首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Notice     
17O NMR studies of 17O enriched water solutions containing superoxide dismutase have been performed between pH 7.5 and 11.7. Whereas T1 measurements do not reveal any interaction between 17O and the paramagnetic copper center, the linewidth results appreciably increased with increasing pH with an apparent pKa of 11.3. Comparison with 1H NMR relaxation studies allows to interpret the present data as due to binding to the copper ion of an OH? anion at high pH. The binding position should be of “equatorial” type, not involving the binding position of the coordinated water.  相似文献   

2.
Quinolobactin is a new siderophore produced by a pyoverdine deficient mutant of Pseudomonas fluorescens. A simple and efficient synthesis of quinolobactin is described, starting from xanthurenic acid. The protonation constants of quinolobactin were determined by potentiometric titrations as pKa2=5.50 ± 0.07, pKa1=10.30 ± 0.05. The equilibria of the metal complexes were studied by means of spectrophotometric and potentiometric titrations. The overall stability constants of the quinolobactin-FeIII complexes was found to be log 111=18.60 ± 0.10, log 121=32.60 ± 0.20, log 120=28.20 ± 0.25 resulting in a pFeIII value of 18.2 at pH 7.4. The UV-visible spectral parameters of the [FeL2] are in agreement with a complex containing two ligands coordinated to one Fe3+ cation through the oxygen and nitrogen quinoline atoms.  相似文献   

3.
The protein folding behavior of a polyelectrolyte protein, bovine dentine phosphophoryn (BDPP), in the pH range of 1.82–11.0 has been investigated. One- and two-dimensional nmr spectroscopy has been utilized to obtain proton spin assignments for amino acid residues in D2O and in H2O. One-dimensional 31P-nmr experiments verify the existence of three separate classes of O-phosphoserine (PSer) resonances in BDPP (α, β, χ), representing three distinct PSer residue populations at pH 6.94. By means of pH titration and 1H-nmr, five populations of Asp residues can be identified. Three of these populations exhibit secondary inflection points on their pH titration curves that correspond to an observed pKa of 6.17–6.95. The presence or absence of secondary inflection points for Asp populations and the 31P-nmr chemical shift dispersion for the three PSer residue populations indicate that BDPP may be comprised of homologous (Asp-Asp)n. (PSer-PSer)n, and heterologous (PSer-Asp)n sequences arranged into polyelectrolyte cluster regions. The pH titration also revealed that certain populations of Ser, Gly, and Pro residues in BDPP exhibit pH-dependent resonance frequency shifts. The “apparent” pK, for the transition points of these frequency shifts corresponds to either the pK of Pser monophosphatc ester and/or the pKa of Asp COOH group of BDPP polyelectrolyte regions. On the basis of these transition points, we can assign four types of Ser, Gly, or Pro-containing “intervening” regions in BDPP, based on their sensitivity to protonation and deprotonation events occurring at (Asp)n, (PSer)n, or (PSer-Asp)n anionic cluster regions that flank the intervening regions. Our 1H-ninr experiments also reveal that BDPP assumes a folded conformation at low pH. As the pH increases, this conformation undergoes several unfolding transitions as the BDPP molecule assumes more open conformations in response to increased electrostatic repulsion between polyelectrolyte anionic regions in the protein. These folding-unfolding transitions are mediated by the intervening regions, which act as “hinges” to allow the polyelectrolyte regions to fold relative to one another. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The 1H, 13C, 15N and 31 P random-coil chemical shifts and phosphate pKa values of the phosphorylated amino acids pSer, pThr and pTyr in the protected peptide Ac-Gly-Gly-X-Gly-Gly-NH2 have been obtained in water at 25°C over the pH range 2 to 9. Analysis of ROESY spectra indicates that the peptides are unstructured. Phosphorylation induces changes in random-coil chemical shifts, some of which are comparable to those caused by secondary structure formation, and are therefore significant in structural analyses based on the chemical shift.  相似文献   

5.
Malonyl-CoA synthetase fromPseudomonas fluorescens was inactivated by diethylpyrocarbonate (DEP) with the second-order rate constant of 775 M–1 min–1 atpH 7.0, 25°C, showing a concomitant increase in absorbance at 242 nm due to the formation of N-carbethoxyhistidyl derivatives. The inactivated enzyme at low concentration of DEP (<0.2 mM) could be completely reactivated by hydroxylamine but not completely reactivated at high concentration (>0.5 mM), indicating that there may be another functional group modified by DEP. Complete inactivation of malonyl-CoA synthetase required the modification of seven residues per molecule of enzyme; however, only one is calculated to be essential for enzyme activity by a statistical analysis of the residual enzyme activity.pH dependence of inactivation indicated the involvement of a residue with apK a of 6.7, which is closely related to that of histidyl residue of proteins. Whena subunit treated with DEP was mixed with subunits complex, the enzyme activity completely disappeared, whereas when subunit complex treated with the reagent was mixed witha subunit, the activity remained. Inactivation of the enzyme by the reagent was protected by the presence of malonate and ATP. These results indicate that a catalytically essential histidyl residue is located at or near the malonate and ATP binding region ona subunit of the enzyme.  相似文献   

6.
The energetics of the first stable charge separated state, P+QA– relative to that of P–QA was examined in isolated RC from Rhodobacter sphaeroides by delayed fluorescence. The temperature dependence of the delayed fluorescence indicates that the charge separation is a highly enthalpy-driven process (H = – 818 ± 20 meV at pH 8) and the free energy gap between P–QA and P+QA– drops with increasing pH (40 ± 4 meV between pH 6 and 10). The pH-dependence of the free energy change of the P+QA– state runs parallel to the (integrated) net proton uptake due to the PQA/P+QA– redox change in a wide pH range and under different ionic conditions. Elevation of the ionic strength increases the delayed fluorescence intensity and decreases the (dark and light) pKa values as well as the light-induced pKa changes of the protonatable groups of the protein. The observed dependence of the energetics of P+QA– on the concentration and composition of mobile ions is discussed in terms of binding and screening of protonatable groups and surface charges as dominant modes of electrostatic interaction between RC and salt.  相似文献   

7.
Abstract

Various new haloindazole-1-β-D-ribofuranosides (10-17,20,21) and a 2-β-D-ribofuranoside (18) have been synthesized by the fusion method and by direct halogenations, respectively. The new nucleosides have been characterized by UV and 1H NMR spectra as well as pKa determinations. Indazole ribofuranosides behave in aqueous acid like purine and benzimidazole nucleosides showing the same mechanism of cleavage of the glycosidic bonds. Toxicity studies against various cell populations indicate only little biological activities.  相似文献   

8.
Summary The effect of pH buffers and related compounds on the conductance of an outwardly rectifying anion channel has been studies using the patch-clamp technique. Single-channel current-voltage relationships were determined in solutions buffered by trace amounts of bicarbonate and in solutions containing N-substituted taurines (HEPES, MES, BES, TES) and glycines (glycylglycine, bicine and tricine), Tris andbis-Tris at millimolar concentrations. HEPES (pKa=7.55) reduced the conductance of the channel when present on either side of the membrane. Significant inhibition was observed with 0.6mm HEPES on the cytoplasmic side (HEPES i ) and this effect increased with [HEPES i ] so that conductance at the reversal potential was diminished 25% with 10mm HEPES i )and 70% at very high [HEPES i ]. HEPES i block was relieved by applying positive voltage but positive currents were not consistent with a Woodhulltype blocking scheme in that calculated dissociation constants and electrical distances depended on HEPES concentration. Results obtained by varying total HEPES i concentration at constant [HEPES] and vice versa suggest both the anionic and zwitterionic (protonated) forms of HEPES inhibit. Structure-activity studies with related compounds indicate the sulfonate group and heterocyclic aliphatic groups are both required for inhibition from the cytoplasmic side. TES (pKa=7.54), substituted glycine buffers (pKa=8.1–8.4) andbis-Tris (pKa=6.46) had no measurable effect on conductance and appear suitable for use with this channel.  相似文献   

9.
The reaction of alkyn-1-yl(vinyl)silanes R2Si(CCR1)CHCH2 [R = Me (1), Ph (2); R1 = tBu (a), Ph (b), SiMe3 (c)] with 9-borabicyclo[3.3.1]nonane in a 1:1 ratio affords the 1-silacyclopent-2-ene derivatives 4a-c (R = Me) and 5a-c (R = Ph) as a result of selective intermolecular 1,2-hydroboration of the vinyl group, followed by intramolecular 1,1-organoboration of the alkynyl substituent. The analogous reaction sequence converts the alkyn-1-yl(allyl)dimethylsilanes 3a,c into the 1-silacyclohex-2-ene derivatives 7a,c. All reactions were monitored by 29Si NMR spectroscopy and the structural assignment of the final products was based on multinuclear magnetic resonance data (1H, 11B, 13C and 29Si NMR). The molecular structure of 6a was determined by X-ray analysis.  相似文献   

10.
Many macromolecular interactions, including protein‐nucleic acid interactions, are accompanied by a substantial negative heat capacity change, the molecular origins of which have generated substantial interest. We have shown previously that temperature‐dependent unstacking of the bases within oligo(dA) upon binding to the Escherichia coli SSB tetramer dominates the binding enthalpy, ΔHobs, and accounts for as much as a half of the observed heat capacity change, ΔCp. However, there is still a substantial ΔCp associated with SSB binding to ssDNA, such as oligo(dT), that does not undergo substantial base stacking. In an attempt to determine the origins of this heat capacity change, we have examined by isothermal titration calorimetry (ITC) the equilibrium binding of dT(pT)34 to SSB over a broad pH range (pH 5.0–10.0) at 0.02 M, 0.2 M NaCl and 1 M NaCl (25°C), and as a function of temperature at pH 8.1. A net protonation of the SSB protein occurs upon dT(pT)34 binding over this entire pH range, with contributions from at least three sets of protonation sites (pKa1 = 5.9–6.6, pKa2 = 8.2–8.4, and pKa3 = 10.2–10.3) and these protonation equilibria contribute substantially to the observed ΔH and ΔCp for the SSB‐dT(pT)34 interaction. The contribution of this coupled protonation (∼ −260 to −320 cal mol−1 K−1) accounts for as much as half of the total ΔCp. The values of the “intrinsic” ΔCp,0 range from −210 ± 33 cal mol−1 °K−1 to −237 ± 36 cal mol−1K−1, independent of [NaCl]. These results indicate that the coupling of a temperature‐dependent protonation equilibria to a macromolecular interaction can result in a large negative ΔCp, and this finding needs to be considered in interpretations of the molecular origins of heat capacity changes associated with ligand‐macromolecular interactions, as well as protein folding. Proteins 2000;Suppl 4:8–22. © 2000 Wiley‐Liss, Inc.  相似文献   

11.
The interaction of bovine prothrombin with Ca2+ and Mg2+ ions was investigated by following H+ release as a function of metal ion concentration at pH 6 and pH 7.4 at high and low ionic strength. Prothrombin Ca2+ and Mg2+ binding is characterized by high- and low-affinity sites. M2+ binding at these sites is associated with intramolecular conformational changes and also with intermolecular self-association. The pH dependence of H+ release by M2+ is bell shaped and consistent with controlling pKa values of 4.8 and 6.5. At pH 6 and low ionic strength, both Ca2+ and Mg2+ titrations following H+ release clearly show independent low- and high-affinity binding sites. Laser light scattering reveals that at pH 7.4 and low ionic strength, and at pH 6.0 and high ionic strength, the prothrombin molecular weight is between 73 and 98 kD. At pH 7.4 and high ionic strength, prothrombin is monomeric in the absence of metal ions, but appears to dimerize in the presence of M2+. At pH 6.0 and low ionic strength prothrombin exists as a dimer in the absence of metal ions and is tetrameric in the presence of Ca2+ and remains dimeric in the presence of Mg2+. These results and those for metal ion-dependent H+ release indicate that H+ release occurs concomitantly with association processes involving prothrombin.Abbreviations GLA -carboxyglutamic acid; fragment 1. amino terminal residues 1–156 of bovine prothrombin - MES 2-(N-morpholino) ethanesulfonic acid - MOPS 3-(N-morpholino) propanesulfonic acid - PS/PC phosphatidylserine/phosphatidylcholine vesicles - ionic strength  相似文献   

12.
Synthesis of the half-sandwich ruthenium complex [RuCl(η5-indenyl){P(But)(Ph)H}(PPh3)], 2, containing an unsymmetrically-substituted secondary phosphine, is described. A 60:40 kinetic distribution of the resulting diastereomers 2a and 2b shifts in solution at room temperature to give predominantly 2a. The relative stereochemistries at ruthenium and the secondary phosphine in each diastereomer have been assigned based on 1H NOESY NMR and crystallographic data.  相似文献   

13.
Summary 1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog,Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes.2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 µM) for A1-adenosine receptors, 30% (100 µM) for A2a-adenosine receptors, 20% (2 µM) for 2-adrenergic receptors, and 30% (100 µM) for 5HT1A receptors. High affinity agonist binding for A1-, 2-, and 5HT1A-receptors was virtually abolished by GTPS in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin.3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 µM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTPS were maximally enhanced 45% and 23%, respectively, by 50 µM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 µM adenoregulin. In intact DDT1 MF-2 cells, 20 µM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediatedvia the adenosine A1 receptor.4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state complexed with guanyl nucleotide-free G-protein.  相似文献   

14.
Summary Mn2+ binding to phosphatidylserine (PS) vesicles was measured by EPR as a function of [Na+] and pH. At nearly physiological monovalent salt concentration the apparent Mn2+ affinity (K a) increased monitonically over the pH range 5.7–8.35, withK a roughly [H+]–1 above pH 7.3. It was found, moreover, thatK a fell off more rapidly with added NaCl at pH 6.1 than at pH 7.87. Qualitatively, these results are consistent with two types of Mn2+-PS binding: (i) simple adsorption and (ii) adsorption with the release of an amino proton from PS. The existence of Mn2+-induced H+ displacement from PS was verified through titration measurements, employing a pH electrode.When H+ displacement is taken into account, the variation inK a with [Na+] observed at pH 6.1 is found to be in reasonably good agreement with that expected from the Gouy-Chapman-Stern theory of ionic binding to charged surfaces.  相似文献   

15.
Kyei-Boahen  S.  Astatkie  T.  Lada  R.  Gordon  R.  Caldwell  C. 《Photosynthetica》2003,41(4):597-603
Short-term responses of four carrot (Daucus carota) cultivars: Cascade, Caro Choice (CC), Oranza, and Red Core Chantenay (RCC) to CO2 concentrations (C a) were studied in a controlled environment. Leaf net photosynthetic rate (P N), intercellular CO2 (C i), stomatal conductance (g s), and transpiration rate (E) were measured at C a from 50 to 1 050 mol mol–1. The cultivars responded similarly to C a and did not differ in all the variables measured. The P N increased with C a until saturation at 650 mol mol–1 (C i= 350–400 mol mol–1), thereafter P N increased slightly. On average, increasing C a from 350 to 650 and from 350 to 1 050 mol mol–1 increased P N by 43 and 52 %, respectively. The P N vs. C i curves were fitted to a non-rectangular hyperbola model. The cultivars did not differ in the parameters estimated from the model. Carboxylation efficiencies ranged from 68 to 91 mol m–2 s–1 and maximum P N were 15.50, 13.52, 13.31, and 14.96 mol m–2 s–1 for Cascade, CC, Oranza, and RCC, respectively. Dark respiration rate varied from 2.80 mol m–2 s–1 for Oranza to 3.96 mol m–2 s–1 for Cascade and the CO2 compensation concentration was between 42 and 46 mol mol–1. The g s and E increased to a peak at C a= 350 mol mol–1 and then decreased by 17 and 15 %, respectively when C a was increased to 650 mol mol–1. An increase from 350 to 1 050 mol mol–1 reduced g s and E by 53 and 47 %, respectively. Changes in g s and P N maintained the C i:C a ratio. The water use efficiency increased linearly with C a due to increases in P N in addition to the decline in E at high C a. Hence CO2 enrichment increases P N and decreases g s, and can improve carrot productivity and water conservation.  相似文献   

16.
The electronic spectra of NCS? and I? adducts of cobalt(II) human carbonic anhydrase I are pH dependent at pH values below 7. The pKa of such equilibrium is dependent on the anion concentration and varies between 4.6 and 6.6. The 1H NMR spectra show that the three histidine residues are bound to the metal ion over the entire pH range investigated. It is supposed that a Glu residue triggers the change in stereochemistry around the metal ion. It is possible that such a Glu residue is Glu 106 present in the active cavity.  相似文献   

17.

Bacteriogenic iron oxides (BIOS) are composite materials that consist of intact and partly degraded remains of bacterial cells intermixed with variable amounts of poorly ordered hydrous ferric oxide (HFO) minerals. They form in response to chemical or bacterial oxidation of Fe2+, which gives rise to Fe3+. Once formed, Fe3+ tends to undergo hydrolysis to precipitate in association with bacterial cells. In acidic systems where the chemical oxidation of Fe2+ is slow, bacteria are capable of accelerating the reaction by several orders of magnitude. At circumneutral pH, the chemical oxidation of Fe2+ is fast. This requires Fe2+ oxidizing bacteria to exploit steep redox gradients where low pO2 slows the abiotic reaction enough to allow the bacteria to compete kinetically. Because of their reactive surface properties, BIOS behave as potent sorbents of dissolved metal ions. Strong enrichments of Al, Cu, Cr, Mn, Sr, and Zn in the solid versus aqueous phase (log 10 Kd values range from 1.9 to 4.2) are common; however, the metal sorption properties of BIOS are not additive owing to surface chemical interactions between the constituent HFO and bacteria. These interactions have been investigated using acid-base tritrations, which show that the concentration of high pKa sites is reduced in BIOS compared to HFO. At the same time, hydroxylamine insoluble material (i.e., residual bacterial fraction) is enriched in low pKa sites relative to both BIOS and HFO. These differences indicate that low pKa or acidic sites associated with bacteria in BIOS interact specifically with high pKa or basic sites on intermixed HFO.  相似文献   

18.
The ligands bis-(imidazolium) hexafluorophosphate (Himy = -C3N2H3-, imidazolium; R = 1-naphthylmethylene, 1a; 9-anthracenylmethylene, 1b) with an oxoether chain were easily prepared by the reaction of substituted imidazole with the diglycol diiodide, followed by exchange of anions with . 1a and 1b reacted with Ag2O in DMSO or CH3CN to yield [2 + 2] dinuclear Ag(I) NHCs macrocyclic complexes 2a and 2b, which showed much different conformation in solid corresponding to the R- substituent. Carbene transmetalation reactions of 2a-b with Au(SMe2)Cl give dinuclear Au(I) analogs 3a and 3b. The new NHCs complexes were characterized by elemental analyses, 1H NMR, 13C NMR and the structures of 2a-b and 3a were confirmed by X-ray diffraction determination.  相似文献   

19.
Three different pKa prediction methods were used to calculate the pKa of Lys115 in acetoacetate decarboxylase (AADase): the empirical method PROPKA, the multiconformation continuum electrostatics (MCCE) method, and the molecular dynamics/thermodynamic integration (MD/TI) method with implicit solvent. As expected, accurate pKa prediction of Lys115 depends on the protonation patterns of other ionizable groups, especially the nearby Glu76. However, since the prediction methods do not explicitly sample the protonation patterns of nearby residues, this must be done manually. When Glu76 is deprotonated, all three methods give an incorrect pKa value for Lys115. If protonated, Glu76 is used in an MD/TI calculation, the pKa of Lys115 is predicted to be 5.3, which agrees well with the experimental value of 5.9. This result agrees with previous site-directed mutagenesis studies, where the mutation of Glu76 (negative charge when deprotonated) to Gln (neutral) causes no change in Km, suggesting that Glu76 has no effect on the pKa shift of Lys115. Thus, we postulate that the pKa of Glu76 is also shifted so that Glu76 is protonated (neutral) in AADase.
Graphical abstract Simulated abundances of protonated species as pH is varied
  相似文献   

20.
Summary The protein fusion technique was applied in the synthesis of an artificial dimer of ribonuclease H (305 residues). 1H NMR spectroscopy was used to analyze the structure of this dimer. Spectral profiles and pKa values of the histidine residues obtained using 1H NMR indicate that the dimer retains the secondary and tertiary structures of the intact monomer. Selective spin-lattice relaxation measurements suggest that the two monomeric units in the dimer are in tight contact. Furthermore, the 2D 1H NMR and paramagnetic relaxation filter results show that the two monomers bind together through interactions between the N- and C-terminal sites of the linked regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号