereby in leaves adapted to high physiological temperatures, the probability of energy spill-over from closed PS II centres to PS I is enhanced. In darkened leaves, the spill-over constant has been manipulated by preincubation at different temperatures. Then, the light-induced ‘energization’ of thylakoid membranes has been tested by measuring the light-induced electrochromic absorbance change at 515 nm (and light-induced light-scattering changes) in these leaves. The flash-induced 515 nm signal as well as the initial peak during a 1 s illumination were not affected by energy distribution. However, the amplitude of the pseudo-steady-state signal (as established during 1 s illumination) was considerably enhanced in leaves in which a larger fraction of the absorbed energy is distributed to PS I at the expense of PS II excitation. The results have been interpreted in such a way that an increase in energy spill-over from PS II to PS I favours a cyclic electron transport around PS I. It is discussed that changes in energy distribution (via spill-over) may serve to maintain a suitable balance between non-cyclic and cyclic electron transport in vivo.  相似文献   

6.
To compare chloroplast development in a normally grown plant with etiochloroplast development, green maize plants (Zea mays), grown under a diurnal light regime (16-hour day) were harvested 7 days after sowing and chloroplast biogenesis within the leaf tissue was examined. Determination of total chlorophyll content, ratio of chlorophyll a to chlorophyll b, and O2-evolving capacity were made for intact leaf tissue. Plastids at different stages of development were isolated and the electron-transporting capacities of photosystem I and photosystem II measured. Light saturation curves were produced for O2-evolving capacity of intact leaf tissue and for photosystem I and photosystem II activities of isolated plastids. Structural studies were also made on the developing plastids. The results indicate that the light-harvesting apparatus becomes increasingly efficient during plastid development due to an increase in the photosynthetic unit size. Photosystem I development is completed before that of photosystem II. Increases in O2-evolving capacity during plastid development can be correlated with increased thylakoid fusion. The pattern of photosynthetic membrane development in the light-grown maize plastids is similar to that found in greening etiochloroplasts.  相似文献   

7.
Under excess illumination, the Photosystem II light-harvesting antenna of higher plants has the ability to switch into an efficient photoprotective mode, allowing safe dissipation of excitation energy into heat. In this study, we show induction of the energy dissipation state, monitored by chlorophyll fluorescence quenching, in the isolated major light-harvesting complex (LHCII) incorporated into a solid gel system. Removal of detergent caused strong fluorescence quenching, which was totally reversible. Singlet-singlet annihilation and gel electrophoresis experiments suggested that the quenched complexes were in the trimeric not aggregated state. Both the formation and recovery of this quenching state were inhibited by a cross-linker, implying involvement of conformational changes. Absorption and CD measurements performed on the samples in the quenched state revealed specific alterations in the spectral bands assigned to the red forms of chlorophyll a, neoxanthin, and lutein 1 molecules. The majority of these alterations were similar to those observed during LHCII aggregation. This suggests that not the aggregation process as such but rather an intrinsic conformational transition in the complex is responsible for establishment of quenching. 77 K fluorescence measurements showed red-shifted chlorophyll a fluorescence in the 690-705 nm region, previously observed in aggregated LHCII. The fact that all spectral changes associated with the dissipative mode observed in the gel were different from those of the partially denatured complex strongly argues against the involvement of protein denaturation in the observed quenching. The implications of these findings for proposed mechanisms of energy dissipation in the Photosystem II antenna are discussed.  相似文献   

8.
In Cryptomonas rufescens (Cryptophyceae), phycoerythrin located in the thylakoid lumen is the major accessory pigment. Oxygen action spectra prove phycoerythrin to be efficient in trapping light energy.The fluorescence excitation spectra at ?196°C obtained by the method of Butler and Kitajima (Butler, W.L. and Kitajima, M. (1975) Biochim. Biophys. Acta 396, 72–85) indicate that like in Rhodophycease, chlorophyll a is the exclusive light-harvesting pigment for Photosystem I.For Photosystem II we can observe two types of antennae: (1) a light-harvesting chlorophyll complex connected to Photosystem II reaction centers, which transfers excitation energy to Photosystem I reaction centers when all the Photosystem II traps are closed. (2) A light-harvesting phycoerythrin complex, which transfers excitation energy exclusively to the Photosystem II reaction complexes responsible for fluorescence at 690 nm.We conclude that in Cryptophyceae, phycoerythrin is an efficient light-harvesting pigment, organized as an antenna connected to Photosystem II centers, antenna situated in the lumen of the thylakoid. However, we cannot afford to exclude that a few parts of phycobilin pigments could be connected to inactive chlorophylls fluorescing at 690 nm.  相似文献   

9.
本文运用现代分析手段系统考察了溶液离子强度对菠菜来源光系统Ⅰ(PSⅠ)和光系统(PSⅡ)结构性质的影响,研究的结构性质包括:低温荧光光谱、放(耗)氧活性、聚集尺寸、聚集形貌、Zeta电位和热稳定性等.结果表明,溶液离子强度对PSⅠ和PSⅡ的放(耗)氧活性、聚集尺寸和热稳定性具有显著影响.此外,根据测试结果的分析得知,“筛分效应”在光系统Ⅰ的超滤分离过程中起决定性作用.  相似文献   

10.
The ratio of Photosystem (PS) II to PS I electron-transport capacity in spinach chloroplasts was compared from reaction-center and steady-state rate measurements. The reaction-center electron-transport capacity was based upon both the relative concentrations of the PS IIα, PS IIβ and PS I centers, and the number of chlorophyll molecules associated with each type of center. The reaction-center ratio of total PS II to PS I electron-transport capacity was about 1.8:1. Steady-state electron-transport capacity data were obtained from the rate of light-induced absorbance-change measurements in the presence of ferredoxin-NADP+, potassium ferricyanide and 2,5-dimethylbenzoquinone (DMQ). A new method was developed for determining the partition of reduced DMQ between the thylakoid membrane and the surrounding aqueous phase. The ratio of membrane-bound to aqueous DMQH2 was experimentally determined to be 1.3:1. When used at low concentrations (200 μM), potassium ferricyanide is shown to be strictly a PS I electron acceptor. At concentrations higher than 200 μM, ferricyanide intercepted electrons from the reducing side of PS II as well. The experimental rates of electron flow through PS II and PS I defined a PS II/PS I electron-transport capacity ratio of 1.6:1.  相似文献   

11.
Synechococcus sp. PCC 7942 (Anacystis nidulans R2) contains two forms of the Photosystem II reaction centre protein D1, which differ in 25 of 360 amino acids. D1: 1 predominates under low light but is transiently replaced by D1:2 upon shifts to higher light. Mutant cells containing only D1:1 have lower photochemical energy capture efficiency and decreased resistance to photoinhibition, compared to cells containing D1:2. We show that when dark-adapted or under low to moderate light, cells with D1:1 have higher non-photochemical quenching of PS II fluorescence (higher qN) than do cells with D1:2. This is reflected in the 77 K chlorophyll emission spectra, with lower Photosystem II fluorescence at 697–698 nm in cells containing D1:1 than in cells with D1:2. This difference in quenching of Photosystem II fluorescence occurs upon excitation of both chlorophyll at 435 nm and phycobilisomes at 570 nm. Measurement of time-resolved room temperature fluorescence shows that Photosystem II fluorescence related to charge stabilization is quenched more rapidly in cells containing D1:1 than in those with D1:2. Cells containing D1:1 appear generally shifted towards State II, with PS II down-regulated, while cells with D1:2 tend towards State I. In these cyanobacteria electron transport away from PS II remains non-saturated even under photoinhibitory levels of light. Therefore, the higher activity of D1:2 Photosystem II centres may allow more rapid photochemical dissipation of excess energy into the electron transport chain. D1:1 confers capacity for extreme State II which may be of benefit under low and variable light.Abbreviations D1 the atrazine-binding 32 kDa protein of the PS II reaction centre core - D1:1 the D1 protein constitutively expressed during acclimated growth in Synechococcus sp. PCC 7942 - D1:2 an alternate form of the D1 protein induced under excess excitation in Synechococcus sp. PCC 7942 - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Fo minimal fluorescence in the dark-adapted state - Fo minimal fluorescence in a light-adapted state - FM maximum fluorescence with all quenching mechanisms at a minimum, measured in presence of DCMU - FM maximal fluorescence in a light-adapted state, measured with a saturating flash - FMdark maximal fluorescence in the dark-adapted state - FV variable fluorescence in a light-adapted state (FM-Fo) - PAM pulse amplitude modulated fluorometer - qN non-photochemical quenching of PS II fluorescence - qN (dark) qN in the dark adapted state - qP photochemical quenching of fluorescence  相似文献   

12.
Picosecond fluorescence kinetics of pea chloroplasts have been investigated at room temperature using a pulse fluorometer with a resolution time of 10?11 s. Fluorescence has been excited by both a ruby and neodymium-glass mode-locked laser and has been recorded within the 650 to 800 nm spectral region.We have found three-component kinetics of fluorescence from pea chloroplasts with lifetimes of 80, 300 and 4500 ps, respectively. The observed time dependency of the fluorescence of different components on the functional state of the photosynthetic mechanism as well as their spectra enabled us to conclude that Photosystem I fluoresces with a lifetime of 80 ps (τI) and Photosystem II fluoresces with a lifetime of 300 ps (τII). Fluorescence with a lifetime of 4500 ps (τIII) may be interpreted as originating from chlorophyll monomeric forms which are not involved in photosynthesis.It was determined that the rise time of Photosystem I and Photosystem II fluorescence after 530 nm photoexcitation is 200 ps, which corresponds to the time of energy migration to them from carotenoids.  相似文献   

13.
The scanning electron microscope is used to examine epidermal preparations belonging to three species of Gibasis , a genus allied to Tradescantia. The surface topography of the leaf is exposed for investigation at high magnifications, the observations add new information about structural projections from the surface and contribute to an understanding of silica deposition and its organization. Hairs of three main types occur: (1) short two-celled trichomes, hook or prickle hairs, (2) long uniseriate hairs consisting of four to six cells, (3) three-celled glandular micro-hairs. The arrangement and shape of epidermal cells and stomata are reported. Epidermal papillae were observed for the first time in two of the three species; their morphology is described in detail and their spacing expressed mathematically. Variations in the structure and distribution of silica cells are depicted, and new aspects of the silica bodies are displayed in relief. The taxonomic significance of these anatomical characters is discussed in relation to species and chromosome numbers.  相似文献   

14.
Dual effect of dibromothymoquinone ( DBMIB ), inhibitor and reducing agent at the donor side of Photosystem I, was investigated in isolated intact chloroplasts by flash-induced absorbance changes at 820 and 515 nm. We show that in the absence of other electron donors, rereduction of P700+ by DBMIB proceeds at a very low rate (half-time of approximately 10 s) Dual effect of DBMIB explains that the initial rise of electrochromic absorbance change induced by repetitive flashes is usually not diminished while the slow rise is fully inhibited by this compound.  相似文献   

15.
Stoichiometries of photosystem I (PSI) and photosystem II (PSII)reaction centers in a cultivar of rice, Norin No. 8, and threechlorophyll b-deficient mutants derived from the cultivar wereinvestigated. Quantitation of PSI by photooxidation of P-700and chromatographic assay of vitamin K1 showed that, on thebasis of chlorophyll, the mutants have higher concentrationsof PSI than the wildtype rice. Greater increases were observedin the PSII contents measured by photoreduction of QA, bindingof a radioactive herbicide and atomic absorption spectroscopyof Mn. Consequently, the PSII to PSI ratio increased from 1.1–1.3in the wild-type rice to 1.8 in chlorina 2, which contains noChl b, and to 2.0–3.3 in chlorina 11 and chlorina 14,which have chlorophyll a/b ratios of 9 and 13, respectively.Measurement of oxygen evolution with saturating single-turnoverflashes revealed that, whereas at most 20% of PSII centers areinactive in oxygen evolution in the wildtype rice, the non-functionalPSII centers amount to about 50% in the three mutant strains.The fluorescence induction kinetics was also analyzed to estimateproportions of the inactive PSII in the mutants. The data obtainedsuggest that plants have an ability to adjust the stoichiometryof the two photosystems and the functional organization of PSIIin response to the genetically induced deficiency of chlorophyllb. (Received July 29, 1994; Accepted February 7, 1996)  相似文献   

16.
Evidences were provided in this paper that the relative distribution of chl-protein complexes of PSⅠ and PSⅡ could be regulated by Mg2+. addition of Mg2+ led to decrease in the amount of chl-protein complexes of PSⅠ and increase in the amount of chl-protein in complexes of PSⅡ. There was no effect of Mg2+ on the spectral property of LHCP1, but the addition of Mg2+ could change the spectral property of LHCP2 so that it became similar to that of the LHC-Ⅰ. CPIa2 was a complex of reaction centre of PSⅠ and LHC-I. LHC-I might be contacted specially with LHCP2 in chloroplast membranes. Addition of Mg2+ probably cansed the motion of LHC-I from PSⅠ to PSⅡ and became more closely connected with LHCP2. The relative amount of CPIa2, CPIa1, LHCP1 and LHCP2 in chloroplast membranes could be regulated by different light intensity. There were more CPIa2, LHCP1 and less LHCP2 in chloroplast membranes from the shade plant Malaxis monophyllos and sunflower grown under weak light, both of them lacked equally CPIa1. There were less CPIa2, LHCP1 and more LHCP2 in the sun plant spinach and sunflower grown under strong light, and they possessed equally CPIa1 chl-protein complexes. It is suggested that LHCP1 and LHCP2 are different light-harvesting Chl-protein complexes. The LHC-I and LHCP2 are mobile light-harvesting chl-protein complexes and shuttle back and forth between PSⅠ and PSⅡ They play an important role in the regulation and distribution of excitation energy between the two photosystems.  相似文献   

17.
Fractions enriched in either Photosystem I or Photosystem II have been prepared from chloroplasts with digitonin. A more detailed analysis of the decay kinetics of fluorescence excited by a picosecond laser pulse has been possible compared to experiments with unfractionated systems. The Photosystem I fractions show a very short component (? 100 ps) at room temperature which is apparently independent of pulse intensity over the range of photon densities used (5 · 1013–1 · 1016 photons cm?2). The Photosystem II fraction has a short initial lifetime at room temperature which is strongly intensity-dependent approaching 500 ps at low photon densities, but decreasing to close to 150 ps at the highest photon densities. All of these room temperature decays appear to be non-exponential, and may possibly be fitted by at t12 expression, expected from a random diffusion of excitations via Förster energy transfer. On cooling to 77 K, lifetimes of both Photosystem I and Photosystem II increase, the lengthening with Photosystem I being more striking. The Photosystem I decays become intensity dependent like the Photosystem II, and at the lowest photon densities decays which are more nearly exponential within the experimental error give initial lifetimes of about 2 ns. The non-exponential decays seen at high photon densities appear to fit a t12 expression.  相似文献   

18.
磷脂酰甘油对光系统Ⅱ放氧活性的影响   总被引:1,自引:0,他引:1  
The dependence of oxygen evolution in PS Ⅱ from spinach Spinacia oleracea L. on the content of exogenous anionic phosphatidylglycerol (PG) at pH 6.0 was investigated through reconstitution experiment. It was found that there was a steady increase in oxygen evolution. With increasing PG/PS Ⅱ ratio up to a maximum at concentrations ranging from 10-22 mg PG/mg chlorophyll (Chl). Then, further addition of PG resulted in the inhibitions of oxygen evolution. With a PG/PS Ⅱ ratio of 40 mg PG/mg Chl, the oxygen-evolving activity of PS Ⅱ decreased to 40% of the untreated PS Ⅱ. It is suggested that a stimulation of oxygen evolution at a low PG/Chl ratio was resulted from the structural optimization of PS Ⅱ by PG while an inhibitory effect on oxygen evolution at higher values of this ratio was ascribed to the structural changes of extrinsic proteins of PS Ⅱ owing to osmotic pressure.  相似文献   

19.
Illumination of chloroplasts in the presence of NH2OH (2 mm) leads to the destruction of all system II activities without affecting system I activity. The system II primary charge separation remains intact when incubated with this agent in the dark with release of one of the system II Mn pools and simultaneous destruction of O2 evolving capacity. The size of the Mn pool associated with the O2 evolving center is calculated to be 4 Mn/O2-evolving center.  相似文献   

20.
The electric potential changes induced by flashing and continuouslight were measured with microcapillary electrodes in isolatedwhole chloroplasts of Peperomia inetallica. In continuous lightthe chloroplast electrical potential rose in two phases. Theinitial rapid phase coincided in extent with the flash-inducedpotential and was insensitive to the electron transfer inhibitorDBMIB. The subsequent phase was relatively slow (20–30ms) and was inhibited by DBMIB. Electron acceptors of photosystemII (p-phenylendiamine, p-benzoquinone) added to DBMIB-treatedchloroplasts produced a suppression of the flash-induced responseand a considerable increase in the steady level of the potentialin the light. The electrical potential associated with the activityof photosystem II rose in continuous light much more slowlythan that associated with the activity of photosystem I aloneor the activities of both photosystems. Illumination of chloroplastswith successive flashes at a repetition rate 5 Hz in the presenceof oxaloacetate, a terminal acceptor of photosystem I, was accompaniedwith a gradual decline of the flash-induced potential. The specificrole of two photosystems in the light-induced H+ transport andthe electrogenesis across the chloroplast thylakoid membranesis discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号