首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mites and ticks are susceptible to pathogenic fungi, and there are opportunities to exploit these micro-organisms for biological control. We have collated records of 58 species of fungi infecting at least 73 species of Acari, either naturally or in experiments. Fungal pathogens have been reported to kill representatives of all three orders of the Actinotrichida (the Astigmata, Oribatida and Prostigmata) and the Ixodida and Mesostigmata in the Anactinotrichida. Most reports concern infections in the Prostigmata, particularly in the families Tetranychidae and Eriophyidae. Two species of Acari-specific pathogens - Hirsutella thompsonii and Neozygites floridana - are important natural regulators of pestiferous eriophyoid and tetranychid mites respectively. Research has been done to understand the factors leading to epizootics of these fungi and to conserve and enhance natural pest control. Hirsutella thompsonii was also developed as the commercial product Mycar for the control of eriophyoid mites on citrus, but was withdrawn from sale in the 1980s, despite some promising effects in the field. Beauveria bassiana , Metarhizium anisopliae, Paecilomyces farinosus, Paecilomyces fumosoroseus and Verticillium lecanii infect ixodid ticks in nature, and B. bassiana and M. anisopliae are being studied as biological control agents of cattle ticks in Africa and South America. Beauveria bassiana also has potential as a mycopesticide of the two-spotted spider mite, Tetranychus urticae . There is scope to develop fungal biocontrol agents against a range of acarine pests, both as stand-alone treatments and for use in integrated pest management. Further research is required to clarify the taxonomic status of fungal pathogens of Acari, to study their ecosystem function, and to develop efficient mass production systems for species of Hirsutella and Neozygites .  相似文献   

2.
A quantitative study was made of the micro-arthropod fauna in the litter and two soil layers at three South Australian forest sites (designated ‘dry’ medium’ and ‘wet’) using data taken at monthly intervals over 2 years. This study examined variations in density estimates of the major taxonomic groups of Acarina and Collembola that were associated with sample depth, site and season. There were substantial differences in the proportions of variation attributed to layer, site and seasonal effects. Most variation was associated with layer differences, being greatest in the acarine Prostigmata and in the collembolan Onychiuridae. Only the acarine Astigmata had slightly more variation between sites than between layers. Seasonal variation exceeded site variation in all collembolan groups except the Entomobryidae. In the acarine groups estimated ratios of seasonal to site variation were 6.1, 1.6, 1.0 and 0.4 for the Mesostigmata, Prostigmata, Cryptostigmata and Astigmata, respectively. Some variations due to inconsistencies in the above patterns were significant statistically but were small compared with variations associated with the seasonal, layer and site effects. Densities of all animals had marked seasonal variation which was broadly similar to that of rainfall in the warm temperate, mediterranean type climate of the region. Minimum density and activity occurred in about the last week in January, a period of maximum temperature and low soil moisture content; maxima were usually about 7 months later. This contrasts with warm and cool temperate areas of Australia with summer rainfall, where peak densities have been recorded in summer. The Mesostigmata, Astigmata, Podundae and Onychiuridae patterns of seasonal variation did not differ significantly with layer or site differences. The remaining groups had significant differences with layers and sites, the former being larger. Density minima and maxima were generally later going from litter to lower soil, about 2.5–8 weeks for density maxima and 0–4 weeks for minima. Groups with significant lags showed reduced amplitude in their seasonal variation with increased depth. There was little seasonal variation in the relative proportions of all animal groups.  相似文献   

3.
A survey on mites associated with stored seeds, flour and foodstuffs in Fayoum Governorate, Upper Egypt, proved the occurrence of about 24 species. Of these, 15 species in 8 families belong to Prostigmata, 6 species in 3 families belong to Astigmata and 3 species in 2 families belong to Mesostigmata.Members of the families Cheyletidae and Acaridae were the most common mites, found in many samples. Those of Caligonellidae, Ascidae and Raphignathidae were fairly common, but occurred in fewer types of samples. No mites were found in samples of lupine and camomile.  相似文献   

4.
Mites are involved in the decomposition of animal carcases and human corpses at every stage. From initial decay at the fresh stage until dry decomposition at the skeletal stage, a huge diversity of Acari, including members of the Mesostigmata, Prostigmata, Astigmata, Endeostigmata, Oribatida and Ixodida, are an integral part of the constantly changing food webs on, in and beneath the carrion. During the desiccation stage in wave 6 of Mégnin’s system, mites can become the dominant fauna on the decomposing body. Under conditions unfavourable for the colonisation of insects, such as concealment, low temperature or mummification, mites might become the most important or even the only arthropods on a dead body. Some mite species will be represented by a few specimens, whereas others might build up in numbers to several million individuals. Astigmata are most prominent in numbers and Mesostigmata in diversity. More than 100 mite species and over 60 mite families were collected from animal carcases, and around 75 species and over 20 families from human corpses.  相似文献   

5.
Causes of spider mite (Acari: Tetranychidae) population resurgences consequent upon exposure to synthetic pyrethroid (SP) treatments are reviewed. Resurgences may be seen as soon as 1 week, or even as late as a whole season, post-treatment. Synthetic pyrethroids vary in their adverse effects on spider mites, and also differ in their ability to invoke resurgences of different spidermite species on diverse plants. These pesticides are lethal as well as repellent to phytoseiids and other predators that prey on spider mites, may inhibit fungi which attack the latter, and affect phytophagous competitors. Spider mites are likewise repelled by SPs, thus becoming more evenlydistributed and less web-restricted, with a resultant increase in fecundity. Spider-mite development is shortened due to SPs and the sex ratio becomes more female-biased; onset of winter diapause also seems to be delayed. Synthetic pyrethroids appear to sensitize to spider-mite infestation plants which have not hitherto been attacked. Some SP effects (whether on spider mites, natural enemies or competitors) appear to be direct, whereas others may be mediated through the host plants. The effect of SPs on the other Acari is variable within the Prostigmata and Astigmata. Most Mesostigmata and Metastigmata (ticks) are very sensitive, whilst the Cryptostigmata (Oribatei) appear to be insensitive. Synthetic pyrethroids-induced resurgences of Homoptera are comparatively reviewed, with the conclusion that some of the phenomena may be similar to those observed in spider mites. Various resurgence models are discussed, as well as the three main causes of variation (SPs, spider-mite species, host plants) in the observed phenomena. The need for more rigorous and carefully controlled experimentation is emphasized.  相似文献   

6.
Among eukaryotes, sexual reproduction is by far the most predominant mode of reproduction. However, some systems maintaining sexuality appear particularly labile and raise intriguing questions on the evolutionary routes to asexuality. Thelytokous parthenogenesis is a form of spontaneous loss of sexuality leading to strong distortion of sex ratio towards females and resulting from mutation, hybridization or infection by bacterial endosymbionts. We investigated whether ecological specialization is a likely mechanism of spread of thelytoky within insect communities. Focusing on the highly specialized genus Megastigmus (Hymenoptera: Torymidae), we first performed a large literature survey to examine the distribution of thelytoky in these wasps across their respective obligate host plant families. Second, we tested for thelytoky caused by endosymbionts by screening in 15 arrhenotokous and 10 thelytokous species for Wolbachia, Cardinium, Arsenophonus and Rickettsia endosymbionts and by performing antibiotic treatments. Finally, we performed phylogenetic reconstructions using multilocus sequence typing (MLST) to examine the evolution of endosymbiont‐mediated thelytoky in Megastigmus and its possible connections to host plant specialization. We demonstrate that thelytoky evolved from ancestral arrhenotoky through the horizontal transmission and the fixation of the parthenogenesis‐inducing Wolbachia. We find that ecological specialization in Wolbachia's hosts was probably a critical driving force for Wolbachia infection and spread of thelytoky, but also a constraint. Our work further reinforces the hypothesis that community structure of insects is a major driver of the epidemiology of endosymbionts and that competitive interactions among closely related species may facilitate their horizontal transmission.  相似文献   

7.
Geographic parthenogenesis is a distribution pattern, in which parthenogenetic populations tend to live in marginal habitats, at higher latitudes and altitudes and island‐like habitats compared with the sexual forms. The facultatively parthenogenetic ant Platythyrea punctata is thought to exhibit this general pattern throughout its wide range in Central America and the Caribbean Islands. Workers of P. punctata from the Caribbean produce diploid female offspring from unfertilized eggs by thelytokous parthenogenesis, and mated females and males are rare. In contrast, workers in one colony from Costa Rica were incapable of thelytoky; instead mated workers produced all female offspring. Because sample sizes were very low in former studies, we here use microsatellite markers and explicit tests of thelytoky to examine the population genetic structure of ancestral and derived populations of P. punctata throughout the Caribbean and Central America. Populations from the Caribbean islands were fully capable of parthenogenesis, and population genetic signatures indicate that this is the predominant mode of reproduction, although males are occasionally produced. In contrast, the northernmost population on the mainland (Texas) showed signatures of sexual reproduction, and individuals were incapable of reproduction by thelytoky. Contrary to expectations from a geographic parthenogenesis distribution pattern, most parts of the mainland populations were found to be facultatively thelytokous, with population genetic signatures of both sexual and parthenogenetic reproduction.  相似文献   

8.
Based on sex-ratio analysis, thelytokous parthenogenesis is shown to be widespread in the mite taxon Desmonomata (Nothroidea sensu lato), with four of the seven families completely thelytokous and a fifth nearly so. Monthly samples from populations in central New York State, Japan, and Canada, representing 22 species in five families, indicate that sex-ratios are constantly highly femalebiased, with thelytoky probably being obligate. Similar sex-ratios regardless of provenance show that there is no geographic parthenogenesis phenomenon. Our data suggest that thelytoky is not an adaptation for particular environments, that this reproductive mode is not recent in these mites, and that speciation and evolutionary radiation probably occurred in the absence of biparental reproduction.  相似文献   

9.
Lattorff HM  Moritz RF  Fuchs S 《Heredity》2005,94(5):533-537
The evolution and maintenance of parthenogenetic species are a puzzling issue in evolutionary biology. Although the genetic mechanisms that act to restore diploidy are well studied, the underlying genes that cause the switch from sexual reproduction to parthenogenesis have not been analysed. There are several species that are polymorphic for sexual and parthenogenetic reproduction, which may have a genetic basis. We use the South African honeybee subspecies Apis mellifera capensis to analyse the genetic control of thelytoky (asexual production of female workers). Due to the caste system of honeybees, it is possible to establish classical backcrosses using sexually reproducing queens and drones of both arrhenotokous and thelytokous subspecies, and to score the frequency of parthenogenesis in the resulting workers. We found Mendelian segregation for thelytoky of egg-laying workers, which appears to be controlled by a single major gene (th). The segregation pattern indicates a recessive allele causing thelytoky. We found no evidence for maternal transmission of bacterial endosymbionts controlling parthenogenesis. Thelytokous parthenogenesis of honeybee workers appears to be a classical qualitative trait, because we did not observe mixed parthenogenesis (amphitoky), which might be expected in the case of multi-locus inheritance.  相似文献   

10.
SYNOPSIS. Two types of parthenogenesis, arrhenotoky and thelytoky,exist in the Hymenoptera. Arrhenotoky, the development of malesfrom unfertilized eggs, is present in all wasps and bees. Thelytoky,the development of diploid females from unfertilized eggs, ispresent in a few species. Two types of thelytoky, apomixis andautomixis, are known. Most thelytokous Hymenoptera are automictic.No meiosis, only mitosis, occurs in apomixis. Meiosis does occurin automixis, allowing crossing-over and segregation of genes.Advantages of thelytoky are that heterotic combinations becomefixed, gene loss is reduced, and reproduction requires onlya single individual. One advantage of arrhenotoky is that geneticload in males is eliminated. Both environmental and geneticfactors contribute to sex-determination in the haplodiploidsystem of Hymenoptera. Haplodiploidy can facilitate the evolutionof social behavior. Parthenogenesis creates some taxonomic problemssince thelytokous clones do not fit the generally accepted biologicalspecies concept. Some members of bisexual populations probablyacquirethelytoky, forming their own clones, races, or species.  相似文献   

11.
The existence of old species‐rich parthenogenetic taxa is a conundrum in evolutionary biology. Such taxa point to ancient parthenogenetic radiations resulting in morphologically distinct species. Ancient parthenogenetic taxa have been proposed to exist in bdelloid rotifers, darwinulid ostracods, and in several taxa of acariform mites (Acariformes, Acari), especially in oribatid mites (Oribatida, Acari). Here, we investigate the diversification of Acariformes and their ancestral mode of reproduction using 18S rRNA. Because parthenogenetic taxa tend to be more frequent in phylogenetically old taxa of Acariformes, we sequenced a wide range of members of this taxon, including early‐derivative taxa of Prostigmata, Astigmata, Endeostigmata, and Oribatida. Ancestral character state reconstruction indicated that (a) Acariformes as well as Oribatida evolved from a sexual ancestor, (b) the primary mode of reproduction during evolution of Acariformes was sexual; however, species‐rich parthenogenetic taxa radiated independently at least four times (in Brachychthonioidea (Oribatida), Enarthronota (Oribatida), and twice in Nothrina (Oribatida), (c) parthenogenesis additionally evolved frequently in species‐poor taxa, for example, Tectocepheus, Oppiella, Rostrozetes, Limnozetes, and Atropacarus, and (d) sexual reproduction likely re‐evolved at least three times from species‐rich parthenogenetic clusters, in Crotonia (Nothrina), in Mesoplophora/Apoplophora (Mesoplophoridae, Enarthronota), and in Sphaerochthonius/Prototritia (Protoplophoridae, Enarthronota). We discuss possible reasons that favored the frequent diversification of parthenogenetic taxa including the continuous long‐term availability of dead organic matter resources as well as generalist feeding of species as indicated by natural variations in stable isotope ratios.  相似文献   

12.
Sixty-four species of Acari were extracted by wet sieving and salt flotation from soil in four barley plots sampled on five occasions between 23 May and 15 August 1975. Over half the species were Prostigmata. The most abundant species wereScutacarus longiusculus (Karafiat) (Scutacaridae, Prostigmata),Bakerdania gracilis (Krczal) (Pygmephoridae, Prostigmata), andTyrophagus longior (Gervais) (Acaridae, Astigmata).Only three species (B. gracilis, T. longior andPseudopygmephorus sellnicki (Krczal) (Pygmephoridae)) contributed more than 2% of the individuals and occurred in more than 25% of the samples in all plots.Mean population densities ranged from 41 to 216 thousand/m2, with highest density occurring in a conventionally ploughed and cultivated plot and lowest in a direct drilled plot. Prostigmata accounted for 46–85% of the total populations in the various plots.Twelve species were recorded from decaying crop residues on the soil surface; these included some of the most abundant species recorded from growing barley in a related study. Soil and crop residues were the main sources of most of the dominant species colonizing the growing barley crop.The barley plots had greater numbers of Prostigmata and Astigmata but fewer Cryptostigmata and Mesostigmata than were extracted by a high gradient canister technique from adjacent grass ley pasture sampled in its second and third years (1976 and 1977). Biomass in the older ley was far greater than in the barley. There were higher numbers of species of intermediate relative abundance (0.1–5%) in the ley, indicating more mature communities than in the barley plots.  相似文献   

13.
Parthenogenesis is an asexual mode of reproduction that plays an important role in the evolution of sex, sociality, and reproduction strategies in insects. Some species of cockroach exhibit thelytoky, a type of parthenogenesis in which female offspring are produced without fertilization. However, the cytological and genetic mecha? nisms of parthenogenesis in cockroaches are not well understood. Here we provide the first molecular genetic evidence that cockroaches can reproduce through automixis. Using the American cockroach Periplaneta aniericana, we performed microsatellite analysis to investigate the genetic relationship between parthenogenetically produced nymphs and the parent virgin females, and found that all parthenogenetic offspring were homozygous for autosomal microsatellite markers, whereas the female parents were heterozygous. In addition, flow cytometry analysis revealed that the parthenogenetic offspring were diploid. Taken together, our results demonstrate that P. americana exhibits automixis-type thelytoky, in which diploidy is restored by gamete duplication or terminal fusion. These findings highlight the unique reproduction strategies of cockroaches, which are more varied than was previously recognized.  相似文献   

14.
All Hymenoptera have a haplodiploid mode of sex determination. Although most species reproduce by arrhenotokous parthenogenesis, there are many thelytokous species, in which unfertilized eggs develop into diploid females. Thelytoky can be genetic or due to microbial infection. In the large Chalcidoidea superfamily, thelytokous parthenogenesis is almost always associated with infection of endosymbionts of the genera Wolbachia, Cardinium, and Rickettsia. Thripoctenus javae (Girault) (Hymenoptera: Eulophidae) is a larval parasitoid of the greenhouse thrips Heliothrips haemorrhoidalis (Bouché) (Thysanoptera: Thripidae), an important worldwide pest. Both the host and its parasitoid reproduce by thelytokous parthenogenesis. The main goal of this study was to test whether endosymbiotic bacteria, either those known to induce thelytokous parthenogenesis or other sex‐manipulators, are responsible for thelytoky of two geographically distinct populations of T. javae. We used sequencing of ribosomal ITS2 and 28S‐D2 and mitochondrial COI genes to molecularly characterize the two populations, antibiotic and heat treatments, and FISH of ovaries, for thelytoky studies. It was impossible to revert thelytokous individuals back to sexual reproduction and no evidence of bacterial infection was found in parthenogenetic T. javae females. This makes T. javae the second chalcidoid in which thelytokous reproduction appears not to be associated with the presence of bacterial endosymbionts.  相似文献   

15.
Summary. In a few, scattered species of social Hymenoptera, unmated workers are capable of producing female offspring from unfertilized eggs through thelytokous parthenogenesis. Regular thelytoky has previously been demonstrated in a number of populations of the neotropical ant Platythyrea punctata. Nevertheless, the finding of males and inseminated queens and workers suggested the sporadic occurrence of sex. In this study we investigated the genetic structure of colonies from Puerto Rico and Costa Rica in order to detect traces of occasional sexual reproduction. Most Puerto Rican colonies had a clonal structure with all nestmates sharing the same multilocus genotype, indicating that thelytoky is the predominant mode of reproduction. Genetic variability was detected in six of 18 colonies and might have arisen from adoption of alien workers in one colony and from the adoption of alien workers, recombination during parthenogenesis, or sexual reproduction in the other colonies. The reproductive of one of these latter colonies was found to be an inseminated worker (gamergate), and the genotypes of its nestmates definitively suggested recombination and sexual reproduction. Three gamergates were found in a single colony collected in Costa Rica, and all produced offspring from fertilized eggs, while uninseminated workers were apparently incapable of reproducing by thelytoky.Received 10 August 2004; revised 20 October 2004; accepted 3 November 2004.  相似文献   

16.
We examined the phylogeny of ticks (Acari:Parasitiformes:Ixodida) and their closest known mite relatives (Acari:Parasitiformes:Mesostigmata and Holothyrida) using 18S rRNA sequences. In our analyses, we included sequences from 36 taxa. Sequences for 13 hard ticks (Family Ixodidae), 5 soft ticks (Family Argasidae), and 2 mesostigmatid mites were obtained from the GenBank database and we generated sequences for 15 hard ticks and 1 holothyrid mite. Ten of these tick species were endemic to Australia. Our analyses indicated that the suborder Holothyrida is more closely related to Ixodida than to Mesostigmata, the group used as outgroup in earlier molecular studies. This finding is consistent with Lehtinen's (1991) hypothesis that the Holothyrida rather than the Mesostigmata is the sister-group to the Ixodida. Within the hard ticks the genus Aponomma and thus the family Amblyomminae were paraphyletic. Taxonomic revision of these taxa is needed. The genus Amblyomma was paraphyletic without the inclusion of "typical" Aponomma species (Ap. latum and Ap. fimbriatum). There was a basal divergence between endemic Australian and other species in both the Metastriata and the Prostriata divisions of the hard ticks.  相似文献   

17.
The evolutionary paradox of sex remains one of the major debates in evolutionary biology. The study of species capable of both sexual and asexual reproduction can elucidate factors important in the evolution of sex. One such species is the ant Cataglyphis cursor, where the queen maximizes the transmission of her genes by producing new queens (gynes) asexually while simultaneously maintaining a genetically diverse workforce via the sexual production of workers. We show that the queen can also produce gynes sexually and may do so to offset the costs of asexual reproduction. We genotyped 235 gynes from 18 colonies and found that half were sexually produced. A few colonies contained both sexually and asexually produced gynes. Although workers in this species can also use thelytoky, we found no evidence of worker production of gynes based on genotypes of 471 workers from the six colonies producing sexual gynes. Gynes are thus mainly, and potentially exclusively, produced by the queen. Simulations of gynes inbreeding level following one to ten generations of automictic thelytoky suggest that the queen switches between or combines thelytoky and sex, which may reduce the costs of inbreeding. This is supported by the relatively small size of inbred gynes in one colony, although we found no relationship between the level of inbreeding and immune parameters. Such facultative use of sex and thelytoky by individual queens contrasts with other known forms of parthenogenesis in ants, which are typically characterized by distinct lineages specializing in one strategy or the other.  相似文献   

18.
Abstract. Adult females of the blood-sucking muscid Stomoxys calcitrans sampled between June and September 1993 from a cattle farm ( n = 839) and from a pig farm ( n = 542) in North-West England were examined for mites. Twelve species of mites from ten families and three orders were identified as follows. In the Prostigmata, Eryenetes sp., Family Ereynetidae and Pediculaster mesembrinae , Family Pygmephoridae. In the Astigmata, Procalvolia zacheri Family Saproglyphidae, Acarusfarris , Family Acaridae, Bonomoia sphaerocerae and Myianoetus sp., Family Anoetidae. In the Mesostigmata, Macrocheles muscaedomesticae and Macrocheles subbadius Family Macrochelidae, Digamasellus sp., Family Digamasellidae, Halolaelaps sp., Family Halolaelapidae. Prodinychus sp., Family Uropodoidea and Thinoseius sp., Family Eviphididae. Mean infestation rates at the two sites (all mite species) for the entire sampling period were 31.6 ± 13.9% and 19.8 ± 3.6% respectively. 51 % of synbovine flies sampled in July were infested with mites. Mean numbers of flies infested in August at both farms were significantly lower compared to other months. The presence of tritonymphs of Ereynetes sp. on S.calcitrans demonstrates for the first time that this life cycle stage is naturally associated with insects in the field.
All mites were recovered from the ventral thorax and abdomen, and two or more species commonly infested individual flies. Associations of mites with their dipteran hosts are described and discussed.  相似文献   

19.
Only recently has it become clear that several species of eusocial hymenopterans regularly reproduce by thelytokous parthenogenesis, that is, the production of diploid female offspring by unmated females. This phenomenon suggests that parthenogenetic reproduction might be advantageous to organisms under certain environmental conditions. Here the occurrence of asexual reproduction is reported for the first time in the dacetine ant, Strumigenys rogeri, at least for the focal populations in Taiwan. Virgin queens of S. rogeri maintained with several workers produced both workers and young queens from unfertilized eggs under laboratory conditions in as short as 39 days, whereas workers were strictly sterile as no spermatheca was discovered after dissection. Combined with additional evidence (i.e. absence of males in field colonies), queen thelytoky is confirmed. Such a reproductive mode and short development time may jointly help explain the success of this tramp ant species in Taiwan and elsewhere.  相似文献   

20.
Three major lineages of mites are parasitic in the nasal passages of birds, i.e., Rhinonyssidae (Mesostigmata), Ereynetidae (Prostigmata), Cytoditidae, and Turbinoptidae (Astigmata). The most diverse family of avian nasal mites is Rhinonyssidae, which include obligate hematophagous endoparasites of nonratite birds worldwide. Nasal mites have been surveyed extensively in the United States, yet there has never been a Canadian survey. There are only 4 published, and 3 unpublished, rhinonyssid species records from birds in Canada. While surveying the nasal mites associated with birds of Alberta and Manitoba (western Canada), 1 new species of Dermanyssus and 5 new species of Rhinonyssidae were recovered. Herein, I describe and illustrate Dermanyssus diphyes n. sp., Ptilonyssus calvaria n. sp., P. nivalis n. sp., P. pinicola n. sp., P. plesiotypicus n. sp., and Sternostoma setifer n. sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号