首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linkage analysis of the nail-patella syndrome.   总被引:4,自引:1,他引:3  
Nail-patella syndrome (NPS) is an autosomal dominant disorder characterized by dysplasia of nails and patella, decreased mobility of the elbow, iliac horns, and, in some cases, nephropathy. The disorder has been mapped to the long arm of chromosome 9, but the precise localization and identity of the NPS gene are unknown. Linkage analysis in three NPS families, using highly informative dinucleotide repeat polymorphisms on 9q33-q34, confirmed linkage of NPS to this chromosome. Recombinations were detected, by two-point linkage analysis, between NPS and the centromeric markers D9S60 and the gelsolin gene and the telomeric markers D9S64 and D9S66, in one of the families. Haplotype analysis suggested an additional recombination between NPS and the argininosuccinate synthetase (ASS) gene. These results localize the NPS gene to an interval on 9q34.1, distal to D9S60 and proximal to ASS, comprising a genetic distance of approximately 9 cM. This represents a significant refinement in the localization of the NPS gene.  相似文献   

2.
A genetic linkage map of human chromosome 9q.   总被引:5,自引:0,他引:5  
A genetic linkage map of human chromosome 9q, spanning a sex-equal distance of 125 cM, has been developed by genotyping 26 loci in the Venezuelan Reference Pedigree. The loci include 12 anonymous microsatellite markers reported by Kwiatkowski et al. (1992), several classical systems previously assigned to chromosome 9q, and polymorphisms for the genes tenacin (HXB), gelsolin (GSN), adenylate kinase 1 (AK1), arginosuccinate synthetase (ASS), ABL oncogene (ABL1), ABO blood group (ABO), and dopamine beta-hydroxylase (DBH). Only a marginally significant sex difference is found along the entire length of the map and results from one interval, between D9S58 and D9S59, that displays an excess of female recombination. A comparison of the genetic map to the existing physical data suggests that there is increased recombination in the 9q34 region with a recombination event occurring every 125-400 kb. This map should be useful in further characterizing the relationship between physical distance and genetic distance, as well as for genetic linkage studies of diseases that map to chromosome 9q, including multiple self-healing squamous epithelioma (MSSE), Gorlin syndrome (NBCCS), xeroderma pigmentosum (XPA), nail-patella syndrome (NPS1), torsion dystonia (DYT1), and tuberous sclerosis (TSC1).  相似文献   

3.
Z Wang  J L Weber 《Genomics》1992,13(3):532-536
Nine moderately to highly informative short tandem repeat polymorphisms were assigned to chromosome 14 using somatic cell hybrids and were mapped using linkage analysis. The nine markers formed a continuous linkage map covering almost the entire long arm from 14q11.2 to q32. The markers filled a large gap within previously reported linkage maps for this chromosome. Best order of the new loci from q11.2 to q32 was D14S50, D14S54, D14S49, D14S47, D14S52, D14S53, D14S55, D14S48, and D14S51. The order shown for all adjacent pairs of loci was very strongly favored with the exception of loci pair D14S55 and D14S48, for which the order was moderately favored. Map lengths for the nine loci were 142 cM in females and 72 cM in males. Female recombination frequencies exceeded male recombination frequencies in the middle and distal portions of the map.  相似文献   

4.
We have identified three restriction fragment length polymorphisms (RFLPs) from within the argininosuccinate synthetase (ASS) gene which maps to human chromosome 9q34-qter. Although RFLPs at pseudogene loci are detected by the cDNA, these are the first polymorphisms reported at the ASS locus. The three RFLPs are in linkage equilibrium with each other, and haplotypes for the ASS locus are highly informative. Two-locus recombination estimates between ASS and seven other 9q markers indicated that ASS is closest to the ABO blood group with a recombination fraction of 0.04 (0.005-0.11). A multilocus lod score analysis with these seven 9q markers indicated that ASS maps between ABL and MCT136 close to ABO, but it is uncertain if ASS is centromeric or telomeric to ABO.  相似文献   

5.
We constructed a long range restriction map of the pericentromeric 21q region between the centromere, identified by the alphoid DNA sequence D21Z1, and D21S13E. The physical map showed the order and intermarker distances of five new loci, including two for which highly informative dinucleotide repeat polymorphisms were identified. The total distance between D21Z1 and D21S13E was 2400 kb. Comparison of genetic and physical distances indicated that there is about 400 to 500 kb per centimorgan that is not significantly different from the average 470 kb per centimorgan for the whole of chromosome 21q. Our physical mapping results do not indicate suppression of recombination in pericentromeric 21q.  相似文献   

6.
A mapped set of genetic markers for human chromosome 9   总被引:14,自引:0,他引:14  
A genetic map of markers for human chromosome 9, spanning a genetic distance of 147 cM in males and 231 cM in females, has been constructed from linkage studies with 19 loci in a large panel of reference families. The markers included four classical systems previously assigned to chromosome 9, and restriction fragment length polymorphisms of two cloned genes, ABL oncogene and argininosuccinase synthetase pseudogene 3 (ASSP3). The remaining 13 marker loci, with an average heterozygosity of 42%, were defined by arbitrary DNA probes newly ascertained from genomic libraries; seven of them were variable number of tandem repeat (VNTR) loci. A subset of 7 of the 19 linked markers is proposed for a primary map that could detect linkage with a genetic defect within the covered region of chromosome 9, provided that at least 45 phase-known meioses were available for study in an affected family.  相似文献   

7.
Meiotic recombination in flow-sorted single sperm was used to analyze four highly polymorphic microsatellite markers on the long arm of chromosome 9. The microsatellites comprised three tightly linked markers: 9CMP1 (D9S109), 9CMP2 (D9S127), and D9S53, which map to 9q31, and a reference marker, ASS, which is located in 9q34.1. Haplotypes of single sperm were assessed by using PCR in a single-step multiplex reaction to amplify each locus. Recombinant haplotypes were identified by their relative infrequency and were analyzed using THREELOC, a maximum-likelihood-analysis program, and an adaptation of CRI-MAP. The most likely order of these markers was cen-D9S109-D9S127-D9S53-ASS-tel with D9S109, D9S127, and D9S53 being separated by a genetic distance of approximately 3%. The order of the latter three markers did not however achieve statistical significance using the THREELOC program.  相似文献   

8.
We have constructed a linkage map of 14 short tandem repeat polymorphisms (11 with heterozygosity > 70%) on the long arm of human chromosome 22 using 23 non-CEPH pedigrees. Twelve of the markers could be positioned uniquely with a likelihood of at least 1,000:1, and distributed at an average distance of 6.62 cM (range 1.5–16.1 cM). The sex-combined map covers a total of 79.6 cM, the female map 93.2 cM and the male map 64.6 cM. Based on comparisons between physical maps and other genetic maps, we estimate that our map covers 70%–80% of the chromosome. The map integrates markers from previous genetic maps and uniquely positions one marker (D22S307). Data from physical mapping on the location of four genetic markers correlates well with our linkage map, and provides information on an additional marker (D22S315). This map will facilitate high resolution mapping of additional polymorphic loci and disease genes on chromosome 22, and act as a reference for building and verifying physical maps.  相似文献   

9.
A high-resolution, intraspecific linkage map of pepper (Capsicum annuum L.) was constructed from a population of 297 recombinant inbred lines. The parents were the large-fruited inbred cultivar 'Yolo Wonder' and the hot pepper line 'Criollo de Morelos 334', which is heavily used as a source of resistance to a number of diseases. A set of 587 markers (507 amplified fragment length polymorphisms, 40 simple sequence repeats, 19 restriction fragment length polymorphisms, 17 sequence-specific amplified polymorphisms, and 4 sequence tagged sites) were used to generate the map; of these, 489 were assembled into 49 linkage groups (LGs), including 14 LGs with 10 to 60 markers per LG and 35 with 2 to 9 markers per LG. The framework map covered 1857 cM with an average intermarker distance of 5.71 cM. Twenty-three LGs, composed of 69% of the markers and covering 1553 cM, were assigned to 1 of the 12 haploid pepper chromosomes, leaving 26 LGs (304 cM) unassigned. The chromosome framework map built with 250 markers led to a high level of mapping confidence and an average intermarker distance of 6.54 cM. By applying MapPop software, it was possible to select smaller subsets of 141 or 93 most informative individuals with a view to reducing the time and cost of further mapping and phenotyping. To define the smallest number of individuals sufficient for assigning any new marker to a chromosome, subsets from 12 to 45 individuals and a set of 13 markers distributed over all 12 chromosomes were screened. In most cases, the markers were correctly assigned to their expected chromosome, but the accuracy of the map position decreased as the number of individuals was reduced.  相似文献   

10.
We have constructed a 2.4-cM resolution genetic linkage map for chromosome 7q that is bounded by centromere and telomere polymorphisms and contains 66 loci (88 polymorphic systems), 38 of which are uniquely placed with odds for order of at least 1000:1. Ten genes are included in the map and 11 markers have heterozygosities of at least 70%. This map is the first to incorporate several highly informative markers derived from a telomere YAC clone HTY146 (locus D7S427), including HTY146c3 (HET 92%). The telomere locus markers span at least 200 kb of the 7q terminus and no crossovers within the physical confines of the locus were observed in approximately 240 jointly informative meioses. The sex-equal map length is 158 cM and the largest genetic interval between uniquely localized markers in this map is 11 cM. The female and male map lengths are 181 and 133 cM, respectively. The map is based on the CEPH reference pedigrees and includes over 4000 new genotypes, our previously reported data plus 29 allele systems from the published CEPH version 5 database, and was constructed using the program package CRI-MAP. This genetic linkage map can be considered a baseline map for 7q, and will be useful for defining the extent of chromosome deletions previously reported for breast and prostate cancers, for developing additional genetic maps such as index marker and 1-cM maps, and ultimately for developing a fully integrated genetic and physical map for this chromosome.  相似文献   

11.
An index marker map of chromosome 9 has been constructed using the Centre d'Etude du Polymorphisme Humain reference pedigrees. The map comprises 26 markers, with a maximum intermarker interval of 13.1 cM and only two intervals > 10 cM. Placement of all but one marker into the map was achieved with > 10,000:1 odds. The sex-equal length is 151 cM, with male length of 121 cM and female length of 185 cM. The map extends to within 2%-3% of physical length at the telomeres, and its coverage therefore is expected to be within 20-30 cM of full map length. The markers are all of the GT/CA repeat type and have average heterozygosity .77, with a range of .60-.89. The map shows both marked contraction of genetic distance relative to physical distance in the pericentromeric region and expansion in the telomeric regions. Genotypic data were carefully examined for errors by using the crossover routine of the program DATAMAN. Five new mutations were observed among 17,316 meiotic events examined. There were two double-crossover events occurring within an interval of 0-10 cM, and another eight were observed within an interval of 10-20 cM. Many of these could be due to additional mutational events in which one parental allele converted to the other by either gene conversion or random strand slippage. When there was no correction for these possible mutational events, the number of crossovers displayed by the maternal and paternal chromosomes was significantly different (P < .001) from that predicted by the Poisson distribution, which would be expected in the absence of interference. In addition, the observed crossover distribution for paternally derived chromosomes was similar to that predicted from cytogenetic chiasma frequency observations. In all, the data strongly support the occurrence of strong positive interference on human chromosome 9 and suggest that flanking markers at an interval of < or = 20 cM are generally sufficient for disease gene inheritance predictions in presymptomatic genetic counseling by linkage analysis.  相似文献   

12.
A (GT)n repeat in intron 4 of the functional human HMG14 gene on chromosome 21 was used as polymorphic marker to map this gene relative to the genetic linkage map of human chromosome 21. Variation in the length of the (GT)n repeat was detected by electrophoresis on polyacrylamide gels of DNA amplified by the polymerase chain reaction using primers flanking the repeat. The observed heterozygosity of this polymorphism in 40 CEPH families was 58% with six different alleles. Linkage analysis localized the HMG14 gene close to the ETS2 gene and locus D21S3 in chromosomal band 21q22.3.  相似文献   

13.
We have identified a highly informative dinucleotide repeat in the 5′-flanking region of the human high mobility group I-C (HMGI-C) gene. This polymorphism consists of 18–37 copies of a (CT) repeat with an observed heterozygosity of 82–83% in African Americans and Caucasians. Linkage analysis in CEPH pedigrees localized the HMGI-C gene to chromosome region 12q13–15 with no recombination observed between HMCI-C and markers D12S102 and D12S8. Received: 16 February 1996 / Revised: 30 April 1996, 29 July 1996  相似文献   

14.
A map comprising 16 distinct markers with heterozygosities of 0.61-0.92 for a 10-cM region of human 9q34.1 is presented. The map incorporates four genes and has a maximum intermarker interval of 2.1 cM. Markers were analyzed in the Venezuelan reference pedigrees and all were placed uniquely in the map with a minimum likelihood of 676:1. The map should prove useful in analysis of families segregating dystonia and tuberous sclerosis, as the DYT1 and TSC1 loci map within this region.  相似文献   

15.
An improved linkage map for human chromosome 19 containing 35 short tandem repeat polymorphisms (STRPs) and one VNTR (D19S20) was constructed. The map included 12 new (GATA)n tetranucleotide STRPs. Although total lengths of the male (114 cM) and female (128 cM) maps were similar, at both ends of the chromosome male recombination exceeded female recombination, while in the interior portion of the map female recombination was in excess. Cosmid clones containing the STRP sequences were identified and were positioned along the chromosome by fluorescent in situ hybridization. Four rounds of careful checking and removal of genotyping errors allowed biologically relevant conclusions to be made concerning the numbers and distributions of recombination events on chromosome 19. The average numbers of recombinations per chromosome matched closely the lengths of the genetic maps computed by using the program CRIMAP. Significant numbers of chromosomes with zero, one, two, or three recombinations were detected as products of both female and male meioses. On the basis of the total number of observed pairs of recombination events in which only a single informative marker was situated between the two recombinations, a maximal estimate for the rate of meiotic STRP “gene” conversion without recombination was calculated as 3 × 10−4/meiosis. For distances up to 30 cM between recombinations, many fewer chromosomes which had undergone exactly two recombinations were observed than were expected on the basis of the assumption of independent recombination locations. This strong new evidence for human meiotic interference will help to improve the accuracy of interpretation of clinical DNA test results involving polymorphisms flanking a genetic abnormality.  相似文献   

16.
A microsatellite linkage map of the blacklip abalone, Haliotis rubra   总被引:2,自引:0,他引:2  
There is considerable scope for genetic improvement of cultured blacklip abalone Haliotis rubra in Australia using molecular marker-assisted, selective-breeding practices. Such improvement is dependent on the availability of primary genetic resources, such as a genetic linkage map. This study presents a first-generation linkage map of H. rubra, containing 122 microsatellite markers typed in a single full-sib family. These loci mapped to 17 and 20 linkage groups for the male and female respectively, and when aligned, the consensus map represented 18 linkage groups. The male linkage map contained 102 markers (one unlinked) covering 621 cM with an average intermarker spacing of 7.3 cM, and the female map contained 98 markers (eight unlinked) covering 766 cM with an average intermarker spacing of 9.8 cM. Analysis of markers informative in both parents showed a significantly higher recombination rate in the female parent, with an average male-to-female recombination ratio of 1:1.45 between linked pairs of markers. This linkage map represents a significant advancement in the genetic resource available for H. rubra and provides a framework for future quantitative trait loci mapping and eventual implementation of marker-assisted selection.  相似文献   

17.
Chromosomal heteromorphisms and DNA polymorphisms have been utilized to identify the mechanisms that lead to formation of human ovarian teratomas and to construct a gene-centromere map of chromosome 1 by using those teratomas that arise by meiotic nondisjunction. Of 61 genetically informative ovarian teratomas, 21.3% arose by nondisjunction at meiosis I, and 39.3% arose by meiosis II nondisjunction. Eight polymorphic marker loci on chromosome 1p and one marker on 1q were used to estimate a gene-centromere map. The results show clear linkage of the most proximal 1p marker (NRAS) and the most proximal 1q marker (D1S61) to the centromere at a distance of 14 cM and 20 cM, respectively. Estimated gene-centromere distances suggest that, while recombination occurs normally in ovarian teratomas arising by meiosis II errors, ovarian teratomas arising by meiosis I nondisjunction have altered patterns of recombination. Furthermore, the estimated map demonstrates clear evidence of chiasma interference. Our results suggest that ovarian teratomas can provide a rapid method for mapping genes relative to the centromere.  相似文献   

18.
A genetic linkage map of the long arm of human chromosome 22   总被引:17,自引:0,他引:17  
We have used a recombinant phage library enriched for chromosome 22 sequences to isolate and characterize eight anonymous DNA probes detecting restriction fragment length polymorphisms on this autosome. These were used in conjunction with eight previously reported loci, including the genes BCR, IGLV, and PDGFB, four anonymous DNA markers, and the P1 blood group antigen, to construct a linkage map for chromosome 22. The linkage group is surprisingly large, spanning 97 cM on the long arm of the chromosome. There are no large gaps in the map; the largest intermarker interval is 14 cM. Unlike several other chromosomes, little overall difference was observed for sex-specific recombination rates on chromosome 22. The availability of a genetic map will facilitate investigation of chromosome 22 rearrangements in such disorders as cat eye syndrome and DiGeorge syndrome, deletions in acoustic neuroma and meningioma, and translocations in Ewing sarcoma. This defined set of linked markers will also permit testing chromosome 22 for the presence of particular disease genes by family studies and should immediately support more precise mapping and identification of flanking markers for NF2, the defective gene causing bilateral acoustic neurofibromatosis.  相似文献   

19.
A genetic linkage map of 27 markers on human chromosome 21.   总被引:21,自引:0,他引:21  
We have constructed a genetic linkage map of the long arm of human chromosome 21 comprising 27 DNA markers. This map is an updated version of that reported earlier by group (1989, Genomics 4: 579-591), which contained 17 DNA markers. The current markers consist of 10 genes and 17 anonymous sequences. Traditional methods (restriction fragment length polymorphisms) were used to map 25 of these markers, whereas 2 markers were studied by polymerase chain reaction amplification of (GT)n dinucleotide repeats. Linkage analysis was performed on 40 CEPH families using the computer program packages LINKAGE, CRI-MAP, and MAPMAKER. Recombination rates were significantly different between the sexes, with the male map being 132 cM and the female map being 161 cM, assuming Kosambi interference and a variable ratio of sex difference in recombination. Approximately one-half of the crossovers in either sex occur distally, in terminal band 21q22.3, which also contains 16 of the markers studied. The average distance between adjacent markers was 6 cM.  相似文献   

20.
A refined genetic linkage map for the pericentromeric region of human chromosome 10 has been constructed from data on 12 distinct polymorphic DNA loci as well as the locus for multiple endocrine neoplasia type 2A (MEN 2A), a dominantly inherited cancer syndrome. The map extends from D10S24 (at 10p13-p12.2) to D10S3 (at 10q21-q23) and is about 70 cM long. Overall, higher female than male recombination frequencies were observed for this region, with the most remarkable female excess in the immediate vicinity of the centromere, as previously reported. Most of the DNA markers in this map are highly informative for linkage and the majority of the interlocus intervals are no more than 6 cM apart. Thus this map should provide a fine framework for future efforts in more detailed mapping studies around the centromeric area. A set of ordered cross-overs identified in this work is a valuable resource for rapidly and accurately localizing new DNA clones isolated from the pericentromeric region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号