首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chromosomal location of ribosomal RNA cistrons in Escherichia coli   总被引:1,自引:0,他引:1  
Summary DNA isolated from a strain carrying an episomal that contains the str spc region (60–66 min) hybridized with significantly more ribosomal RNA than did DNA from either the parental strain that does not carry the episome or from a similar strain carrying an episome covering a neighboring region (55–61 min) of the genome.  相似文献   

3.
Y Pommier  D Kerrigan  K Kohn 《Biochemistry》1989,28(3):995-1002
The polyamines spermine and spermidine were found to enhance the formation of a stable noncovalent complex between mammalian topoisomerase II and DNA. This complex is not associated with DNA strand breaks and forms to a greater extent with supercoiled than with relaxed circular or with linear DNA. Polyamine-induced complex formation is associated with a stimulation of the enzymatic relaxation of DNA supercoils. In these respects, the polyamine-enhanced complex differs from the covalent cleavable complexes stabilized by DNA intercalators such as amsacrine (m-AMSA) or epipodophylotoxins such as teniposide (VM-26). In the polyamine-enhanced complex, the topoisomerase II may be a donutlike structure topologically bound to the DNA and able to migrate and dissociate from the ends of linear DNA molecules. At relatively high concentrations, spermine (1 mM) enhances topoisomerase II induced cleavage at certain sites on the SV40 genome that could have regulatory significance.  相似文献   

4.
A Ser740 --> Trp mutation in yeast topoisomerase II (top2) and of the equivalent Ser83 in gyrase results in resistance to quinolones and confers hypersensitivity to etoposide (VP-16). We characterized the cleavage complexes induced by the top2(S740W) in the human c-myc gene. In addition to resistance to the fluoroquinolone CP-115,953, top2(S740W) induced novel DNA cleavage sites in the presence of VP-16, azatoxin, amsacrine, and mitoxantrone. Analysis of the VP-16 sites indicated that the changes in the cleavage pattern were reflected by alterations in base preference. C at position -2 and G at position +6 were observed for the top2(S740W) in addition to the previously reported C-1 and G+5 for the wild-type top2. The VP-16-induced top2(S740W) cleavage complexes were also more stable. The most stable sites had strong preference for C-1, whereas the most reversible sites showed no base preference at positions -1 or -2. Different patterns of DNA cleavage were also observed in the absence of drug and in the presence of calcium. These results indicate that the Ser740 --> Trp mutation alters the DNA recognition of top2, enhances its DNA binding, and markedly affects its interactions with inhibitors. Thus, residue 740 of top2 appears critical for both DNA and drug interactions.  相似文献   

5.
The distributions of DNA cleavage sites induced by topoisomerase II in the presence or absence of specific drugs were mapped in the simian virus 40 genome. The drugs studied were 5-iminodaunorubicin, amsacrine (m-AMSA), teniposide (VM-26) and 2-methyl-9-hydroxyellipticinium; each produced a distinctive pattern of enhanced cleavage. Consistently intense cleavage, both in the presence and in the absence of drugs, occurred in the nuclear matrix-associated region. Since topoisomerase II is a major constituent of the nuclear matrix, and cleavage complexes include a covalent link between topoisomerase II and DNA, the findings suggest that topoisomerase II may function to attach DNA to the nuclear matrix. Cleavage usually occurred on both DNA strands with the expected four base-pair 5' stagger, and strong sites tended to occur within A/T runs such as have been associated with binding to the nuclear scaffold. Intense cleavage was present also in the replication termination region, but was absent from the vicinity of the replication origin. Cleavage intensities were found to change with time in a manner that depended both on the site and on the drug, suggesting that topoisomerase II can move along the DNA from a kinetically preferred site to a thermodynamically preferred site.  相似文献   

6.
The number of sex-factors per chromosome in Escherichia coli   总被引:20,自引:2,他引:18       下载免费PDF全文
A substituted sex-factor of Escherichia coli, F'8 gal, was transferred to Proteus mirabilis by conjugation. The DNA of the episome was partially purified from Proteus DNA by preparative equilibrium centrifugation in caesium chloride, and by a bulk method using hydroxyapatite. The buoyant density of the episomal DNA is 1.707, corresponding to a (G+C) content of 47%. By optical renaturation the genetic complexity of the episomal DNA was found to be 76x10(6) daltons. RNA was synthesized in vitro by using the episomal DNA as template. By hybridizing this RNA with DNA extracted from E. coli carrying F'8 gal, it is shown that the number of copies of the episome per replicating chromosome is close to two during exponential growth. The episome makes up about 4.4% of the total DNA of the growing cells. The activities of galactokinase and galactose 1-phosphate uridylyl-transferase in cells with and without episomal and chromosomal gal genes were found to be proportional to the number of gal genes present, when the cells were induced with d-fucose, but not when they were induced with d-galactose.  相似文献   

7.
1. The results of this study have contributed to the definition of three categories of chemical inhibitors of DNA replication in mammalian cells. 2. Inhibitors of replicon cluster initiation [4-nitroquinoline-N-oxide (4-NQO), etoposide (VP-16), teniposide (VM-26), amsacrine (m-AMSA), N-methyl-N'-nitro-N-nitrozoguanidine (MNNG), cis-Pt(II)diammine dichloride (cis-PDD)], which needed similar doses to produce a slow and persistent (up to 4 hr) inhibition of DNA synthesis, followed by significant cell killing. 3. Inhibitors of DNA replication by indirect action [3-aminobenzamide [correction of 3-aminobezamide] (3-AB), cycloheximide (CHX), puromycin (PRC), bisbenzimide Hoechst No. 33258 (H-33258]), that showed reduced cytotoxic effects, and caused a slow (60 min) and reversible inhibition of DNA synthesis. 4. Inhibitors of formation and/or polymerization of deoxyribonucleotides [5-aminouracil (5-AU), bisbenzimide Hoechst No. 33342 (H-33342)], which induced a fast (20 min) and reversible suppression of DNA replication, associated with limited cell killing.  相似文献   

8.
9.
DNA damage is a constant threat to cells, causing cytotoxicity as well as inducing genetic alterations. The steady-state abundance of DNA lesions in a cell is minimized by a variety of DNA repair mechanisms, including DNA strand break repair, mismatch repair, nucleotide excision repair, base excision repair, and ribonucleotide excision repair. The efficiencies and mechanisms by which these pathways remove damage from chromosomes have been primarily characterized by investigating the processing of lesions at defined genomic loci, among bulk genomic DNA, on episomal DNA constructs, or using in vitro substrates. However, the structure of a chromosome is heterogeneous, consisting of heavily protein-bound heterochromatic regions, open regulatory regions, actively transcribed genes, and even areas of transient single stranded DNA. Consequently, DNA repair pathways function in a much more diverse set of chromosomal contexts than can be readily assessed using previous methods. Recent efforts to develop whole genome maps of DNA damage, repair processes, and even mutations promise to greatly expand our understanding of DNA repair and mutagenesis. Here we review the current efforts to utilize whole genome maps of DNA damage and mutation to understand how different chromosomal contexts affect DNA excision repair pathways.  相似文献   

10.
DNA damage response (DDR) genes and pathways controlling the stability of HPV episomal DNA are reported here. We set out to understand the mechanism by which a DNA-binding, N-methylpyrrole-imidazole hairpin polyamide (PA25) acts to cause the dramatic loss of HPV DNA from cells. Southern blots revealed that PA25 alters HPV episomes within 5 hours of treatment. Gene expression arrays identified numerous DDR genes that were specifically altered in HPV16 episome-containing cells (W12E) by PA25, but not in HPV-negative (C33A) cells or in cells with integrated HPV16 (SiHa). A siRNA screen of 240 DDR genes was then conducted to identify enhancers and repressors of PA25 activity. Serendipitously, the screen also identified many novel genes, such as TDP1 and TDP2, regulating normal HPV episome stability. MRN and 9-1-1 complexes emerged as important for PA25-mediated episome destruction and were selected for follow-up studies. Mre11, along with other homologous recombination and dsDNA break repair genes, was among the highly significant PA25 repressors. The Mre11 inhibitor Mirin was found to sensitize HPV episomes to PA25 resulting in a ∼5-fold reduction of the PA25 IC50. A novel assay that couples end-labeling of DNA to Q-PCR showed that PA25 causes strand breaks within HPV DNA, and that Mirin greatly enhances this activity. The 9-1-1 complex member Rad9, a representative PA25 enhancer, was transiently phosphorylated in response to PA25 treatment suggesting that it has a role in detecting and signaling episome damage by PA25 to the cell. These results establish that DNA-targeted compounds enter cells and specifically target the HPV episome. This action leads to the activation of numerous DDR pathways and the massive elimination of episomal DNA from cells. Our findings demonstrate that viral episomes can be targeted for elimination from cells by minor groove binding agents, and implicate DDR pathways as important mediators of this process.  相似文献   

11.
Three different mammalian origins of DNA replication, 343, S3, and X24, have been cloned into a 15.8 kb circular yeast vector pYACneo. Subsequent transfection into HeLa cells resulted in the isolation of several stably maintained clones. Two cell lines, C343e2 and CS3e1, were found to have sequences maintained as episomes in long-term culture with a stability per generation of approximately 80%. Both episomes also contain matrix attachment region (MAR) sequences which mediate the binding of DNA to the nuclear skeleton and are thought to play a role in DNA replication. Using high salt extraction of the nucleus and fluorescent in situ hybridization, we were able to demonstrate an association of the 343 episome with the nuclear matrix, most probably through functional MAR sequences that allow an association with the nuclear matrix and associated regions containing essential replication proteins. The presence of functional MARs in small episomal sequences may facilitate the replication and maintenance of transfected DNA as an episome and improve their utility as small episomal constructs, potential microchromosomes. J. Cell. Biochem. 67:439–450, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
Kaposi''s sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) is a 1,162-amino-acid protein that mediates the maintenance of episomal viral genomes in latently infected cells. The two central components of episome persistence are DNA replication with each cell division and the segregation of DNA to progeny nuclei. LANA self-associates to bind KSHV terminal-repeat (TR) DNA and to mediate its replication. LANA also simultaneously binds to TR DNA and mitotic chromosomes to mediate the segregation of episomes to daughter nuclei. The N-terminal region of LANA binds histones H2A and H2B to attach to mitotic chromosomes, while the C-terminal region binds TR DNA and also associates with chromosomes. Both the N- and C-terminal regions of LANA are essential for episome persistence. We recently showed that deletion of all internal LANA sequences results in highly deficient episome maintenance. Here we assess independent internal LANA regions for effects on episome persistence. We generated a panel of LANA mutants that included deletions in the large internal repeat region and in the unique internal sequence. All mutants contained the essential N- and C-terminal regions, and as expected, all maintained the ability to associate with mitotic chromosomes in a wild-type fashion and to bind TR DNA, as assessed by electrophoretic mobility shift assays (EMSA). Deletion of the internal regions did not reduce the half-life of LANA. Notably, deletions within either the repeat elements or the unique sequence resulted in deficiencies in DNA replication. However, only the unique internal sequence exerted effects on the ability of LANA to retain green fluorescent protein (GFP) expression from TR-containing episomes deficient in DNA replication, consistent with a role in episome segregation; this region did not independently associate with mitotic chromosomes. All mutants were deficient in episome persistence, and the deficiencies ranged from minor to severe. Mutants deficient in DNA replication that contained deletions within the unique internal sequence had the most-severe deficits. These data suggest that internal LANA regions exert critical roles in LANA-mediated DNA replication, segregation, and episome persistence, likely through interactions with key host cell factors.  相似文献   

13.
Diploid human fibroblast strains were treated for 10 min with inhibitors of type I and type II DNA topoisomerases, and after removal of the inhibitors, the rate of initiation of DNA synthesis at replicon origins was determined. By alkaline elution chromatography, 4'-(9-acridinylamino)methanesulfon-m-anisidide (amsacrine), an inhibitor of DNA topoisomerase II, was shown to produce DNA strand breaks. These strand breaks are thought to reflect drug-induced stabilization of topoisomerase-DNA cleavable complexes. Removal of the drug led to a rapid resealing of the strand breaks by dissociation of the complexes. Velocity sedimentation analysis was used to quantify the effects of amsacrine treatment on DNA replication. It was demonstrated that transient exposure to low concentrations of amsacrine inhibited replicon initiation but did not substantially affect DNA chainelongation within operating replicons. Maximal inhibition of replicon initiation occurred 20 to 30 min after drug treatment, and the initiation rate recovered 30 to 90 min later. Ataxia telangiectasia cells displayed normal levels of amsacrine-induced DNA strand breaks during stabilization of cleavable complexes but failed to downregulate replicon initiation after exposure to the topoisomerase inhibitor. Thus, inhibition of replicon initiation in response to DNA damage appears to be an active process which requires a gene product which is defective or missing in ataxia telangiectasia cells. In normal human fibroblasts, the inhibition of DNA topoisomerase I by camptothecin produced reversible DNA strand breaks. Transient exposure to this drug also inhibited replicon initiation. These results suggest that the cellular response pathway which downregulates replicon initiation following genotoxic damage may respond to perturbations of chromatin structure which accompany stabilization of topoisomerase-DNA cleavable complexes.  相似文献   

14.
The DNA sequence motifs which direct adeno-associated virus type 2 site-specific integration are being investigated using a shuttle vector, propagated as a stable episome in cultured cell lines, as the target for integration. Previously, we reported that the minimum episomal targeting elements comprise a 16-bp binding motif (Rep binding site [RBS]) for a viral regulatory protein (Rep) separated by a short DNA spacer from a sequence (terminal resolution site [TRS]) that can serve as a substrate for Rep-mediated nicking activity (R. M. Linden, P. Ward, C. Giraud, E. Winocour, and K. I. Berns, Proc. Natl. Acad. Sci. USA 93:11288-11294, 1996; R. M. Linden, E. Winocour, and K. I. Berns, Proc. Natl. Acad. Sci. USA 93:7966-7972, 1996). We now report that episomal integration depends upon both the sequence and the position of the spacer DNA separating the RBS and TRS motifs. The spacer thus constitutes a third element required for site-specific episomal integration.  相似文献   

15.
Amsacrine is an acridine derivative drug applied in haematological malignancies. It targets topoisomerase II enhancing the formation of a cleavable DNA-enzyme complex and leading to DNA fragmentation in dividing cancer cells. Little is known about other modes of the interaction of amsacrine with DNA, by which it could affect also normal cells. Using the alkaline comet assay, we showed that amsacrine at concentrations from the range 0.01 to 10 microM induced DNA damage in normal human lymphocytes, human promyelocytic leukemia HL-60 cells lacking the p53 gene and murine pro-B lymphoid cells BaF3 expressing BCR/ABL oncogene measured as the increase in percentage tail DNA. The effect was dose-dependent. Treated cells were able to recover within a 120-min incubation. Amifostine at 14 mM decreased the level of DNA damage in normal lymphocytes, had no effect on the HL-60 cells and potentiated the DNA-damaging effect of the drug in BCR/ABL-transformed cells. Vitamin C at 10 and 50 microM diminished the extent of DNA damage in normal lymphocytes, but had no effect in cancer cells. Pre-treatment of the cells with the nitrone spin trap, N-tert-butyl-alpha-phenylnitrone or ebselen, which mimics glutathione peroxidase, reduced the extent of DNA damage evoked by amsacrine in all types of cells. The cells exposed to amsacrine and treated with endonuclease III and 3-methyladenine-DNA glycosylase II, the enzymes recognizing oxidized and alkylated bases, respectively, displayed greater extent of DNA damage than those not treated with these enzymes. The results obtained suggest that free radicals may be involved in the formation of DNA lesions induced by amsacrine. The drug can also methylate DNA bases. Our results indicate that the induction of secondary malignancies should be taken into account as diverse side effects of amsacrine. Amifostine may potentate DNA-damage effect of amsacrine in cancer cells and decrease this effect in normal cells and Vitamin C can be considered as a protective agent against DNA damage in normal cells.  相似文献   

16.
17.
Directed integration of minute virus of mice DNA into episomes.   总被引:1,自引:1,他引:0       下载免费PDF全文
J Corsini  J Tal    E Winocour 《Journal of virology》1997,71(12):9008-9015
Recent studies with adeno-associated virus (AAV) have shown that site-specific integration is directed by DNA sequence motifs that are present in both the viral replication origin and the chromosomal preintegration DNA and that specify binding and nicking sites for the viral regulatory Rep protein. This finding raised the question as to whether other parvovirus regulatory proteins might direct site-specific recombination with DNA targets that contain origin sequences functionally equivalent to those described for AAV. To investigate this question, active and inactive forms of the minute virus of mice (MVM) 3' replication origin, derived from a replicative-form dimer-bridge intermediate, were propagated in an Epstein-Barr virus-based shuttle vector which replicates as an episome in a cell-cycle-dependent manner in mammalian cells. Upon MVM infection of these cells, the infecting genome integrated into episomes containing the active-origin sequence reported to be efficiently nicked by the MVM regulatory protein NS1. In contrast, MVM did not integrate into episomes containing either the inactive form of the origin sequence reported to be inefficiently nicked by NS1 or the active form from which the NS1 consensus nick site had been deleted. The structure of the cloned MVM episomal recombinants displayed several features previously described for AAV episomal and chromosomal recombinants. The findings indicate that the rules which govern AAV site-specific recombination also apply to MVM and suggest that site-specific chromosomal insertions may be achievable with different autonomous parvovirus replicator proteins which recognize binding and nicking sites on the target DNA.  相似文献   

18.
We introduce a method to follow DNA repair that is suitable for both clinical and laboratory samples. An episomal construct with a unique 8-oxoguanine (8-oxoG) base at a defined position was prepared in vitro using single-stranded phage harboring a 678-bp tract from exons 5 to 9 of the human P53 gene. Mixing curve experiments showed that the real-time PCR method has a linear response to damage, suggesting that it is useful for DNA repair studies. The episomal construct with a unique 8-oxoG base was introduced into AD293 cells or human peripheral blood mononuclear cells, and plasmids were recovered as a function of time. The quantitative real-time PCR assay demonstrated that repair of the 8-oxoG was 80% complete in less than 48 h in AD293 cells. Transfection of small interfering RNAs down-regulated OGG1 expression in AD293 cells and reduced the repair of 8-oxoG to 30%. Transfection of the episome into unstimulated white blood cells showed that 8-oxoG repair had a half-life of 2 to 5 h. This method is a rapid, reproducible, and robust way to monitor repair of specific adducts in virtually any cell type.  相似文献   

19.
In order to further elucidate the, roles of DNA topoisomerase II (topo II) subtypes, α and β, as drug targets in chemotherapy, we have determined the enzyme levels in K562 cells selected for resistance to mitoxantrone (K562/Mxn), daunorubicin (K562/Dnr) and idarubicin (K562/Ida 20 and K562/Ida 60), as well as topo II-DNA complex formation, DNA damage and cytotoxicity, induced by topo II interactive agents, for example etoposide, teniposide, mitoxantrone and amsacrine. As compared to the parental cells, topo IIα/β protein levels in K562/Mxn, K562/Dnr, K562/Ida 20 and 60 lines, measured with Western blot, were 17/67%, 85/88, 24/31% and 10/7% respectively. DNA damage, determined by DNA unwinding technique, induced by teniposide and amsacrine correlated with both topo IIα/β protein levels (r 2=0.8/0.9,P=0.03/0.01 andr 2=0.8/0.9,P=0.04/0.01, respectively). Topo II-DNA complex formation induced by all studied drugs correlated with topo IIβ protein levels (r 2-range 0.8–0.9,P-range 0.01–0.04), while the correlation with topo IIα was weaker. Topo IIα/β protein levels tended to show an inverse correlation with the cytotoxicity of etoposide (r 2=−0.9/−0.7,P=0.01/0.06). The overall topo II-DNA complex formation correlated with drug-induced DNA damage (r 2=0.9,P=0.0001), whilst not with the cytotoxicity. Our findings indicate that both topo II isozymes are the targets of the antitumor agents studied, and of potential clinical relevance for prediction of treatment efficacy. They could play a role in tailored chemotherapy.  相似文献   

20.
Because of the critical role of the DNA topoisomerases in the synthesis and conformation of DNA, and the well-known observation that radiation inhibits replicative DNA synthesis, we have examined the possibility that inhibitors of these enzymes might influence radiation lethality. In particular, using protocols involving the administration of either fresh or conditioned medium, we examined the ability of intercalative and nonintercalative inhibitors to affect the expression of potentially lethal damage and/or sublethal damage. The inhibitors examined were amsacrine, teniposide, etoposide, and novobiocin; only the latter compound was clearly effective in a selective way at nontoxic concentrations, and this was observed specifically in reference to the repair of potentially lethal damage effected by incubation in conditioned medium. These results are another example of differences between the repair of sublethal versus potentially lethal damage that further support distinctions between the two. At a mechanistic level, these and other data suggest that the property of novobiocin that is relevant in the foregoing is its metabolic inhibition of replicative DNA synthesis, a process which may be more important in the repair of potentially lethal damage as opposed to sublethal damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号